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Abstract
In this paper, we investigate degenerate versions of the generalized pth order Franel
numbers which are certain finite sums involving powers of binomial coefficients. In
more detail, we introduce degenerate generalized hypergeometric functions and
study degenerate hypergeometric numbers of order p. These numbers involve
powers of λ-binomial coefficients and λ-falling sequence, and can be represented by
means of the degenerate generalized hypergeometric functions. We derive some
explicit expressions and combinatorial identities for those numbers. We also consider
several related special numbers like λ-hypergeometric numbers of order p and
Apostol type λ-hypergeometric numbers of order p, of which the latter reduce in a
limiting case to the generalized pth order Franel numbers.
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1 Introduction
First, we study certain finite sums involving powers of binomial coefficients which are
called generalized pth order Franel numbers and can be represented in terms of hyper-
geometric functions. Then, among other things, we find that particular cases of these
numbers are connected with many known special numbers and polynomials which in-
clude Bernoulli numbers, Euler numbers, Changhee numbers, Daehee numbers, Stirling
numbers of the first kind, Catalan numbers, and Legendre polynomials.

In recent years, many mathematicians have devoted their attention to studying various
degenerate versions of some special numbers and polynomials [4, 7, 8, 10, 15, 16]. The
idea of investigating degenerate versions of some special numbers and polynomials orig-
inated from Carlitz’s papers [2, 3]. Indeed, he introduced the degenerate Bernoulli and
Euler polynomials and numbers, and investigated some arithmetic and combinatorial as-
pects of them. Here we mention in passing that the degenerate Bernoulli polynomials
were later rediscovered by Ustinov under the name of Korobov polynomials of the second
kind. Two of the present authors, their colleagues, and some other people have studied
quite a few degenerate versions of special numbers and polynomials with their interest
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not only in combinatorial and arithmetic properties but also in differential equations and
certain symmetric identities (see [9, 16] and the references therein). It is worth noting that
this idea of considering degenerate versions of some special polynomials and numbers is
not only limited to polynomials but can also be extended to transcendental functions like
gamma functions [11, 12]. We believe that studying some degenerate versions of special
polynomials and numbers is a very fruitful and promising area of research in which many
things remain yet to be uncovered.

Recently, Dolgy and Kim gave some explicit formulas of degenerate Stirling numbers as-
sociated with the degenerate special numbers and polynomials. Motivated by Dolgy and
Kim’s paper [4], we would like to investigate degenerate versions of the generalized pth
order Franel numbers. In more detail, we introduce degenerate generalized hypergeomet-
ric functions and study degenerate hypergeometric numbers of order p. These numbers
involve powers of λ-binomial coefficients and λ-falling sequence, and can be represented
by means of the degenerate generalized hypergeometric functions. We also consider sev-
eral related special numbers like λ-hypergeometric numbers of order p and Apostol type
λ-hypergeometric numbers of order p, of which the latter reduce in a limiting case to the
generalized pth order Franel numbers.

For the rest of this section, we will fix some notations and recall some known results
that are needed throughout this paper.

For λ ∈R, the degenerate exponential function is defined as

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = (1 + λt)

1
λ = e1

λ(t)
(
see [2, 3, 11, 12, 14]

)
. (1)

From (1), we note that

ex
λ(t) =

∞∑

n=0

(x)n,λ
tn

n!
(
see [4, 9–12]

)
, (2)

where (x)n,λ is the λ-falling sequence given by

(x)0,λ = 1, (x)n,λ = x(x – λ) · · · (x – (n – 1)λ
)

(n ≥ 1). (3)

In [10], the degenerate Stirling numbers of the second kind are defined by

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0). (4)

Let

(x)0 = 1, (x)n = x(x – 1)(x – 2) · · · (x – (n – 1)
)

(n ≥ 1). (5)

Then limλ→0 S2,λ(n, k) = S2(n, k), where S2(n, k) are the ordinary Stirling numbers of the
second kind given by

xn =
n∑

l=0

S2(n, l)(x)l (n ≥ 0)
(
see [1–13, 15–22]

)
. (6)
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The Stirling numbers of the first kind are defined as

1
k!

(
log(1 + t)

)k =
∞∑

n=k

S1(n, k)
tn

n!
(k ≥ 0)

(
see [13, 15]

)
. (7)

Thus, by (7), we get

(x)n =
n∑

l=0

S1(n, l)xl (n ≥ 0). (8)

In view of (4), the degenerate Stirling numbers of the first kind are defined by

1
k!

