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Abstract
In this work, we analyze and test a local discontinuous Galerkin method for solving
the Burgers-type equation. The proposed numerical method, which is high-order
accurate, is based on a finite difference scheme in time and local discontinuous
Galerkin methods in space. We prove that the scheme is unconditionally stable and
convergent. Some numerical tests are provided to illustrate the accuracy and
capability of the scheme.
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1 Introduction
Burgers equation, which is used to model turbulent fluid motion, was first introduced
by Harry Bateman and later studied by Burgers [1] in 1948. It plays an important role in
various areas of applied mathematics, such as traffic flow, fluid mechanics, and nonlin-
ear acoustics. Fractional calculus is a branch of mathematical analysis that studies several
different possibilities of defining real number powers or complex number powers of the
differentiation operator. Fractional differential equations, also known as extraordinary dif-
ferential equations, are a generalization of differential equations through the application
of fractional calculus. In the past decades, fractional differential equations have been ap-
plied in many fields, and, in fact, some physical processes can be modeled more accurately
by using fractional derivatives [4, 7–12, 19, 21]. Recently, fractional Burgers-type equation
was introduced and studied since the adding effect of the wall friction through the bound-
ary layer can be modeled by fractional derivatives.

Some methods have been introduced to solve fractional Burgers-type equation. Vong
and Lyu [13] studied a linearized finite difference scheme for a time-fractional Burgers-
type equation and proved that the scheme was unconditionally convergent with second
order in maximum-norm. In [3], parametric spline functions were used to solve the time-
fractional Burgers equation. Wang [14] studied the Adomian decomposition method for
the equation. In [5], Inc presented a variational iteration method for space- and time-
fractional Burgers equations and obtained some exact and approximate solutions.
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In this paper, we consider the following time-fractional Burgers-type equation:

∂αu(x, t)
∂tα

+ uux – λ1uxx = f (x, t), (x, t) ∈ [a, b] × [0, T],

u(x, 0) = u0(x), x ∈ [a, b],
(1.1)

where 0 < α < 1 is the order of the fractional derivatives, f , u0 are given smooth functions,
λ1 ≥ 0 is a real parameter. The solution is considered to be either periodic or compactly
supported in this paper.

The Caputo fractional derivative ∂αu(x,t)
∂tα is defined as follows:

∂αu(x, t)
∂tα

=
1

Γ (1 – α)

∫ t

0

∂u(x, s)
∂s

ds
(t – s)α

, 0 < α < 1, (1.2)

where Γ (·) is the gamma function.
The paper is organized as follows. In Sect. 2, some notations and auxiliary results are

described. In Sect. 3, we present the local discontinuous Galerkin method for fractional
equation (1.1) and prove that the scheme is unconditionally stable and the numerical solu-
tion is convergent. Some numerical examples, given in Sect. 4, are presented to illustrate
the accuracy of the method, and concluding remarks are provided in Sect. 5.

2 Notations and auxiliary results
In this section we introduce some notations, projections, and the numerical flux.

2.1 Notations and projections
Let a = x 1

2
< x 3

2
< · · · < xN+ 1

2
= b be a partition of Ω = [a, b], denote Ij = [xj– 1

2
, xj+ 1

2
] for

j = 1, . . . , N , and hj = xj+ 1
2

– xj– 1
2

, 1 ≤ j ≤ N , h = max1≤j≤N hj.
Let us denote u+

j+ 1
2

= limt→0+ u(xj+ 1
2

+ t), u–
j+ 1

2
= limt→0+ u(xj+ 1

2
– t), and [u]j+ 1

2
=

u+
j+ 1

2
– u+

j+ 1
2

.

Denote by V k
h the space of piecewise discontinuous polynomials of the degree up to k:

V k
h =

{
v : v ∈ Pk(Ij), x ∈ Ij, j = 1, 2, . . . , N

}
.

