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1 Introduction
In the topics of discrete fractional calculus a variety of results can be found in [1–16],
which has helped to construct theory of the subject. A rigorous intrigue in fractional cal-
culus of differences has been exhibited by Atici and Eloe [3, 5]. They explored character-
istics of falling function, a new power law for difference operators, and the composition of
sums and differences of arbitrary order. Holm presented advance composition formulas
for sums and differences in his dissertation [12].

Hilfer fractional order derivative was introduced in [17]. Hilfer’s definition is illustrated
as follows: the fractional derivative of order 0 < μ < 1 and type 0 ≤ ν ≤ 1 is

Dμ,ν
a f (x) =

(
Iν(1–μ)

a
d

dx
(
I(1–ν)(1–μ)

a f
))

(x).

The special cases are Riemann–Liouville fractional derivative for ν = 0 and Caputo frac-
tional derivative for ν = 1. Furati et al. [18, 19] primarily studied the existence theory of
Hilfer fractional derivative and also explained the type parameter ν as interpolation be-
tween the Riemann–Liouville and the Caputo derivatives. It generates more types of sta-
tionary states and gives an extra degree of freedom on the initial condition.

Hilfer fractional calculus has been examined broadly by a lot of researchers. Some re-
cent studies involving Hilfer fractional derivatives can be found in [20–28]. The majority of
the work in discrete fractional calculus is developed as analogues of continuous fractional
calculus. Extensive work on Hilfer fractional derivative and on its extensions has been
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done, namely: Hilfer–Hadamard [29–32], K-fractional Hilfer [33], Hilfer–Prabhakar [34],
Hilfer–Katugampola [35], and ψ-Hilfer [36] fractional operator. However, to the best of
our knowledge no work is available for Hilfer fractional difference operator in the delta
fractional setting. Also formation of fractional difference operator is an important as-
pect of mathematical interest and numerical formulae as well as the applications. It moti-
vated us to generalize the two existing fractional difference operators namely, Riemann–
Liouville and Caputo difference operator in Hilfer’s sense.

We started by introducing a generalized difference operator analogous to Hilfer frac-
tional derivative [17]. To keep the interpolative property of Hilfer fractional difference op-
erators, we carefully chose the starting points of fractional sums. Some important compo-
sition properties were developed and utilized to construct fixed point operator for a new
class of Hilfer fractional nonlinear difference equations with initial condition involving
Riemann–Liouville fractional sum. An application of Brouwer’s fixed point theorem gave
us conditions for the existence of solution for a new class of Hilfer fractional nonlinear
difference equations. For the uniqueness of solution, we applied the Banach contraction
principle. To solve linear fractional Hilfer difference equation, we used successive approx-
imation method and then defined the discrete Mittag-Leffler function in the delta differ-
ence setting. Gronwall’s inequality for discrete calculus with the delta difference operator
has been modified. An application of Gronwall’s inequality has been given for the stability
of solution to fractional order Hilfer difference equation with different initial conditions.

In the continuous setting extensive work on Ulam–Hyers–Rassias stability for nonin-
teger order differential equation has been done. The idea of Ulam–Hyers type stability is
important for both pure and applied problems; especially in biology, economics, and nu-
merical analysis. Rassias [37] introduced the continuity condition, which produced accept-
able stronger results. However, in discrete fractional setting a limited work can be found
[38–40]. For Hilfer delta difference equation, conditions have been acquired for Ulam–
Hyers and Ulam–Hyers–Rassias stability with illustrative example. Interested reader may
find some details on Ulam–Hyers–Rassias stability in [37, 41–43].

In this article, we shall study initial value problem (IVP) for the following Hilfer frac-
tional difference equation. Let η = μ + ν – μν , then for 0 < μ < 1 and 0 ≤ ν ≤ 1, we have

⎧⎨
⎩

�
μ,ν
a u(x) + g(x + μ – 1, u(x + μ – 1)) = 0, for x ∈Na+1–μ,

�
–(1–η)
a u(a + 1 – η) = ζ , ζ ∈R.

(1)

In Sect. 2, we state a few basic but important results from discrete calculus. In the
third section, a new fractional Hilfer difference operator is introduced which interpolates
Riemann–Liouville and Caputo fractional differences; we also develop some important
properties of a newly defined operator. Conditions for existence, uniqueness, and Ulam–
Hyers stability are obtained in Sect. 4. The last section comprises modification and appli-
cation of discrete Gronwall’s inequality in delta setting.

2 Preliminaries
Some basics from discrete fractional calculus are given for later use in the following sec-
tions. The functions we consider are usually defined on the set Na := {a, a + 1, a + 2, . . .},
where a ∈R is fixed. Sometimes the set Na is called isolated time scale. Similarly, the sets
N

b
a := {a, a + 1, a + 2, . . . , b} and [a, b]Na := [a, b] ∩ Na [44] for b = a + k, k ∈ N0. The jump
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operators σ (t) = t + 1 and ρ(t) = t – 1 are forward and backward, respectively, for t ∈ Na.
Furthermore, the set R = {pi : 1 + pi(x) �= 0} contains regressive functions.

Definition 2.1 ([45]) Assume that f : Na →R and b ≤ c are in Na, then the delta definite
integral is defined by

∫ c

b
f (x)�x =

c–1∑
x=b

f (x).

Note that the value of integral
∫ c

b f (x)�x depends on the set {b, b + 1, . . . , c – 1}. Also we
adopt the empty sum convention

∑b–k
x=b f (x) = 0, whenever k ∈ N1.

Definition 2.2 ([9]) Assume μ > 0 and f : Na → R. Then the delta fractional sum of f is
defined by �

–μ
a f (x) :=

∑x–μ
τ=a hμ–1(x,σ (τ ))f (τ ) for x ∈ Na+μ, where hμ(t, s) = (t–s)μ

Γ (μ+1) is μth
fractional Taylor monomial based at s and tμ is the generalized falling function.