(
(1 + t)λ – 1

λ

)k

=
∞∑

n=k

S1,λ(n, k)
tn

n!
(
see [4, 10]

)
. (9)

Note that limλ→0 S1,λ(n, k) = S1(n, k) (n, k ≥ 0).
As is well known, the generalized hypergeometric function F (p,q) is defined by

F (p,q)

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣
∣∣x

)

=
∞∑

k=0

〈a1〉k · · · 〈ap〉k

〈b1〉k〈b2〉k · · · 〈bq〉k

xk

k!
, (10)

where 〈a〉k = a(a + 1) · · · (a + (k – 1)) (k ≥ 1), 〈a〉0 = 1 (see [17, 21]).
For example,

F (2,1)

(
1, b
b

∣
∣∣
∣–1

)

=
1
2

, F (2,1)

(
2, b
b

∣
∣∣
∣–1

)

=
1
4

, F (2,1)

(
3, b
b

∣
∣∣
∣–1

)

=
1
8

, . . . .

The Gauss summation theorem is given by

F (2,1)

(
a, b

c

∣
∣∣
∣1

)

=
Γ (c)Γ (c – a – b)
Γ (c – a)Γ (c – b)

, (11)

where R(c) > R(b) > 0, R(c – a – b) > 0, R(c) > R(a) > 0.
From (11), we note that

F (2,1)

(
a, b

c

∣∣
∣∣z

)

=
Γ (c)

Γ (b)Γ (c – b)

∫ 1

0
tb–1(1 – t)c–b–1(1 – tz)–a dt, (12)

where R(c) > R(b) > 0.
The following are well-known identities related to the binomial coefficients:

n∑

k=0

(
n
k

)
= 2n (n ≥ 0), (13)

n∑

k=0

(–1)k
(

n
k

)
= 0 (n �= 0, n ∈N), (14)

n∑

k=0

(
n
k

)2

=
(2n)!
(n!)2 =

(
2n
n

)
, (15)
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n∑

k=0

(–1)k
(

n
k

)3

=

{
0, if n is odd,
(–1)n/2n!

(( n
2 )!)2 , otherwise,

(16)

n∑

k=–n

(–1)k
(

n + b
n + k

)(
n + c
c + k

)(
b + c
b + k

)
=

Γ (b + c + n + 1)
n!Γ (b + 1)Γ (c + 1)

. (17)

2 Sums of powers of λ-binomial coefficients
The λ-binomial coefficients are defined as

(
x
n

)

λ

=
(x)n,λ

n!
=

x(x – λ) · · · (x – (n – 1)λ)
n!

(n ≥ 1),
(

x
0

)

λ

= 1 (λ ∈R). (18)

From (18), we easily get

(
x + y

n

)

λ

=
n∑

l=0

(
x
l

)

λ

(
y

n – l

)

λ

(n ≥ 0). (19)

By (1), we easily get

B∗
λ(n, k) =

dn

dtn

(
eλ(t) + 1

)k
∣
∣∣∣
t=0

=
k∑

j=1

(
k
j

)
(j)n,λ, (20)

where n and k are positive integers.
Note that limλ→0 B∗

λ(n, k) = B(n, k), where B(n, k) are defined by Golombek and given by

B(n, k) =
k∑

j=1

(
k
j

)
jn (

see [5, 6]
)
.

Now, we define the degenerate hypergeometric function as

Fλ

(
a, b

c

∣
∣∣
∣z

)

=
∞∑

n=0

〈a〉n,λ〈b〉n,λ

〈c〉n,λ

zn

n!
, (21)

where 〈a〉n,λ = a(a + λ) · · · (a + (n – 1)λ) (n ≥ 1), 〈a〉0,λ = 1.
From (21), we note that

Fλ

(
–n, –n

λ

∣∣∣
∣λeλ(t)

)

=
∞∑

k=0

〈–n〉k,λ〈–n〉k,λλ
k

〈λ〉k,λ

ek
λ(t)
k!

=
∞∑

k=0

(n)k,λ(n)k,λ

k!
ek
λ(t)
k!

=
∞∑

k=0

(
n
k

)2

λ

ek
λ(t) =

∞∑

m=0

∞∑

k=0

(
n
k

)2

λ

(k)m,λ
tm

m!
, (22)

where n is a nonnegative integer.
Let us define

Fλ

(
–n, –n

λ

∣∣
∣∣λeλ(t)

)

=
∞∑

m=0

Qλ(m, 2)
tm

m!
. (23)

Therefore, by (22) and (23), we obtain the following theorem.
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Theorem 2.1 For m ≥ 0, we have

Qλ(m, 2) =
∞∑

k=0

(
n
k

)2

λ

(k)m,λ.