The following two projections in one dimension [a, b] will be used when proving error
estimate: projection P

∫
Ij

(
Pω(x) – ω(x)

)
v(x) = 0, ∀v ∈ Pk(Ij), (2.1)

and projection P±

∫
Ij

(
P+ω(x) – ω(x)

)
v(x) = 0, ∀v ∈ Pk–1(Ij),

P+ω
(
x+

j– 1
2

)
= ω(xj– 1

2
),

(2.2)
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and
∫

Ij

(
P–ω(x) – ω(x)

)
v(x) = 0, ∀v ∈ Pk–1(Ij),

P–ω
(
x–

j+ 1
2

)
= ω(xj+ 1

2
).

(2.3)

The approximation results for the projections P and P± hold [2, 15, 18, 20]

‖ϑ‖ + h‖ϑ‖∞ + h
1
2 ‖ϑ‖τh ≤ Chk+1, (2.4)

where ϑ = Pω – ω or ϑ = P±ω – ω. The positive constant C, solely depending on ω, is
independent of h. Here τh is the union of all element interface points, and the L2-norm on
τh is defined by

‖ϑ‖τh =
[ ∑

1≤j≤N

((
ϑ+

j+ 1
2

)2 +
(
ϑ–

j+ 1
2

)2)] 1
2

.

In the present paper the usual notation of norms in Sobolev spaces is used. Let the scalar
inner product on L2(Ω) be denoted by (·, ·)Ω , and the associated norm by ‖ · ‖Ω .

2.2 A quantity related to the numerical flux
ĝ(w–, w+) is a given monotone numerical flux which is related to the discontinuous
Galerkin discretization in space. It depends on the two values of the function g at the
point xj+ 1

2
, that is, w±

j+ 1
2

= w(x±
j+ 1

2
), and satisfies:

(i) locally Lipschitz continuous;
(ii) consistent with the flux g(w), that is, ĝ(w, w) = g(w);
(iii) a nondecreasing function of its first argument and a nonincreasing function of its

second argument.

3 Fully discrete LDG scheme
Set 
t = T/M to be the time mesh size, M is a positive integer, tj = j
t, j = 0, 1, . . . , M, is a
mesh point. First we estimate the time-fractional derivative ∂αu(x,t)

∂tα at tn as follows [6, 17]:

∂αu(x, tn)
∂tα

=
(
t)1–α

Γ (2 – α)

n–1∑
i=0

si
u(x, tn–i) – u(x, tn–i–1)


t
+ γ n(x), (3.1)

where si = (i + 1)1–α – i1–α , γ n(x) is the truncation error

γ n(x) =
1

Γ (1 – α)

n∑
i=0

∫ ti

ti–1

∂u(x, s)
∂s

ds
(tn – s)α

–
1

Γ (1 – α)

n∑
i=0

∂u(x, ti– 1
2

)

∂t

∫ ti

ti–1

ds
(tn – s)α

+
(
t)1–α

Γ (2 – α)

n–1∑
i=0

si

(
∂

∂t
u(x, tn–i– 1

2
) –

u(x, tn–i) – u(x, tn–i–1)

t

)
. (3.2)

By some analysis, we know [16]

∥∥γ n(x)
∥∥ ≤ C(
t)2–α , (3.3)

where C is a constant depending on u, T , α.
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Rewrite Eq. (1.1) as a first-order system:

p = ux,
∂αu(x, t)

∂tα
+ g(u)x – λ1px = f , (3.4)

where g(u) = 1
2 u2.