Lemma 2.3 ([9]) Assume ν ≥ 0 and μ > 0. Then �
–μ
a+ν(x – a)ν = Γ (ν+1)

Γ (μ+ν+1) (x – a)μ+ν for x ∈
Na+μ+ν .

Definition 2.4 ([3, 46]) Assume f : Na → R, μ > 0, and m – 1 < μ ≤ m for m ∈ N1. Then
the Riemann–Liouville fractional difference of f at a is defined by

�μ
a f (x) = �m�–(m–μ)

a f (x) =
x+μ∑
τ=a

h–μ–1
(
x,σ (τ )

)
f (τ ) for x ∈Na+m–μ.

Definition 2.5 ([1, 47]) Assume f : Na → R, μ > 0, and m – 1 < μ ≤ m for m ∈ N1. Then
the Caputo fractional difference of f at a is defined by

c�μ
a f (x) = �–(m–μ)

a �mf (x) =
x–(m–μ)∑

τ=a
hm–μ–1

(
x,σ (τ )

)
�mf (τ )

for x ∈Na+m–μ.

Definition 2.6 ([9]) Assume p ∈ R and x, y ∈ Na. Then the delta exponential function is
given by

ep(x)(x, y) =

⎧⎨
⎩

∏x–1
t=y [1 + p(t)], if x ∈Ny,∏y–1
t=x [1 + p(t)]–1, if x ∈N

y–1
a .

By empty product convention
∏y–1

t=y [h(t)] := 1 for any function h.

Definition 2.7 ([45]) Assume f : Na →R. Then the delta Laplace transform of f based at
a is defined by

La{f }(y) =
∫ ∞

a
e	y

(
σ (x), a

)
f (x)�x

for all complex numbers y �= –1 such that this improper integral converges.
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Lemma 2.8 ([9]) Assume that f : Na → R is of exponential order r > 1 and μ > 0. Then,
for |y + 1| > r, we have

La+μ

{
�–μ

a f
}

(y) =
(y + 1)μ

yμ
F̃a(y).

Lemma 2.9 ([9]) Assume that f : Na →R is of exponential order r > 0 and m is a positive
integer. Then, for |y + 1| > r,

La
{
�mf

}
(y) = ymF̃a(y) –

m–1∑
j=0

yj�m–1–jf (a).

Lemma 2.10 ([9] Fundamental theorem for the difference calculus) Assume f : Nb
a → R

and F is an antidifference of f on N
b+1
a . Then

∑b
t=a f (t) =

∑b
t=a �F(t) = F(b + 1) – F(a).

The definition of Ulam stability for fractional difference equations is discussed in [38,
40]. Consider system (1) and the following inequalities:

∣∣�μ,ν
a v(y) + g

(
y + μ – 1, v(y + μ – 1)

)∣∣ ≤ ε, y ∈ [a, T]Na , (2)
∣∣�μ,ν

a v(y) + g
(
y + μ – 1, v(y + μ – 1)

)∣∣ ≤ εψ
(
ρ(y) + ν

)
, y ∈ [a, T]Na , (3)

where ψ : [a, T]Na →R
+.

Definition 2.11 ([38]) A solution u ∈ Z of system (1) is Ulam–Hyers stable if there exists
a real number df > 0 such that, for each ε > 0 and for every solution v ∈ Z of inequality (2),
it satisfies

‖v – u‖ ≤ εdf . (4)

A solution of system (1) is generalized Ulam–Hyers stable if we substitute the function
φf (ε) for the constant εdf in inequality (4), where φf (ε) ∈ C(R+, R+) and φf (0) = 0.

Definition 2.12 ([38]) A solution u ∈ Z of system (1) is Ulam–Hyers–Rassias stable with
respect to function ψ if there exists a real number df ,ψ > 0 such that, for each ε > 0 and
for every solution v ∈ Z of inequality (3), it satisfies

‖v – u‖ ≤ εψ(y)df ,ψ , y ∈ [a, T]Na . (5)

The solution of system (1) is generalized Ulam–Hyers–Rassias stable if we substitute the
function Φ(y) for the function εψ(y) in inequalities (3) and (5).

3 Hilfer-like fractional difference
In this section, we generalize the definition of fractional difference operators. Motivated
by the concept of Hilfer fractional derivative [17], and to keep the interpolative property,
we introduce the following definition. Assume f : Na → R, then the fractional difference
of order m – 1 < μ < m for m ∈ N1 is given by �

μ,ν
a f (x) = �

–ν(m–μ)
a+(1–ν)(m–μ)�

m�
–(1–ν)(m–μ)
a f (x)

for x ∈ Na+m–μ, where 0 ≤ ν ≤ 1 is the type of difference operator. Observe that domain
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of �
–(1–ν)(m–μ)
a f (x) is a + (1 – ν)(m – μ), whereas integer order differences keep the same

domain [12]. The starting point of the last sum is compatible with the starting point for
the domain of the function �m�

–(1–ν)(m–μ)
a f (x), which is a + (1 – ν)(m – μ). This allows

us the successive composition of operators in the above expression, and the final domain
of �

μ,ν
a f (x) is Na+m–μ. To get some nice properties, we restrict 0 < μ < 1 throughout the

article.

Definition 3.1 Assume f : Na → R, then the fractional difference of order 0 < μ < 1 and
type 0 ≤ ν ≤ 1 is defined by

�μ,ν
a f (x) = �

–ν(1–μ)
a+(1–ν)(1–μ)��–(1–ν)(1–μ)

a f (x)

for x ∈Na+1–μ.

The special cases are Riemann–Liouville fractional difference [3, 46] for ν = 0 and Ca-
puto fractional difference [1, 47] for ν = 1.

First of all we will develop some composition properties to use them in the next section
and to construct a fixed point operator for a new class of Hilfer fractional nonlinear dif-
ference equations with initial condition involving Riemann–Liouville fractional sum. Also
we will present the delta Laplace transform for newly defined Hilfer fractional difference
operator.