We note that limλ→0 Qλ(m, 2) =
∑n

k=0
(n

k
)2km = Q(m, 2), which was introduced by

Golombek and Marburg (see [5, 6]).
We observe that

Fλ

(
–a
×

∣∣
∣∣–z

)

=
∞∑

k=0

〈–a〉k,λ
(–z)k

k!
=

∞∑

k=0

(a)k,λ

k!
zk =

∞∑

k=0

(
a
k

)

λ

zk = ea
λ(z).

For n ∈N, let

Fλ

(
–n
×

∣∣
∣∣–eλ(t)

)

=
(
1 + λeλ(t)

) n
λ =

∞∑

m=0

Hλ(n, m)
tm

m!
. (24)

On the one hand, we have

(
1 + λeλ(t)

) n
λ =

∞∑

k=0

(
n
k

)

λ

ek
λ(t) =

∞∑

m=0

( ∞∑

k=0

(
n
k

)

λ

(k)m,λ

)
tm

m!
. (25)

On the other hand, we get

(
1 + λeλ(t)

) n
λ =

(
1 + λ + λ

(
eλ(t) – 1

)) n
λ

= (1 + λ)
n
λ

(
1 +

λ

1 + λ

(
eλ(t) – 1

))
n
λ

= (1 + λ)
n
λ

∞∑

k=0

(
n
k

)

λ

(
1

1 + k

)k(
eλ(t) – 1

)k

= (1 + λ)
n
λ

∞∑

k=0

(n)k,λ

(
1

1 + λ

)k 1
k!

(
eλ(t) – 1

)k

=
∞∑

m=0

(

(1 + λ)
n
λ

m∑

k=0

(n)k,λ

(
1

1 + λ

)k

S2,λ(m, k)

)
tm

m!
. (26)

From (24), (25), and (26), we obtain the following theorem.

Theorem 2.2 For n ∈ N and m ∈N∪ {0}, we have

Hλ(n, m) = (1 + λ)
n
λ

m∑

k=0

(n)k,λ

(
1

1 + λ

)k

S2,λ(m, k) =
∞∑

k=0

(
n
k

)

λ

(k)m,λ.

As is well known, the degenerate Bell polynomials are defined by

ex
λ

(
eλ(t) – 1

)
=

∞∑

n=0

Beln,λ(x)
tn

n!
(
see [16]

)
. (27)
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By (27), we easily get

Beln,λ(x) =
n∑

k=0

(x)k,λS2,λ(n, k) (n ≥ 0). (28)

Now, we define the degenerate bivariate Bell polynomials by

ex
λ

(
y
(
eλ(t) – 1

))
=

∞∑

n=0

Beln,λ(x, y)
tn

n!
. (29)

Thus, by (29), we get

Beln,λ(x, y) =
n∑

k=0

(x)k,λykS2,λ(n, k) (n ≥ 0). (30)

From Theorem 2.2 and (30), we obtain the following corollary.

Corollary 2.3 For n ∈N and m ∈N∪ {0}, we have

Hλ(n, m) = (1 + λ)
n
λ Belm,λ

(
n,

1
1 + λ

)
.

Note that

lim
λ→0

Hλ(n, m) =
∞∑

k=0

nk

k!
km = en

m∑

k=0

nkS2(m, k).

We observe that

Hλ(n, 1) =
∞∑

k=0

(
n
k

)

λ

(k)1,λ =
∞∑

k=1

(n)k,λ

(k – 1)!

=
∞∑

k=0

(
n
k

)

λ

(n – kλ) = n
∞∑

k=0

(
n
k

)

λ

– λ

∞∑

k=0

(
n
k

)

λ

k

= n
∞∑

k=0

(
n
k

)

λ

– λHλ(n, 1). (31)

Thus, by (31), we get

(1 + λ)Hλ(n, 1) = n
∞∑

k=0

(
n
k

)

λ

= n(1 + λ)
n
λ . (32)

From (32), we have

Hλ(n, 1) = n(1 + λ)
n
λ

–1 (λ �= –1).



Kim et al. Advances in Difference Equations        (2020) 2020:115 Page 7 of 17

For m = 2, we have

∞∑

k=0

(
n
k

)

λ

(k)2,λ =
∞∑

k=0

(n)k,λ

k!
k(k – λ) =

∞∑

k=1

(n)k,λ

(k – 1)!
(k – λ)

=
∞∑

k=1

(n)k,λ

(k – 1)!
(k – 1 + 1 – λ) =

∞∑

k=2

(n)k,λ

(k – 2)!
+ (1 – λ)

∞∑

k=1

(n)k,λ

(k – 1)!