Let un
h, pn

h ∈ V k
h be the approximation of u(·, tn), p(·, tn), respectively, f n(x) = f (x, tn). Then

a fully discrete local discontinuous Galerkin method is given: find un
h, pn

h ∈ V k
h such that,

for all test functions v, w ∈ V k
h ,

∫
Ω

un
hv dx – χ

(∫
Ω

g
(
un

h
)
vx dx –

N∑
j=1

((̂
gv–)

j+ 1
2

–
(̂
gv+)

j– 1
2

))

+ χλ1

(∫
Ω

pn
hvx dx –

N∑
j=1

((
p̂n

hv–)
j+ 1

2
–

(
p̂n

hv+)
j– 1

2

))

=
n–1∑
i=1

(si–1 – si)
∫

Ω

un–i
h v dx + sn–1

∫
Ω

u0
hv dx + χ

∫
Ω

f nv dx,

∫
Ω

pn
hw dx +

∫
Ω

un
hwx dx –

N∑
j=1

((
ûn

hw–)
j+ 1

2
–

(
ûn

hw+)
j– 1

2

)
= 0,

(3.5)

where χ = (
t)αΓ (2 – α).
The flux ĝ((un

h)–, (un
h)+) is a monotone flux as described in (2.2). In order to simplify the

computation, we can choose the flux

ĝLF(w–, w+)
=

1
2
(
g
(
w–)

+ g
(
w+)

– λ0
(
w+ – w–))

, λ0 = max
w

∣∣g ′(w)
∣∣,

ûn
h =

(
un

h
)–, p̂n

h =
(
pn

h
)+.

(3.6)

Remark that the crucial part for flux (3.6) is taking ûn
h and p̂n

h from opposite sides.
Because the problem is nonlinear, an iterative method should be used when computing:

find un,m
h , pn,m

h ∈ V k
h such that, for all test functions v, w ∈ V k

h ,

∫
Ω

un,m
h v dx + χλ1

(∫
Ω

pn,m
h vx dx –

N∑
j=1

((
p̂n,m

h v–)
j+ 1

2
–

(
p̂n,m

h v+)
j– 1

2

))

=
n–1∑
i=1

(si–1 – si)
∫

Ω

un–i
h v dx + sn–1

∫
Ω

u0
hv dx + χ

∫
Ω

f nv dx

+ χ

(∫
Ω

g
(
un,m–1

h
)
vx dx –

N∑
j=1

((
̂g
(
un,m–1

h
)
v–)

j+ 1
2

–
(

̂g
(
un,m–1

h
)
v+)

j– 1
2

))
,

∫
Ω

pn,m
h w dx +

∫
Ω

un,m
h wx dx –

N∑
j=1

((
ûn,m

h w–)
j+ 1

2
–

(
ûn,m

h w+)
j– 1

2

)
= 0,

(3.7)

where m is the iterative step.
Without loss of generality, we consider the case f = 0 in numerical analysis. For the

stability of scheme (3.5), we have the following result.
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Theorem 3.1 Suppose that un
h is the solution of numerical scheme (3.5), if the numerical

flux (3.6) is used, it will hold that

∥∥un
h
∥∥2

Ω
+ χλ1

∥∥pn
h
∥∥2

Ω
≤ ∥∥u0

h
∥∥2

Ω
, n = 0, 1, . . . , M. (3.8)

Proof We prove Theorem 3.1 by mathematical induction. First, for notational conve-
nience, we introduce the following notations:

G̃
(
un

h
)

= –

(∫
Ω

g
(
un

h
)(

un
h
)

x dx –
N∑

j=1

((̂
g
(
un

h
)–)

j+ 1
2

–
(̂
g
(
un

h
)+)

j– 1
2

))
,

Λ
(
pn

h, qn
h, un

h
)

=
(
pn

h
)–(

un
h
)– –

(
pn

h
)+(

un
h
)– –

(
un

h
)–(

pn
h
)–,

Υ
(
pn

h, qn
h, un

h
)

=
(
pn

h
)–(

un
h
)– –

(
pn

h
)+(

un
h
)+ –

(
pn

h
)+(

un
h
)– +

(
pn

h
)+(

un
h
)+

–
(
un

h
)–(

pn
h
)– +

(
un

h
)–(

pn
h
)+.