Lemma 3.2 Assume f : Na →R, 0 < μ < 1, and 0 ≤ ν ≤ 1, then for x ∈ Na+1:
(i) �

–μ
a+1–μ[�μ,ν

a f (x)] = �
–(μ+ν–μν)
a+(1–ν)(1–μ)��

–(1–ν)(1–μ)
a f (x),

(ii) �
–μ
a+1–μ[�μ,ν

a f (x)] = �
–(μ+ν–μν)
a+(1–ν)(1–μ)�

μ+ν–μν
a f (x),

(iii) �
μ,ν
a+μ[�–μ

a f (x)] = �
–ν(1–μ)
a+(1–ν+μν)�

ν(1–μ)
a f (x),

(iv) �
μ,ν
a+μ[�–μ

a f (x)] = f (x) – �
–(1–ν(1–μ))
a f (a + 1 – ν(1 – μ)) × hν(1–μ)–1(x, a + 1 – ν(1 – μ)).

Proof (i) On the left-hand side we use Definition 3.1 and (Theorem 5 [12]) to obtain

�
–μ
a+1–μ

[
�μ,ν

a f (x)
]

= �
–μ
a+1–μ

[
�

–ν(1–μ)
a+(1–ν)(1–μ)��–(1–ν)(1–μ)

a f (x)
]

= �
–(μ+ν–μν)
a+(1–ν)(1–μ)��–(1–ν)(1–μ)

a f (x).

(ii) On the left-hand side, use (i) and the first part of (Lemma 6 [12]) to get

�
–μ
a+1–μ

[
�μ,ν

a f (x)
]

= �
–(μ+ν–μν)
a+(1–ν)(1–μ)��–(1–ν)(1–μ)

a f (x)

= �
–(μ+ν–μν)
a+(1–ν)(1–μ)�

μ+ν–μν
a f (x).

(iii) Using Definition 3.1 and (Theorem 5 [12]), we obtain

�μ,ν
a+μ

[
�–μ

a f (x)
]

= �
–ν(1–μ)
a+μ+(1–ν)(1–μ)��–(1–ν)(1–μ)

a+μ

[
�–μ

a f (x)
]

= �
–ν(1–μ)
a+(1–ν+μν)��–(1–ν+μν)

a f (x)

= �
–ν(1–μ)
a+(1–ν+μν)�

ν(1–μ)
a f (x).

In the preceding step we also used the first part of (Lemma 6 [12]).
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(iv) Consider the left-hand side, use (iii) and the second part of (Theorem 8 [12]),

�μ,ν
a+μ

[
�–μ

a f (x)
]

= �
–ν(1–μ)
a+(1–ν+μν)�

ν(1–μ)
a f (x)

= �
–ν(1–μ)
a+1–ν(1–μ)�

ν(1–μ)
a f (x)

= f (x) – �–(1–ν(1–μ))
a f

(
a + 1 – ν(1 – μ)

)
× hν(1–μ)–1

(
x, a + 1 – ν(1 – μ)

)
. �

For a nonempty set NT
a , the set of all real-valued bounded functions B(NT

a ) is a norm
space with ‖f ‖ = supx∈NT

a
{f (x)}. We consider a weighted space of bounded functions

Bλ(NT
a ) := {f : NT

a → R; |(x – a – μ)λf (x)| < M}, with 0 ≤ λ < μ and M > 0. The weighted
space of bounded functions is considered for finding left inverse property, however anal-
ysis in the following sections is not influenced by this space.

Lemma 3.3 Let f ∈ Bλ(NT
a ) be given and 0 < λ ≤ 1. Then �

–μ
a f (a + μ) = 0 for 0 ≤ λ < μ.

Proof Since f ∈ Bλ(NT
a ), thus for some positive integer M, we have |(x – a – μ)λf (x)| < M

for each x ∈ NT
a . Therefore

∣∣�–μ
a f (x)

∣∣ < M
[
�–μ

a (y – a – μ)–λ
]
(x)

≤ MΓ (1 – λ)
(x – a – μ)μ–λ

Γ (μ – λ + 1)
.

In the preceding step we used the fact �
–μ
a (x – a)–λ = (x – a)μ–λ Γ (1–λ)

Γ (μ–λ+1) . The desired result
is achieved by applying limit process x → a + μ. �

Next we will state the left inverse property.

Lemma 3.4 Assume 0 < μ < 1, 0 ≤ ν ≤ 1, and η = μ + ν – μν , then for f ∈ B1–η(NT
a ),

�μ,ν
a+μ

[
�–μ

a f (x)
]

= f (x).

Proof Since 0 ≤ 1 – η < 1 – ν(1 – μ). Thus Lemma 3.3 gives �
–(1–ν+μν)
a f (a + 1 – ν + μν) = 0.

Hence the result follows from part (iv) of Lemma 3.2. �

Theorem 3.5 Assume f : Na → R is of exponential order r > 1 with La{f (x)}(y) = F̃a(y)
and 0 < μ < 1, 0 ≤ ν ≤ 1. Then, for |y + 1| > r, we have the delta Laplace transform given as

La+1–μ

{
�μ,ν

a f
}

(y) = yμ(y + 1)1–μF̃a(y)

–
(y + 1)ν(1–μ)

yν(1–μ) �–(1–ν)(1–μ)
a f

(
a + (1 – ν)(1 – μ)

)
.
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Proof Considering the left-hand side and using Lemmas 2.8 and 2.9, we have

La+1–μ

{
�μ,ν

a f
}

(y) = La+1–μ

[
�

–ν(1–μ)
a+(1–ν)(1–μ)��–(1–ν)(1–μ)

a f (x)
]
(y)

=
(y + 1)ν(1–μ)

yν(1–μ) La+(1–ν)(1–μ)
[
��–(1–ν)(1–μ)

a f (x)
]
(y)

=
(y + 1)ν(1–μ)

yν(1–μ)

[
yLa+(1–ν)(1–μ)

[
�–(1–ν)(1–μ)

a f (x)
]
(y)

– �–(1–ν)(1–μ)
a f

(
a + (1 – ν)(1 – μ)

)]

=
(y + 1)ν(1–μ)

yν(1–μ)

[
y

(y + 1)(1–ν)(1–μ)

y(1–ν)(1–μ) La
[
f (x)

]
(y)

– �–(1–ν)(1–μ)
a f

(
a + (1 – ν)(1 – μ)

)]

= yμ(y + 1)1–μF̃a(y)

–
(y + 1)ν(1–μ)

yν(1–μ) �–(1–ν)(1–μ)
a f

(
a + (1 – ν)(1 – μ)

)
. �

Remark 1 Notice that, if in Theorem 3.5 we set ν = 0, then we recover Theorem 2.70 in
[9]. Further, if we set ν = 1, we obtain the delta Laplace transform for the Caputo fractional
difference.