=
∞∑

k=2

(n – 2λ)k–2,λ

(k – 2)!
n(n – λ) + (1 – λ)n

∞∑

k=1

(n – λ)k–1,λ

(k – 1)!

= n(n – λ)
∞∑

k=2

(
n – 2λ

k – 2

)

λ

+ n(1 – λ)
∞∑

k=1

(
n – λ

k – 1

)

λ

= n(n – λ)
∞∑

k=0

(
n – 2λ

k

)

λ

+ n(1 – λ)
∞∑

k=0

(
n – λ

k

)

λ

= n(n – λ)(1 + λ)
n
λ

–2 + n(1 – λ)(1 + λ)
n
λ

–1

= n
(
n + 1 – λ – λ2)(1 + λ)

n
λ

–2. (33)

By (33), we get

Hλ(n, 2) = n(n + 1 – 2λ)(1 + λ)
n
λ

–2. (34)

Let us take m = 3. Then we have

Hλ(n, 3) =
∞∑

k=0

(
n
k

)

λ

(k)3,λ =
∞∑

k=0

(
n
k

)

λ

k(k – λ)(k – 2λ)

=
∞∑

k=1

(n)k,λ

(k – 1)!
(k – λ)(k – 2λ) =

∞∑

k=1

(n)k,λ

(k – 1)!
(k – 1 + 1 – λ)(k – 2λ)

=
∞∑

k=2

(n)k,λ

(k – 2)!
(k – 2λ) + (1 – λ)

∞∑

k=1

(n)k,λ

(k – 1)!
(k – 2λ)

=
∞∑

k=3

(n)k,λ

(k – 3)!
+ 3(1 – λ)

∞∑

k=2

(n)k,λ

(k – 2)!
+ (1 – λ)(1 – 2λ)

∞∑

k=1

(n)k,λ

(k – 1)!

= (n)3,λ

∞∑

k=0

(
n – 3λ

k

)

λ

+ 3(1 – λ)(n)2,λ

∞∑

k=0

(
n – 2λ

k

)

λ

+ (1 – λ)(1 – 2λ)(n)1,λ

∞∑

k=0

(
n – λ

k

)

λ

= (n)3,λ(1 + λ)
n
λ

–3 + 3(1 – λ)(n)2,λ(1 + λ)
n
λ

–2 + (1 – λ)(1 – 2λ)n(1 + λ)
n
λ

–1.

Note that

lim
λ→1

Hλ(n, 3) =
n∑

k=0

(
n
k

)
(k)3 = (n)32n–3
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and

lim
λ→0

Hλ(n, 3) =
∞∑

k=0

nk

k!
k3 = n

(
n2 + 3n + 1

)
en.

For s ∈C with R(s) > 0, the gamma function is defined by

Γ (s) =
∫ ∞

0
e–tts–1 dt.

Let n be a nonnegative integer. Then

〈b〉n,λ

〈c〉n,λ
=

Γ ( b
λ

+ n)Γ ( c
λ

)
Γ ( c

λ
+ n)Γ ( b

λ
)
,

where R( c
λ

) > 0 and R( b
λ

) > 0.
For R( c

λ
) > R( b

λ
) > 0, we have

Γ ( b
λ

+ n)Γ ( c
λ

– b
λ

)
Γ ( c

λ
+ n)

=
∫ 1

0
t

b
λ

+n–1(1 – t)
c
λ

– b
λ

–1 dt. (35)

From (35), we note that

Fλ

(
a, b

c

∣∣
∣∣z

)

=
∞∑

n=0

〈a〉n,λ〈b〉n,λ

〈c〉n,λ

zn

n!

=
Γ ( c

λ
)

Γ ( b
λ

)Γ ( c
λ

– b
λ

)

∫ 1

0
t

b
λ

–1(1 – t)
c
λ

– b
λ

–1(1 – λtz)– a
λ dt. (36)

In particular, for z = 1
λ

(λ �= 0), from (11) we get

Fλ

(
a, b

c

∣∣
∣∣

1
λ

)

=
Γ ( c

λ
)Γ ( c

λ
– b

λ
– a

λ
)

Γ ( c
λ

– b
λ

)Γ ( c
λ

– a
λ

)
, where R

(
c
λ

–
b
λ

–
a
λ

)
> 0. (37)