(3.9)

We consider the case n = 1 in (3.5) and take the test functions v = u1
h, w = χλ1p1

h, then
we have

∥∥u1
h
∥∥2

Ω
+ χλ1

∥∥p1
h
∥∥2

Ω
+ χG̃

(
u1

h
)

+
N∑

j=1

χλ1
(
Λ

(
p1

h, q1
h, u1

h
)

j+ 1
2

– Λ
(
p1

h, q1
h, u1

h
)

j– 1
2

+ Υ
(
p1

h, q1
h, u1

h
)

j– 1
2

)

≤ 1
2
∥∥u1

h
∥∥2

Ω
+

1
2
∥∥u0

h
∥∥2

Ω
. (3.10)

Next we deal with the term G̃(u1
h). We define

F(u) =
∫ u

g(u) du,

then

∫
Ω

g
(
u1

h
)(

u1
h
)

x dx =
N∑

j=1

(
F
((

u1
h
)–

j+ 1
2

)
– F

((
u1

h
)+

j– 1
2

))
.

Based on the monotonicity of flux ĝ and the mean value theorem, we have

G̃
(
u1

h
)

=
(
F ′(η) – ĝ

)[
u1

h
] ≥ 0. (3.11)

By some manual calculation, we have

Υ
(
p1

h, q1
h, u1

h
)

j– 1
2

= 0, (3.12)

that is,

∥∥u1
h
∥∥2

Ω
+ χλ1

∥∥p1
h
∥∥2

Ω
≤ ∥∥u0

h
∥∥2

Ω
(3.13)
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and

∥∥u1
h
∥∥

Ω
≤ ∥∥u0

h
∥∥

Ω
. (3.14)

Suppose that

∥∥uk
h
∥∥

Ω
≤ ∥∥u0

h
∥∥

Ω
, k = 1, 2, . . . , P. (3.15)

Considering the case n = P + 1 in scheme (3.5) and taking the test functions v = uP+1
h ,

ω = χλ1pP+1
h , we have

∫
Ω

(
uP+1

h
)2 dx + χG̃

(
uP+1

h
)

+
N∑

j=1

χλ1
(
Λ

(
pP+1

h , qP+1
h , uP+1

h
)

j+ 1
2

– Λ
(
pP+1

h , qP+1
h , uP+1

h
)

j– 1
2

+ Υ
(
pP+1

h , qP+1
h , uP+1

h
)

j– 1
2

)

≤
( P∑

i=1

(si–1 – si) + sP

)∥∥u0
h
∥∥

Ω

∥∥uP+1
h

∥∥
Ω

. (3.16)

Analogous to the proofs of inequalities (3.11) and (3.12), we know

G̃
(
uP+1

h
) ≥ 0, Υj– 1

2

(
pP+1

h , qP+1
h , uP+1

h
)

= 0.

Then the inequality follows

∥∥uP+1
h

∥∥2
Ω

+ χλ1
∥∥pP+1

h
∥∥2

Ω
≤ ∥∥u0

h
∥∥2

Ω
. (3.17)

This finishes the proof of the stability result. �

In order to simplify the analysis, the linear case g(u) = u is studied.

Theorem 3.2 Suppose that u(x, tn) is the exact solution of problem (1.1), which is suffi-
ciently smooth with bounded derivatives, and un

h is the numerical solution of the fully dis-
crete LDG scheme (3.5), it holds that

∥∥u(x, tn) – un
h
∥∥ ≤ C

(
hk+1 + (
t)2–α

)
, (3.18)

where C is a constant depending on u, T , α.

Proof Consider the separation of numerical error in the form

en
u = u(x, tn) – un

h = ξn
u – ηn

u, ξn
u = P–en

u, ηn
u = P–u(x, tn) – u(x, tn),

en
p = p(x, tn) – pn

h = ξn
p – ηn

p , ξn
p = Pen

p, ηn
p = Pp(x, tn) – p(x, tn).