4 Fixed point operators for initial value problem
To establish existence theory for Hilfer fractional difference equation with initial condi-
tions, we transform the problem to an equivalent summation equation which in turn de-
fines an appropriate fixed point operator.

Lemma 4.1 Let g : [a, T]Na × R → R be given and 0 < μ < 1, 0 ≤ ν ≤ 1. Then u solves
system (1) if and only if

u(x) = ζhη–1(x, a + 1 – η) – �
–μ
a+1–μg

(
x + μ – 1, u(x + μ – 1)

)

for all x ∈ Na+1.

The proof of the above lemma is an implication of Lemma 3.2 (i) and (ii) and the second
part of Theorem 8 in [12]. In next result Brouwer’s fixed point theorem [38] is utilized
for establishing existence conditions. The set Z of all real sequences u = {u(x)}T

x=a, with
‖u‖ = supx∈NT

a
|u(x)| is a Banach space.

Using Definition 2.2 and Lemma 4.1 we define an operator A : Z → Z by

Au(x) = ζhη–1(x, a + 1 – η) –
x–μ∑

τ=a+1–μ

hμ–1
(
x,σ (τ )

)
g
(
τ + μ – 1, u(τ + μ – 1)

)
. (6)

The fixed points of A coincide with the solutions of problem (1).
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Theorem 4.2 Let f : [a, T]Na → R be a bounded function in such a way that |g(x, u)| ≤
f (x)|u| for all u ∈ Z. Then IVP (1) has at least one solution on Z, provided

L∗ ≤ Γ (μ + 1)
(T – a – 1 + μ)μ

, (7)

where L∗ = supx∈NT
a+1–μ

f (x + μ – 1).

Proof For M > 0, define the set

W =
{

u :
∥∥u – ζhη–1(x, a + 1 – η)

∥∥ ≤ M, for x ∈ N
T
a+1–μ

}
.

To prove this theorem we just have to show that A maps W into itself. For u ∈ W , we have

∣∣Au(x) – ζhη–1(x, a + 1 – η)
∣∣

≤ f (x + μ – 1)
x–μ∑

τ=a+1–μ

hμ–1
(
x,σ (τ )

)∣∣u(τ + μ – 1) – 0
∣∣

≤ L∗ sup
x∈NT

a+1–μ

∣∣u(x + μ – 1) – 0
∣∣ x–μ∑
τ=a+1–μ

hμ–1
(
x,σ (τ )

)

= L∗‖u – 0‖
[

(x – a – 1 + μ)μ

Γ (μ + 1)
– 0

]

≤ L∗M
(T – a – 1 + μ)μ

Γ (μ + 1)
≤ M.

We have ‖Au‖ ≤ M, which implies that A is a self map. Therefore, by Brouwer’s fixed
point theorem, A has at least one fixed point. �

Theorem 4.3 For K > 0 and u, v ∈ Z, assume that |g(x, u) – g(x, v)| ≤ K |u – v| for all x ∈
[a, T]Na . Then IVP (1) has a unique solution on Z, provided

K <
Γ (μ + 1)

(T – a – 1 + μ)μ
. (8)

Proof Let u, v ∈ Z and x ∈ [a, T]Na , we have by assumption

∣∣Au(x) – Av(x)
∣∣ ≤

∣∣∣∣∣
x–μ∑

τ=a+1–μ

hμ–1
(
x,σ (τ )

)∣∣∣∣∣
× ∣∣g(

τ + μ – 1, u(τ + μ – 1)
)

– g
(
τ + μ – 1, v(τ + μ – 1)

)∣∣
≤ |0 – (x – a – 1 + μ)μ|

Γ (μ + 1)
K

∣∣u(τ + μ – 1) – v(τ + μ – 1)
∣∣.

In the preceding step, we used
∑

τ hν–1(x,σ (τ )) = –hν(x, τ ) and Lemma 2.10. Now taking
supremum on both sides, we have

sup
x∈NT

a

∣∣Au(x) – Av(x)
∣∣ ≤ K(T – a – 1 + μ)μ

Γ (μ + 1)
‖u – v‖.
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Using inequality (8), we get ‖Au –Av‖ ≤ ‖u – v‖, which implies A is a contraction. There-
fore, by Banach’s fixed point theorem, A has a unique fixed point. �

Theorem 4.4 For K > 0, assume that |g(x, u) – g(x, v)| ≤ K |u – v| for all x ∈ [a, T]Na . Let
u ∈ Z be a solution of system (1) and v ∈ Z be a solution of inequality (2). Then, for K
in inequality (8), nonlinear IVP (1) is Ulam–Hyers stable and, consequently, generalized
Ulam–Hyers stable.