For n ∈N, by (37), we get

Fλ

(
–n, –n

λ

∣
∣∣
∣

1
λ

)

=
Γ (1)Γ (1 + 2n

λ
)

Γ (1 + n
λ

)Γ (1 + n
λ

)
=

2λ

n
Γ ( 2n

λ
)

(Γ ( n
λ

))2 , (38)

where λ is a positive real number.
On the other hand,

Fλ

(
–n, –n

λ

∣∣∣
∣

1
λ

)

=
∞∑

k=0

〈–n〉k,λ〈–n〉k,λ

〈λ〉k,λ

( 1
λ

)k

k!
=

∞∑

k=0

λ–2k
(

n
k

)2

λ

. (39)

Therefore, by (38) and (39), we obtain the following theorem.
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Theorem 2.4 Let λ be a positive real number. For n ∈N, we have

∞∑

k=0

λ–2k
(

n
k

)2

λ

=
2λ

n
Γ ( 2n

λ
)

(Γ ( n
λ

))2 .

Note that

lim
λ→1

∞∑

k=0

λ–2k
(

n
k

)2

λ

=
n∑

k=0

(
n
k

)2

=
(2n)!
(n!)2 =

(
2n
n

)
.

Now, we define the degenerate generalized hypergeometric function as

F (p,q)
λ

(
a1, a2, . . . , ap

b1, . . . , bq

∣∣
∣∣z

)

=
∞∑

k=0

〈a1〉k,λ · · · 〈ap〉k,λ

〈b1〉k,λ · · · 〈bq〉k,λ

zk

k!
, where |z| < 1. (40)

Let n be a positive integer. Then we define the degenerate hypergeometric numbers of order
p by

F (p,p–1)
λ

(
–n – n, . . . , –n

λ, . . . ,λ

∣∣∣
∣(–1)pλp–1eλ(t)

)

=
∞∑

m=0

H (p)
λ (n, m)

tm

m!
. (41)

From (23) and (24), we note that Hλ(n, m) = H (1)
λ (n, m), and Qλ(m, 2) = H (2)

λ (n, m).
In (40), we note that

F (p,p–1)
λ

(
–n, –n, . . . , –n

λ, . . . ,λ

∣∣
∣∣(–1)pλp–1eλ(t)

)

=
∞∑

k=0

〈–n〉k,λ〈–n〉k,λ · · · 〈–n〉k,λ

〈λ〉k,λ〈λ〉k,λ · · · 〈λ〉k,λ

(–1)pkλ(p–1)k

k!
ek
λ(t)

=
∞∑

k=0

((n)k,λ)p

(k!)p–1
ek
λ(t)
k!

=
∞∑

k=0

(
n
k

)p

λ

ek
λ(t)

=
∞∑

m=0

( ∞∑

k=0

(
n
k

)p

λ

(k)m,λ

)
tm

m!
. (42)

Therefore, by (41) and (42), we obtain the following theorem.

Theorem 2.5 For n, p ∈N and m ∈N∪ {0}, we have

H (p)
λ (n, m) =

∞∑

k=0

(
n
k

)p

λ

(k)m,λ.

Note that

lim
λ→1

H (p)
λ (n, m) =

n∑

k=0

(
n
k

)p

(k)m and lim
λ→0

H (p)
λ (n, m) =

∞∑

k=0

nkp

(k!)p km.
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From (42), we note that

F (p,p–1)
λ

(
–n, –n, . . . , –n

λ, . . . ,λ

∣
∣∣
∣(–1)pλp–1eλ(t)

)

=
∞∑

k=0

(
n
k

)p

λ

ek
λ(t)

=
∞∑

k=0

(
n
k

)p

λ

k∑

l=0

(
k
l

)
(
eλ(t) – 1

)l =
∞∑

k=0

(
n
k

)p

λ

k∑

l=0

(k)l

∞∑

m=l

S2,λ(m, l)
tm

m!

=
∞∑

m=0

( ∞∑

k=0

k∑

l=0

(
n
k

)p

λ

(k)lS2,λ(m, l)

)
tm

m!
. (43)

Therefore, by (41) and (43), we obtain the following theorem.

Theorem 2.6 For n, p ∈N and m ∈N∪ {0}, we have

H (p)
λ (n, m) =

∞∑

k=0

k∑

l=0

(
n
k

)p

λ

(k)lS2,λ(m, l).

By (41) and (42), we get

H (p)
λ (n, 0) =

∞∑

k=0

(
n
k

)p

λ

= F (p,p–1)
λ

(
–n, –n, . . . , –n

λ, . . . ,λ

∣∣
∣∣(–1)pλp–1

)

.