(3.19)

Here ηn
u and ηn

p have been estimated by inequality (2.4). In what follows we are going to
estimate ξn

u and ξn
p .
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With flux (3.6), we can get the error equation

∫
Ω

en
uv dx – χ

(∫
Ω

en
uvx dx –

N∑
j=1

(((
en

u
)–v–)

j+ 1
2

–
((

en
u
)–v+)

j– 1
2

))

+ χλ1

(∫
Ω

en
pvx dx –

N∑
j=1

(((
en

p
)+v–)

j+ 1
2

–
((

en
p
)+v+)

j– 1
2

))

–
n–1∑
i=1

(si–1 – si)
∫

Ω

en–i
u v dx – sn–1

∫
Ω

e0
uv dx

+ χ

∫
Ω

γ n(x)v dx +
∫

Ω

en
pw dx +

∫
Ω

en
uwx dx

–
N∑

j=1

(((
en

u
)–w–)

j+ 1
2

–
((

en
u
)–w+)

j– 1
2

)
= 0. (3.20)

Using (3.19), error equation (3.20) can be written as follows:

∫
Ω

ξn
u v dx – χ

(∫
Ω

ξn
u vx dx –

N∑
j=1

(((
ξn

u
)–v–)

j+ 1
2

–
((

ξn
u
)–v+)

j– 1
2

))

+ χλ1

(∫
Ω

ξn
p vx dx –

N∑
j=1

(((
ξn

p
)+v–)

j+ 1
2

–
((

ξn
p
)+v+)

j– 1
2

))

+
∫

Ω

ξn
p w dx +

∫
Ω

ξn
u wx dx –

N∑
j=1

(((
ξn

u
)–w–)

j+ 1
2

–
((

ξn
u
)–w+)

j– 1
2

)

=
n–1∑
i=1

(si–1 – si)
∫

Ω

ξn–i
u v dx + sn–1

∫
Ω

ξ 0
u v dx – χ

∫
Ω

γ n(x)v dx

+
∫

Ω

(
ηn

u
)
v dx – χ

(∫
Ω

(
ηn

u
)
vx dx –

N∑
j=1

(((
ηn

u
)–v–)

j+ 1
2

–
((

ηn
u
)–v+)

j– 1
2

))

+ χλ1

(∫
Ω

(
ηn

p
)
vx dx –

N∑
j=1

(((
ηn

p
)+v–)

j+ 1
2

–
((

ηn
p
)+v+)

j– 1
2

))

–
n–1∑
i=1

(si–1 – si)
∫

Ω

(
ηn–i

u
)
v dx – sn–1

∫
Ω

(
η0

u
)
v dx +

∫
Ω

(
ηn

p
)
w dx +

∫
Ω

(
ηn

u
)
wx dx

–
N∑

j=1

(((
ηn

u
)–w–)

j+ 1
2

–
((

ηn
u
)–w+)

j– 1
2

)
. (3.21)

Taking the test functions v = ξn
u , w = χλ1ξ

n
p in (3.21), using properties (2.1) and (2.3),

then the following equality holds:

∫
Ω

(
ξn

u
)2 dx + χλ1

∫
Ω

(
ξn

p
)2 dx +

N∑
j=1

χλ1

2
[
ξn

u
]2

j– 1
2

=
n–1∑
i=1

(si–1 – si)
∫

Ω

ξn–i
u ξn

u dx + sn–1

∫
Ω

ξ 0
uξn

u dx – χ

∫
Ω

γ n(x)ξn
u dx
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+
∫

Ω

(
ηn

u
)
ξn

u dx – χ

(∫
Ω

(
ηn

u
)(

ξn
u
)

x dx –
N∑

j=1

(((
ηn

u
)–(

ξn
u
)–)

j+ 1
2

–
((

ηn
u
)–(

ξn
u
)+)

j– 1
2

))

+ χλ1

(∫
Ω

(
ηn

p
)(

ξn
u
)

x dx –
N∑

j=1

(((
ηn

p
)+(

ξn
u
)–)

j+ 1
2

–
((

ηn
p
)+(

ξn
u
)+)

j– 1
2

))