Proof For simplicity the solution of IVP (1) can be rewritten by using equation (6) as fol-
lows:

u(x) = w(x) –
x–μ∑

τ=a+1–μ

hμ–1
(
x,σ (τ )

)
g
(
τ + μ – 1, u(τ + μ – 1)

)
, (9)

where w(x) = ζhη–1(x, a + 1 – η). Now, for [a, T]Na , it follows from inequality (2) that

∣∣∣∣∣v(x) –

(
w(x) –

x–μ∑
τ=a+1–μ

hμ–1
(
x,σ (τ )

)
g
(
τ + μ – 1, v(τ + μ – 1)

))∣∣∣∣∣ ≤ ε. (10)

For [a, T]Na , making use of equation (9) and inequality (10) together for [a, T]Na , we have

∣∣v(x) – u(x)
∣∣ =

∣∣∣∣∣v(x) –

(
w(x) –

x–μ∑
τ=a+1–μ

hμ–1
(
x,σ (τ )

)
g
(
τ + μ – 1, u(τ + μ – 1)

))∣∣∣∣∣

≤
∣∣∣∣∣v(x) –

(
w(x) –

x–μ∑
τ=a+1–μ

hμ–1
(
x,σ (τ )

)
g
(
τ + μ – 1, v(τ + μ – 1)

))∣∣∣∣∣

+

∣∣∣∣∣
x–μ∑

τ=a+1–μ

hμ–1
(
x,σ (τ )

)∣∣∣∣∣
× ∣∣g(

τ + μ – 1, v(τ + μ – 1)
)

– g
(
τ + μ – 1, u(τ + μ – 1)

)∣∣
≤ ε +

∣∣0 – hμ(x, a + 1 – μ)
∣∣K ∣∣v(τ + ν – 1) – u(τ + ν – 1)

∣∣.
In the preceding step, we used assumption and the same argument used in Theorem 4.3.
Now taking supremum on both sides and simplifying, we have

‖v – u‖ ≤ ε

1 – hμ(T , a + 1 – μ)K
= εdf , with df =

1
1 – hμ(T , a + 1 – μ)K

.

Therefore by inequality (8), (1) is Ulam–Hyers stable. Further by using φf (ε) = εdf , φf (0) =
0, which implies that (1) is generalized Ulam–Hyers stable. �

Theorem 4.5 For K > 0, assume that |g(x, u) – g(x, v)| ≤ K |u – v| for all x ∈ [a, T]Na . Let
u ∈ Z be a solution of system (1) and v ∈ Z be a solution of inequality (3). Then, for K in
inequality (8), nonlinear IVP (1) is Ulam–Hyers–Rassias stable with respect to function
ψ : [a, T]Na →R

+ and, consequently, generalized Ulam–Hyers–Rassias stable.

To illustrate the usefulness of Theorem 4.4, we present the following example.
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Example 4.6 Consider the following fractional Hilfer difference equation with initial con-
dition involving Riemann–Liouville fractional sum:

⎧⎨
⎩

–�
0.7,0.5
0.3 u(x) = (x – 0.3)u(x – 0.3), x ∈ [0.3, 9.3]N0.3 ,

�
–(0.15)
0.3 u(0.45) = ζ .

Here, a = 0.3, T = 9.3, μ = 0.7, and ν = 0.5. Therefore η = 0.85. Thus, for K < 0.1974, the
solution to the given problem with inequalities

∣∣�0.7,0.5
0.3 v(x) + (x – 0.3)v(x – 0.3)

∣∣ ≤ ε, x ∈ [0.3, 9.3]N0.3 ,∣∣�0.7,0.5
0.3 v(x) + (x – 0.3)v(x – 0.3)

∣∣ ≤ εψ(x – 0.3), x ∈ [0.3, 9.3]N0.3

is Ulam–Hyers stable and Ulam–Hyers–Rassias stable with respect to function ψ :
[0.3, 9.3]N0.3 →R

+.

To solve the linear Hilfer fractional difference IVP, we use the successive approximation
method.

Example 4.7 Let η = μ + ν – μν with 0 < μ < 1 and 0 ≤ ν ≤ 1. Consider the IVP for linear
Hilfer fractional difference equation:

⎧⎨
⎩

�
μ,ν
a u(x) – λu(x + μ – 1) = 0,

�
–(1–η)
a u(a + 1 – η) = ζ , ζ ∈R.

(11)

The solution of (11) is given by

u(x) = ζhη–1(x, a + 1 – η) + λ�
–μ
a+1–μu(x + μ – 1).

Definition 2.2 and successive approximation yield the following:

uk(x) = u0(x) + λ

x–μ∑
τ=a+1–μ

hμ–1
(
x,σ (τ )

)
uk–1(τ + μ – 1) (12)

for k = 1, 2, 3, . . . , where u0(x) = ζhη–1(x, a + 1 – η).
Initially, for k = 1 and by Lemma 2.3, we have

u1(x) = ζhη–1(x, a + 1 – η) + λζhη–1+μ(x + μ – 1, a + 1 – η).

Similarly, for k = 2,

u2(x) = ζ
[
hη–1(x, a + 1 – η) + λhη–1+μ(x + μ – 1, a + 1 – η)

+ λ2hη–1+2μ

(
x + 2(μ – 1), a + 1 – η

)]

= ζ

[
λ0 (x + η – a – 1)0.μ+η–1

Γ (η)
+ λ1 (x + η – a – 1 + (μ – 1))1.μ+η–1

Γ (μ + η)

+ λ2 (x + η – a – 1 + 2(μ – 1))2.μ+η–1

Γ (2μ + η)

]
.



Haider et al. Advances in Difference Equations        (2020) 2020:122 Page 11 of 20

Proceed inductively and let k → ∞

u(x) = ζ

[ ∞∑
k=0

λk (x + η – a – 1 + k(μ – 1))kμ+η–1

Γ (kμ + η)

]
.

By using the property xμ+ν = (x – ν)μ xν , we obtain

u(x) = ζ

[ ∞∑
k=0

λk (x + η – a – 1 + (k – 1)(μ – 1))kμ(x + η – a – 1 + k(μ – 1))η–1

Γ (kμ + η)

]
.

Now, from discrete form (12), we have the numerical formula

u(a + n) = u(a) +
λ

Γ (μ)

n∑
j=1

Γ (n – j + μ)
Γ (n – j + 1)

u(a + j – 1), (13)

with u(a) = ζ
Γ (n+η)

Γ (η)Γ (n+1) . From (13), we can have

y(n) = ζ
Γ (n + η)

Γ (η)Γ (n + 1)
+

λ

Γ (μ)

n∑
j=1

Γ (n – j + μ)
Γ (n – j + 1)

y(j – 1).