Note that

n∑

k=0

(
n
k

)p

= lim
λ→1

H (p)
λ (n, 0) = F (p,p–1)

(
–n, –n, . . . , –n

1, . . . , 1

∣∣
∣∣(–1)p

)

.

From (40), we have

F (p,p–1)
λ

(
–n, –n, . . . , –n

λ, . . . ,λ

∣
∣∣∣(–λ)p–1eλ(t)

)

=
∞∑

k=0

(
n
k

)p

λ

(–1)kek
λ(t) =

∞∑

m=0

( ∞∑

k=0

(
n
k

)p

λ

(–1)k(k)m,λ

)
tm

m!
. (44)

Thus, by (44), we get

F (p,p–1)
λ

(
–n, –n, . . . , –n

λ, . . . ,λ

∣∣∣
∣(–λ)p–1

)

=
∞∑

k=0

(
n
k

)p

λ

(–1)k . (45)



Kim et al. Advances in Difference Equations        (2020) 2020:115 Page 11 of 17

Note that

lim
λ→1

F (p,p–1)
λ

(
–n, –n, . . . , –n

λ, . . . ,λ

∣∣
∣∣(–λ)p–1

)

=
n∑

k=0

(
n
k

)p

(–1)k = F (p,p–1)

(
–n, –n, . . . , –n

1, . . . , 1

∣∣∣
∣(–1)p–1

)

.

3 Further remarks
Let n be a positive integer. From (10), we have

F (2,1)

(
–n, –n

1

∣∣
∣∣eλ(t)

)

=
∞∑

k=0

〈–n〉k〈–n〉k

〈1〉k

ek
λ(t)
k!

=
n∑

k=0

(
n
k

)2

ek
λ(t) =

∞∑

m=0

( n∑

k=0

(
n
k

)2

(k)m,λ

)
tm

m!
. (46)

Now, we define the λ-hypergeometric numbers of order p by

F (p,p–1)

(
–n, –n, . . . , –n

1, . . . , 1

∣
∣∣
∣(–1)peλ(t)

)

=
∞∑

m=0

H (p)
m,λ(n)

tm

m!
. (47)

By (46) and (47), we get

H (2)
m,λ(n) =

n∑

k=0

(
n
k

)2

(k)m,λ, (48)

where n ∈N and m ∈N∪ {0}.
The alternating λ-hypergeometric numbers of order p are defined by

F (p,p–1)

(
–n, –n, . . . , –n

1, . . . , 1

∣
∣∣
∣(–1)p–1eλ(t)

)

=
∞∑

m=0

T (p)
m,λ(n)

tm

m!
. (49)

By (10), we get

F (2,1)

(
–n, –n

1

∣∣
∣∣–eλ(t)

)

=
∞∑

m=0

( ∞∑

k=0

(
n
k

)2

(–1)k(k)m,λ

)
tm

m!
. (50)

From (49) and (50), we have

T (2)
m,λ(n) =

n∑

k=0

(
n
k

)2

(–1)k(k)m,λ, (51)

where m ∈N∪ {0} and n ∈N.
In general, we have

T (p)
m,λ(n) =

n∑

k=0

(
n
k

)p

(–1)k(k)m,λ and H (p)
m,λ(n) =

n∑

k=0

(
n
k

)p

(k)m,λ,

where n, p ∈N and m ∈N∪ {0}.
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We observe that

F (1,0)

(
–n
×

∣
∣∣∣–eλ(t)

)

=
n∑

k=0

(
n
k

)
ek
λ(t) (52)

and

F (1,0)

(
–n
×

∣∣∣
∣eλ(t)

)

=
n∑

k=0

(
n
k

)
(–1)kek

λ(t). (53)

Thus, we note that

H (1)
m,λ(n) =

n∑

k=0

(
n
k

)
(k)m,λ, T (1)

m,λ =
n∑

k=0

(
n
k

)
(–1)k(k)m,λ,

where m ∈N∪ {0} and n ∈N.
For example,

H (1)
0,λ(n) = 2n, H (1)

1,λ(n) = n2n–1, H (1)
2,λ(n) = n(n + 1 – 2λ)2n–2,

H (1)
3,λ(n) = (n)32n–3 + 3(n)2(1 – λ)2n–2 + n(1 – λ)2,λ2n–1, . . . ,

T (1)
0,λ(n) = 0, T (1)

1,λ(n) = –δ1,n,

T (1)
2,λ(n) = n(n – 1)δ2,n + (λ – 1)δn,1, . . . ,

where δn,k is Kronecker’s symbol.
From (49), we note that

∞∑

m=0

T (1)
m,λ(n)

tm

m!
= F (1,0)

(
–n
×

∣∣
∣∣eλ(t)

)

=
(
1 – eλ(t)

)n = (–1)n n!
n!