–
n–1∑
i=1

(si–1 – si)
∫

Ω

(
ηn–i

u
)
ξn

u dx – sn–1

∫
Ω

(
η0

u
)
ξn

u dx +
∫

Ω

(
ηn

p
)(

χλ1ξ
n
p
)

dx

+
∫

Ω

(
ηn

u
)(

χλ1ξ
n
p
)

x dx –
N∑

j=1

(((
ηn

u
)–(

χλ1ξ
n
p
)–)

j+ 1
2

–
((

ηn
u
)–(

χλ1ξ
n
p
)+)

j– 1
2

)

=
n–1∑
i=1

(si–1 – si)
∫

Ω

ξn–i
u ξn

u dx + sn–1

∫
Ω

ξ 0
uξn

u dx – χ

∫
Ω

γ n(x)ξn
u dx

+
∫

Ω

(
ηn

u
)
ξn

u dx + χλ1

N∑
j=1

((
ηn

p
)+[

ξn
u
])

j– 1
2

–
n–1∑
i=1

(si–1 – si)
∫

Ω

(
ηn–i

u
)
ξn

u dx – sn–1

∫
Ω

(
η0

u
)
ξn

u dx. (3.22)

Error estimates (3.18) will be proved by mathematical induction. First, we consider the
case n = 1, that is,

∫
Ω

(
ξ 1

u
)2 dx + χλ1

∫
Ω

(
ξ 1

p
)2 dx +

N∑
j=1

χ

2
[
ξ 1

u
]2

j– 1
2

=
∫

Ω

ξ 0
uξ 1

u dx – χ

∫
Ω

γ 1(x)ξ 1
u dx +

∫
Ω

(
η1

u
)
ξ 1

u dx

+ χλ1

N∑
j=1

((
η1

p
)+[

ξ 1
u
])

j– 1
2

–
∫

Ω

(
η0

u
)
ξ 1

u dx. (3.23)

We know

∥∥ξ 0
u
∥∥ ≤ Chk+1, ab ≤ εa2 +

1
4ε

b2,

and based on (2.4), we have

∫
Ω

(
ξ 1

u
)2 dx + χλ1

∫
Ω

(
ξ 1

p
)2 dx +

N∑
j=1

χ

2
[
ξ 1

u
]2

j– 1
2

≤ (∥∥ξ 0
u
∥∥ + χ

∥∥γ 1(x)
∥∥ +

∥∥(
η1

u
)∥∥ +

∥∥(
η0

u
)∥∥)∥∥ξ 1

u
∥∥

+
χλ1

4

N∑
j=1

((
η1

p
)+)2

j– 1
2

+ εχλ1

N∑
j=1

([
ξ 1

u
])

j– 1
2

≤ C
(
hk+1 + (
t)2–α

)2 + ε
∥∥ξ 1

u
∥∥2 + εχλ2

N∑
j=1

([
ξ 1

u
])

j– 1
2

. (3.24)
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Choosing small ε, we know

∥∥ξ 1
u
∥∥

Ω
≤ C

(
hk+1 + (
t)2–α

)
.

Then suppose that

∥∥ξm
u

∥∥
Ω

≤ C
(
hk+1 + (
t)2–α

)
, m = 1, 2, . . . , K .

Let n = K + 1 in (3.22), we have

∫
Ω

(
ξK+1

u
)2 dx + χλ1

∫
Ω

(
ξK+1

p
)2 dx +

N∑
j=1

χ

2
[
ξK+1

u
]2

j– 1
2

=
K∑

i=1

(si–1 – si)
∫

Ω

ξK+1–i
u ξK+1

u dx + sK

∫
Ω

ξ 0
uξK+1

u dx

– χ

∫
Ω

γ K+1(x)ξK+1
u dx +

∫
Ω

(
ηK+1

u
)
ξK+1

u dx + χλ1

N∑
j=1

((
ηK+1

p
)+[

ξK+1
u

])
j– 1

2

–
K∑

i=1

(si–1 – si)
∫

Ω

(
ηK+1–i

u
)
ξK+1

u dx – sK

∫
Ω

(
η0

u
)
ξK+1

u dx

≤ C
(
hk+1 + (
t)2–α

)2 + ε
∥∥ξK+1

u
∥∥2 + εχλ1

N∑
j=1

([
ξK+1

u
])

j– 1
2

. (3.25)

We can obtain

∥∥ξK+1
u

∥∥ ≤ C
(
hk+1 + (
t)2–α

)
.