For different values of ν , the numerical solutions for μ = 0.8 and μ = 0.5 are shown in Fig. 1
and Fig. 2, respectively. Figure 1 and Fig. 2 show the interpolative behavior of Hilfer dif-
ference operator between the Riemann–Liouville [7] and the Caputo difference operator
[48].

Remark 2 If we set ν = 1 in Example 4.7 above (hence η = 1) and take a = μ – 1, then we
recover Example 17 in [1]. In fact, the solution of the initial Caputo difference equation

C�μ
a x(t) = λx(t + μ – 1), x(a) = x0,μ ∈ (0, 1] (14)

Figure 1 Solutions for λ = 0.1, μ = 0.8 and different values of ν
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Figure 2 Solutions for λ = 0.1, μ = 0.5 and different values of ν

will be given by

x(t) = x0Eμ(λ, t – a) = x0

∞∑
k=0

λk(t – a + k(μ – 1))kμ

Γ (μk + 1)
. (15)

Observe that the case a = μ – 1 will result in (66) in [1]. That is, formula (66) in [1] rep-
resents Eμ(λ, t – (α – 1)). Also, one can see that the substitution μ = 1 will give the delta
discrete Taylor expansion of the delta discrete exponential function.

The observations in Remark 2 suggest the following modified definitions which are dif-
ferent from those appearing in [1].

Definition 4.8 For λ ∈ R, |λ| < 1 and μ,η,γ , z ∈ C with Re(μ) > 0, the discrete Mittag-
Leffler functions are defined by

Eγ
μ,η(λ, z) =

∞∑
k=0

λk (z + k(μ – 1))μk+η–1(γ )k

Γ (μk + η)k!
, (γ )k = γ (γ + 1) · · · (γ + k – 1),

Eμ,η(λ, z) = E1
μ,η(λ, z) =

∞∑
k=0

λk (z + k(μ – 1))μk+η–1

Γ (μk + η)
, (16)

Eμ(λ, z) = Eμ,1(λ, z) =
∞∑

k=0

λk (z + k(μ – 1))μk

Γ (μk + 1)
. (17)

By help of the fact xμ+ν = (x – ν)μxν , we note that

Eγ
μ,μ(λ, z) =

∞∑
k=0

λk (z + k(μ – 1))μk+μ–1(γ )k

Γ (μk + μ)k!

=
∞∑

k=0

λk (z + (k – 1)(μ – 1))kμ(z + k(μ – 1))μ–1(γ )k

Γ (kμ + μ)k!
. (18)
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Definition 4.9 For λ ∈ R, |λ| < 1, and μ,η,γ , z ∈ C with Re(μ) > 0, the discrete Mittag-
Leffler functions are defined by

Eγ
μ,η(λ, z) =

∞∑
k=0

λk (z + k(μ – 1) + η – 1)μk+η–1(γ )k

Γ (μk + η)k!
,

Eμ,η(λ, z) = E1
μ,η(λ, z) =

∞∑
k=0

λk (z + k(μ – 1) + η – 1)μk+η–1

Γ (μk + η)
, (19)

Eμ(λ, z) = Eμ,1(λ, z) = Eμ(λ, z) =
∞∑

k=0

λk (z + k(μ – 1))μk

Γ (μk + 1)
. (20)

Next we solve the non-homogeneous Hilfer fractional difference IVP, which shows that
the definition is useful.

Example 4.10 Let η = μ + ν – μν , with 0 < μ < 1 and 0 ≤ ν ≤ 1. Consider Hilfer non-
homogeneous fractional difference equation

⎧⎨
⎩

�
μ,ν
a u(x) – λu(x + μ – 1) = f (x),

�
–(1–η)
a u(a + 1 – η) = ζ , ζ ∈R.

(21)

The solution of (21) is given by

u(x) = ζhη–1(x, a + 1 – η) + λ�
–μ
a+1–μu(x + μ – 1) + �

–μ
a+1–μf (x).

Then Definition 2.2 and successive approximation yield the following:

uk(x) = u0(x) + λ

x–μ∑
τ=a+1–μ

hμ–1
(
x,σ (τ )

)
uk–1(τ + μ – 1) + �

–μ
a+1–μf (x)

for k = 1, 2, 3, . . . , where u0(x) = ζhη–1(x, a + 1 – η).
Initially, for k = 1 and by Lemma 2.3, we get

u1(x) = ζhη–1(x, a + 1 – η) + λζhη–1+μ(x + μ – 1, a + 1 – η) + �
–μ
a+1–μf (x).

Similarly, for k = 2, we obtain

u2(x) = ζ
[
hη–1(x, a + 1 – η) + λhη–1+μ(x + μ – 1, a + 1 – η)

+ λ2hη–1+2μ

(
x + 2(μ – 1), a + 1 – η

)]
+ λ�

–2μ
a+1–μf (x + μ – 1) + �

–μ
a+1–μf (x)

= ζ

[
λ0 (x + η – a – 1)0.μ+η–1

Γ (η)
+ λ1 (x + η – a – 1 + (μ – 1))1.μ+η–1

Γ (μ + η)

+ λ2 (x + η – a – 1 + 2(μ – 1))2.μ+η–1

Γ (2μ + η)

]
+ λ�

–2μ
a+1–μf (x + μ – 1)

+ �
–μ
a+1–μf (x).
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Proceed inductively and let k → ∞

u(x) = ζ

[ ∞∑
k=0

λk (x + η – a – 1 + k(μ – 1))kμ+η–1

Γ (kμ + η)

]

+
∞∑

k=1

λk–1�
–kμ
a+1–μf

(
x + (k – 1)(μ – 1)

)

= ζ

[ ∞∑
k=0

λk (x + η – a – 1 + k(μ – 1))kμ+η–1

Γ (kμ + η)

]

+
∞∑

k=1

λk–1
x–kμ∑

τ=a+1–μ

hkμ–1
(
x,σ

(
τ + (k – 1)(μ – 1)

))
f (τ )

= ζ

[ ∞∑
k=0

λk (x + η – a – 1 + k(μ – 1))kμ+η–1

Γ (kμ + η)

]

+
∞∑

k=0

λk
x–kμ–μ∑
τ=a+1–μ

(x – σ (τ ) + k(μ – 1))kμ+μ–1

Γ (kμ + μ)
f (τ ),

u(x) = ζ

[ ∞∑
k=0

λk (x + η – a – 1 + k(μ – 1))kμ+η–1

Γ (kμ + η)

]

+
x–μ∑

τ=a+1–μ

∞∑
k=0

λk (x – σ (τ ) + k(μ – 1))kμ+μ–1

Γ (kμ + μ)
f (τ ).