(
eλ(t) – 1

)n

= (–1)nn!
∞∑

m=n
S2,λ(m, n)

tm

m!
. (54)

On the other hand,

(
1 – eλ(t)

)n =
n∑

j=0

(
n
j

)
(–1)n–jej

λ(t) =
∞∑

m=0

( n∑

j=0

(
n
j

)
(–1)n–j(j)m,λ

)
tm

m!
. (55)

Thus, by (54) and (55), we get

T (1)
m,λ(n) =

n∑

j=0

(
n
j

)
(–1)n–j(j)m,λ = (–1)nn!S2,λ(m, n) (m ≥ n). (56)

If m < n, then T (1)
m,λ(n) = 0.

Theorem 3.1 For n ∈ N and m ∈N∪ {0}, we have

T (1)
m,λ(n) =

n∑

j=0

(
n
j

)
(–1)n–j(j)m,λ = (–1)nn!S2,λ(m, n) (m ≥ n).
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In particular, if m < n, then

T (1)
m,λ = 0.

For k ≥ 0, we have

lim
λ→0

(–1)nT (1)
n+k,λ(n) =

n∑

j=0

(
n
j

)
(–1)jjn+k = n!S2(n + k, n).

Corollary 3.2 For k ≥ 0 and n ∈N, we have

1
n!

n∑

j=0

(
n
j

)
(–1)jjn+k = S2(n + k, n).

It is easy to show that

(
et – 1

)n =
n∑

j=0

(
n
j

)
(–1)n–jejt

=
n∑

j=0

j∑

l=0

(
n
j

)
(–1)n–j(j)l

1
l!
(
et – 1

)l

=
n∑

j=0

j∑

l=0

(
n
j

)
(j)l(–1)n–j

∞∑

m=l

S2(m, l)
tm

m!
.

Thus, we have

∞∑

m=n
S2(m, n)

tm

m!
=

1
n!

(
et – 1

)n =
1
n!

n∑

j=0

j∑

l=0

(
n
j

)
(j)l(–1)n–j

∞∑

m=l

S2(m, l)
tm

m!
. (57)

For k ≥ 0, n ∈ N, by (57), we get

S2(n + k, n) =
1
n!

n∑

j=0

n+k∑

l=0

(
n
j

)
(j)l(–1)n–jS2(n + k, l). (58)

From Corollary 3.2 and (58), we have

n∑

j=0

(
n
j

)
(–1)jjn+k =

n∑

j=0

n+k∑

l=0

(
n
j

)
(j)l(–1)n–jS2(n + k, l).

For λ,λ1 ∈ R, let us define Apostol type alternating λ-hypergeometric numbers of order
p by

F (p,p–1)

(
–n, –n, . . . , –n

1, . . . , 1

∣
∣∣∣(–1)p–1λ1eλ(t)

)

=
∞∑

m=0

T (p)
m,λ(n|λ1)

tm

m!
. (59)



Kim et al. Advances in Difference Equations        (2020) 2020:115 Page 14 of 17

By (10), we get

F (1,0)

(
–n
×

∣∣
∣∣λ1eλ(t)

)

=
n∑

k=0

(
n
k

)(
–λ1eλ(t)

)k =
n∑

j=0

(
n
j

)
(–1)jλ

j
1ej

λ(t)

=
∞∑

m=0

( n∑

j=0

(
n
j

)
(–1)jλ

j
1(j)m,λ

)
tm

m!
. (60)

On the other hand,

F (1,0)

(
–n
×

∣∣
∣∣λ1eλ(t)

)

=
(
1 – λ1eλ(t)

)n =
n∑

j=0

(
n
j

)
(–1)jλ

j
1ej

λ(t)

=
n∑

j=0

(
n
j

)
(–1)jλ

j
1

j∑

l=0

(
j
l

)
(
eλ(t) – 1

)l

=
n∑

j=0

j∑

l=0

(
n
j

)
(–1)jλ

j
1(j)l

(eλ(t) – 1)l

l!

=
n∑

j=0

j∑

l=0

(
n
j

)
(–1)jλ

j
1(j)l

∞∑

m=l

S2,λ(m, l)
tm

m!
. (61)

For k ≥ 0 and n ∈N, by (59), (60), and (61), we obtain the following theorem.