By using the triangle inequality and the interpolating property (2.4), we have Theo-
rem 3.2. �

4 Numerical examples
In this section, we present some numerical experiments for the proposed local discontin-
uous Galerkin method to illustrate its capability.

Example 4.1 Consider problem (1.1) when λ1 = 1 in Ω = [0, 2], the forcing term

f (x, t) =
(

24t4–α

Γ (5 – α)
+ π2(t4 + 1

))
sin(πx) + π sin(πx) cos(πx)

(
t4 + 1

)2, (4.1)

and the exact solution is u(x, t) = (t4 + 1) sin(πx). The L2 and L∞ errors and the numerical
orders of accuracy at time T = 1 for several α are contained in Tables 1–2. We can see that
the convergence rates are well displayed and justify our theoretical results.

5 Conclusion
In this paper we have presented a fully discrete local discontinuous Galerkin method for
solving a class of fractional Burgers-type equations. Numerical experiments show that
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Table 1 Numerical accuracy of scheme (3.5) with M = 1000, α = 0.3

N L2-error Order L∞-error Order

P0 5 4.743511647465447e–01 – 5.230485703724679e–01 –
10 2.453322326385340e–01 0.95 2.745599439848157e–01 0.92
15 1.653406665596814e–01 0.97 1.860855920209763e–01 0.95
20 1.242678198594019e–01 0.99 1.415701279740494e–01 0.95

P1 5 7.256517536855258e–02 – 9.635412347824566e–02 –
10 1.873884491779974e–02 1.95 2.552822346426505e–02 1.91
15 8.432294834666999e–03 1.97 1.166039812718010e–02 1.93
20 4.766101927280031e–03 1.98 6.630816791277043e–03 1.96

P2 5 1.097532348354286e–02 – 2.164416564453414e–02 –
10 1.477316800540677e–03 2.89 2.900434572823438e–03 2.90
15 4.535585735151620e–04 2.91 8.863974464363477e–04 2.92
20 1.956222641594544e–04 2.92 3.793487019026590e–04 2.95

Table 2 Numerical accuracy of scheme (3.5) with M = 1000, α = 0.7

N L2-error Order L∞-error Order

P0 5 4.348211568435824e–01 – 5.042185301727834e–01 –
10 2.424520324538541e–01 0.95 2.624532134506741e–01 0.92
15 1.352400215461305e–01 0.97 1.589644242186741e–01 0.95
20 1.121874628534372e–01 0.99 1.289403452797642e–01 0.95

P1 5 7.684216542820121e–02 – 9.154712784824911e–02 –
10 1.687534622310582e–02 1.95 2.164722782426461e–02 1.91
15 8.534804436315641e–03 1.97 1.247106712856485e–02 1.93
20 4.521403201237941e–03 1.98 6.503791571074942e–03 1.96

P2 5 1.164727942789012e–02 – 2.237484026942101e–02 –
10 1.348554214954641e–03 2.89 2.899243648502348e–03 2.90
15 4.054195123465723e–04 2.91 8.057494485268102e–04 2.92
20 1.264756425642313e–04 2.92 3.752416915626942e–04 2.95

our scheme is very effective. The advantages of the method are its flexibility in terms
of mesh and shape functions, and it can achieve a high order of convergence. In future
we would study a local discontinuous Galerkin method and an alternating direction im-
plicit/iterative scheme to solve the two- or higher-dimensional problems.
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