In the preceding step, we have interchanged summation of the second expression. Now
we use the property xμ+ν = (x – ν)μ xν in the following step:

u(x) = ζ

[ ∞∑
k=0

λk (x + η – a – 1 + (k – 1)(μ – 1))kμ(x + η – a – 1 + k(μ – 1))η–1

Γ (kμ + η)

]

+
x–μ∑

τ=a+1–μ

∞∑
k=0

λk (x – σ (τ ) + (k – 1)(μ – 1))kμ(x – σ (τ ) + k(μ – 1))μ–1

Γ (kμ + μ)
f (τ ).

Using Definition 4.8, we have

u(x) = ζEμ,η(λ, x + η – a – 1) +
x–μ∑

τ=a+1–μ

[
Eμ,μ

(
λ, x – σ (τ )

)]
f (τ ).

Alternatively, by using Definition 4.9, we get

u(x) = ζEμ,η(λ, x – a) +
x–μ∑

τ=a+1–μ

[
Eμ,μ

(
λ, x – σ (τ ) + μ – 1

)]
f (τ ).

Note that above is the generalization of Caputo fractional difference IVP [1], it can pre-
vail for ν = 1.
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5 Modified Gronwall’s inequality and its application in delta difference setting
First we develop a Gronwall’s inequality for the delta difference operator. Then a simple
utilization of Gronwall’s inequality leads to stability for Hilfer difference equation. For this
purpose, choose u and w such that

u(x) ≤ u(a)hη–1(x, a + 1 – η) + �
–μ
a+1–μφ(x + μ)u(x + μ), (22)

w(x) ≥ w(a)hη–1(x, a + 1 – η) + �
–μ
a+1–μφ(x + μ)w(x + μ). (23)

Lemma 5.1 Assume u and w respectively satisfy (22) and (23). If w(a) ≥ u(a), then w(x) ≥
u(x) for x ∈Na.

Proof We give the proof by induction principle. Assume w(τ ) – u(τ ) ≥ 0 is valid for τ =
a, a + 1, . . . , x – 1. Then we have

w(x) – u(x) ≥ hη–1(x, a + 1 – η)
(
w(a) – u(a)

)
+ �

–μ
a+1–μφ(x + μ)w(x + μ)

– �
–μ
a+1–μφ(x + μ)u(x + μ)

= hη–1(x, a + 1 – η)
(
w(a) – u(a)

)

+
x–μ∑

τ=a+1–μ

(x – σ (τ ))μ–1

Γ (μ)
φ(τ + μ)

(
w(τ + μ) – u(τ + μ)

)
,

where the last summation is valid for x ∈Na+μ. Now we shift the domain of summation to
Na:

w(x) – u(x) ≥ hη–1(x, a + 1 – η)
(
w(a) – u(a)

)

+
x∑

τ=a+1

(x + μ – σ (τ ))μ–1

Γ (μ)
φ(τ )

(
w(τ ) – u(τ )

)
.

By assumption, for τ = a, a + 1, . . . , x – 1, we have

w(x) – u(x) ≥ φ(x)
(
w(x) – u(x)

)
.

This implies that (1 – φ(x))(w(x) – u(x)) ≥ 0 and for |φ(x)| < 1, which is the desired
result. �

Following the approach for nabla fractional difference in [49], let Evφ = �
–μ
a+1–μv(x)φ(x).

For constant φ one can use Evφ to express the Mittag-Leffler function.

Theorem 5.2 Assume η = μ + ν – μν , with 0 < μ < 1 and 0 ≤ ν ≤ 1. The solution of sum-
mation equation

u(x) = u(a)hη–1(x, a + 1 – η) + �
–μ
a+1–μv(x + μ – 1)u(x + μ – 1)

is given by

u(x) =
u(a)
Γ (η)

∞∑
�=0

E�
v
(
x + η – a – 1 + �(μ – 1)

)η–1.
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Proof By the method of successive approximation, the following is obtained:

uk(x) = u0(x) + �
–μ
a+1–μv(x + μ – 1)uk–1(x + μ – 1), k = 1, 2, 3, . . . ,

where u0(x) = u(a)hη–1(x, a + 1 – η).
For k = 1,

u1(x) = u(a)hη–1(x, a + 1 – η) + �
–μ
a+1–μv(x + μ – 1)u0(x + μ – 1)

=
u(a)
Γ (η)

E0
v (x + η – a – 1)η–1 +

u(a)
Γ (η)

E1
v (x + η – a – 1 + μ – 1)η–1.

Proceeding inductively, we obtain

uk(x) =
u(a)
Γ (η)

k∑
�=0

E�
v
(
x + η – a – 1 + �(μ – 1)

)η–1, k = 1, 2, 3, . . . ,

and let k → ∞,

u(x) =
u(a)
Γ (η)

∞∑
�=0

E�
v
(
x + η – a – 1 + �(μ – 1)

)η–1. �

Next we derive a Gronwall’s inequality in delta discrete setting.

Theorem 5.3 Let η = μ+ν –μν , with 0 < μ < 1 and 0 ≤ ν ≤ 1. Assume |v(x)| < 1 for x ∈Na.
If u and v are nonnegative real-valued functions with

u(x) ≤ u(a)hη–1(x, a + 1 – η) + �
–μ
a+1–μv(x + μ – 1)u(x + μ – 1).