Theorem 3.3 For λ,λ1 ∈R, n ∈N, and k ∈N∪ {0}, we have

T (1)
n+k,λ(n | λ1) =

n∑

j=0

(
n
j

)
(–1)jλ

j
1(j)n+k,λ =

n∑

j=0

j∑

l=0

(
n
j

)
(–1)jλ

j
1(j)lS2,λ(n + k, l).

Note that

lim
λ→0

T (1)
n+k,λ(n | λ1) =

n∑

j=0

(
n
j

)
(–1)jλ

j
1jn+k =

n∑

j=0

j∑

l=0

(
n
j

)
(–1)jλ

j
1(j)lS2(n + k, l).

For λ1 ∈R, let us define Apstol–Stirling numbers of the second kind as

1
n!

(
λ1et – 1

)n =
∞∑

m=0

S(m, n | λ1)
tm

m!
(n ≥ 0). (62)

Now, we observe that

1
n!

(
λ1et – 1

)n =
1
n!

n∑

j=0

(
n
j

)
λ

j
1(–1)n–jejt =

1
n!

n∑

j=0

(
n
j

)
λ

j
1(–1)n–j

∞∑

m=0

jm tm

m!
. (63)

For k ∈N∪ {0} and n ∈N, by (62) and (63), we get

S(n + k, n | λ1) =
(–1)n

n!

n∑

j=0

(
n
j

)
λ

j
1(–1)jjn+k . (64)
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From Theorem 3.3 and (64), we have

lim
λ→0

T (1)
n+k,λ(n | λ1) = (–1)nn!S(n + k, n | λ1) =

n∑

j=0

(
n
j

)
λ

j
1(–1)jjn+k . (65)

Therefore, by (65), we obtain the following corollary.

Corollary 3.4 For k ∈N∪ {0} and n ∈N, we have

n∑

j=0

(
n
j

)
λ

j
1(–1)jjn+k = (–1)nn!S(n + k, n | λ) = lim

λ→0
T (1)

n+k,λ(n | λ1).

Remarks
(a) Corollary 3.4 naturally interprets the sum in Corollary 3.4 in terms of

Apostol–Stirling numbers of the second kind defined by (62).
(b) For λ,λ1 ∈R, let us define Apostol type λ-hypergeometric numbers of order p by

F (p,p–1)

(
–n, –n, . . . , –n

1, . . . , 1

∣∣
∣∣(–1)pλ1eλ(t)

)

=
∞∑

m=0

H (p)
m,λ(n | λ1)

tm

m!
. (66)

By (10), we get

F (p,p–1)

(
–n, –n, . . . , –n

1, . . . , 1

∣∣∣
∣(–1)pλ1eλ(t)

)

=
∞∑

k=0

(
n
k

)p

λk
1ek

λ(t)

=
∞∑

m=0

( n∑

k=0

(
n
k

)p

λk
1(k)m,λ

)
tm

m!
. (67)

From (66) and (67), we have

H (p)
m,λ(n | λ1) =

n∑

k=0

(
n
k

)p

λ
p
1(k)m,λ, where n, p ∈N and m ∈N∪ {0}.

Note that

lim
λ→0

H (p)
m,λ(n | λ1) =

n∑

k=0

(
n
k

)p

λ
p
1km.

4 Conclusion
In this paper, we studied certain finite sums involving powers of binomial coefficients
which are called generalized pth order Franel numbers and can be represented in terms
of hypergeometric functions. Then, among other things, we found that particular cases of
these numbers are connected with many known special numbers and polynomials which
include Bernoulli numbers, Euler numbers, Changhee numbers, Daehee numbers, Stirling
numbers of the first kind, Catalan numbers, and Legendre polynomials. Recently, Dolgy
and Kim gave some explicit formulas of degenerate Stirling numbers associated with the
degenerate special numbers and polynomials. Motivated by Dolgy and Kim’s paper [4], we
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investigated degenerate versions of the generalized pth order Franel numbers. In more de-
tail, we introduced degenerate generalized hypergeometric functions and studied degen-
erate hypergeometric numbers of order p. We showed that the degenerate hypergeometric
numbers of order p involve powers of λ-binomial coefficients and λ-falling sequence, and
can be represented by means of the degenerate generalized hypergeometric functions. We
also considered several related special numbers like λ-hypergeometric numbers of order
p and Apostol type λ-hypergeometric numbers of order p, of which the latter reduce in a
limiting case to the generalized pth order Franel numbers.
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