Then

u(x) ≤ u(a)
Γ (η)

∞∑
�=0

E�
v
(
x + η – a – 1 + �(μ – 1)

)η–1.

Proof Consider w(x) = u(a)
Γ (η)

∑∞
�=0 E�

v(x + η – a – 1 + �(μ – 1))η–1. The proof of theorem
follows from Lemma 5.1 and Theorem 5.2. �

For η = 1, a special case is obtained as follows.

Corollary 5.4 Let 0 < μ < 1 and 0 ≤ ν ≤ 1. Assume 0 < v(x) < 1 for x ∈ Na. If u is a non-
negative real-valued function with

u(x) ≤ u(a) + �
–μ
a+1–μv(x + μ – 1)u(x + μ – 1).

Then

u(x) ≤ u(a)ev(x, a),

where ev(x, a) is the delta exponential function.
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Proof It follows from Theorem 5.3 that

u(x) ≤ u(a)
∞∑
�=0

E�
v(1).

We claim that
∑∞

�=0 E�
v(1) = ev(x, a). To justify our claim, we utilize the uniqueness of so-

lution of the following IVP: �u(x) = v(x)u(x), u(a) = 1. A unique solution u(x) = ev(x, a)
of IVP is given in [9] for regressive function v(x). Thus, we have to show that

∑∞
�=0 E�

v(1)
satisfies the IVP �u(x) = v(x)u(x), u(a) = 1. Indeed,

�

∞∑
�=0

E�
v(1) =

∞∑
�=0

�E�
v(1)

=
∞∑
�=1

�Ev
(
E�–1

v (1)
)

=
∞∑
�=1

��–1
a

(
v(x)E�–1

v (1)
)

= v(x)
∞∑
�=0

E�
v(1).

Also, by Definition 2.2 and empty sum convention, we have
∑∞

�=0 E�
v(1)(a) = 1 +∑∞

�=1 E�
v(1)(a) = 1. Then the result follows. �

Let η = μ + ν – μν , then for 0 < μ < 1 and 0 ≤ ν ≤ 1, we have 0 < η ≤ 1. The following
result illustrates the application of Gronwall’s inequality for the system

⎧⎨
⎩

�
μ,ν
a v(x) + g(x + μ – 1, v(x + μ – 1)) = 0, for x ∈Na+1–μ,

�
–(1–η)
a v(a + 1 – η) = ξ , ξ ∈R.

(24)

Theorem 5.5 Assume that the Lipschitz condition |g(x, u) – g(x, v)| ≤ K |u – v| holds for
function g . Then the solution to Hilfer fractional difference system is stable.

Proof Let u ∈ Z be a solution of system (1) and v ∈ Z be a solution of system (24). Then
the corresponding summation equations are

u(x) = ζhη–1(x, a + 1 – η) – �
–μ
a+1–μg

(
x + μ – 1, u(x + μ – 1)

)
,

v(x) = ξhη–1(x, a + 1 – η) – �
–μ
a+1–μg

(
x + μ – 1, v(x + μ – 1)

)
.

For the absolute value of the difference, we have

∣∣u(x) – v(x)
∣∣ ≤ |ζ – ξ |∣∣hη–1(x, a + 1 – η)

∣∣
+

∣∣�–μ
a+1–μ

(
g
(
x + μ – 1, u(x + μ – 1)

)
– g

(
x + μ – 1, v(x + μ – 1)

))∣∣
≤ |ζ – ξ |hη–1(x, a + 1 – η) + �

–μ
a+1–μK

∣∣u(x + μ – 1) – v(x + μ – 1)
∣∣.

Then it follows from Theorem 5.3 that

∣∣u(x) – v(x)
∣∣ ≤ |ζ – ξ |

Γ (η)

∞∑
�=0

E�
K
(
x + η – a – 1 + �(μ – 1)

)η–1.
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By using Lemma 2.3, we obtain E�
K (x + η – a – 1 + �(μ – 1))η–1 = K�Γ (η)

Γ (η+μ�) (x + η – a – 1 + �(μ –
1))η+μ�–1. To shape in the form of a discrete Mittag-Leffler function, we use the property
xμ+ν = (x – ν)μ xν ,

∣∣u(x) – v(x)
∣∣ ≤ |ζ – ξ |

∞∑
�=0

K�

Γ (η + μ�)
(
x + η – a – 1 + (k – 1)(μ – 1)

)kμ

× (
x + η – a – 1 + k(μ – 1)

)η–1

= |ζ – ξ |Eμ,η(K , x + η – a – 1),

where Eμ,η(λ, x) is the discrete Mittag-Leffler functions defined in [1]. Replace system (24)
with

⎧⎨
⎩

�
μ,ν
a v(x) + g(x + μ – 1, v(x + μ – 1)) = 0,

�
–(1–η)
a v(a + 1 – η) = ζn

(25)

for x ∈Na+1–μ and ζn → ζ . The solutions are denoted by vn. Now we have

∣∣u(x) – vn(x)
∣∣ ≤ |ζ – ζn|Eμ,η(K , x + η – a – 1).

This leads to |u(x) – vn(x)| → 0, when ζn → ζ for n → ∞. This completes the proof. �

6 Conclusion
We finish by concluding the following:

• A new definition of Hilfer-like fractional difference on discrete time scale has been
introduced.

• The delta Laplace transform has been developed for newly defined Hilfer fractional
difference operator.

• We have investigated a new class of Hilfer-like fractional nonlinear difference
equations with initial condition involving Riemann–Liouville fractional sum.

• In particular, conditions for the existence, uniqueness, and two types of stabilities,
called Ulam–Hyers stability and Ulam–Hyers–Rassias stability, have been obtained.

• The linear Hilfer fractional difference equation with initial conditions has been solved
and alternative versions of discrete Mittag-Leffler functions are presented in
comparison to [1].

• A Gronwall’s inequality has been modified and applied for discrete calculus with the
delta operator.
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