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Abstract
Stochastic differential models provide an additional degree of realism compared to
their corresponding deterministic counterparts because of the randomness and
stochasticity of real life. In this work, we study the dynamics of a stochastic delay
differential model for prey–predator system with hunting cooperation in predators.
Existence and uniqueness of global positive solution and stochastically ultimate
boundedness are investigated. Some sufficient conditions for persistence and
extinction, using Lyapunov functional, are obtained. Illustrative examples and
numerical simulations, using Milstein’s scheme, are carried out to validate our
analytical findings. It is observed that a small scale of white noise can promote the
survival of both species; while large noises can lead to extinction of the predator
population.
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1 Introduction
Prey–predator (PP) interaction is one of the most extensively studied issues in ecological
and mathematical literature; see [1–3]. The classic prey–predator models are mostly vari-
ations of the Lotka–Volterra model, which was proposed by Lotka [4] and Volterra [5].
Many studies have explored the effect of predator hunting cooperation on PP systems [6–
8]. Most of these studies utilize deterministic models, which of course supported us with
useful results for protecting species. However, the natural growth of populations is always
affected by environmental stochastic perturbations which should be taken into account
in the process of mathematical modeling. Ecological systems are often subject to environ-
mental noise (e.g., temperature, precipitation), which is an important factor in ecosystems,
to suppress a potential population explosion [9]. In reality, natural phenomena counter an
environmental noise and usually do not follow deterministic laws strictly but oscillate ran-
domly about some average values, so that the population density never attains a fixed value
with the advancement of time [10, 11]. Therefore, it is useful to see how changes in en-
vironment affect the relationship between predator and prey populations. Many authors
have investigated this phenomenon (see, e.g., [12–15]).
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A key question in population biology is understanding the conditions under which pop-
ulations coexist or go extinct. Extinction is one of the most important terms in population
dynamics. A species is said to be extinct when the last existing member dies. Therefore,
extinction becomes a certainty when there are no surviving individuals that can reproduce
and create a new generation. In ecology, extinction is often used informally to refer to lo-
cal extinction, in which a species ceases to exist in the chosen area of study, but may still
exist elsewhere. There are a variety of causes that can contribute directly or indirectly to
the extinction of species or group of species, such as lack of food and space or toxic pollu-
tion of the entire population habitat, competition for food to better adapted competitors,
predation, etc. [16]. Due to the importance of this topic in population dynamics, our main
goal in this paper is to investigate persistence and extinction in the considered model.

We should also mention here that time-delays (time-lags) have been extensively intro-
duced into equations used in mathematical ecology to represent the time required for
maturation period, reaction time, feeding time, etc. [17–19]. The presence of time-delay
in a system greatly affects its stability. It can destabilize the equilibrium points and give
rise to a stable limit cycle, oscillations grow, and enrich the dynamics of the model. In-
corporating time-delays has been considered by many authors in prey–predator models
and biological systems [20–23]. Hutchinson [23] first introduced the delay in a logistic
differential equation. He proposed a delay differential model for a single species of the
form

dx(t)
dt

= rx(t)
(

1 –
x(t – τ )

K

)
with x(θ ) = φ(θ ) > 0, θ ∈ [–τ , 0],φ(0) > 0.

Here, r (> 0) is the intrinsic growth rate and K (> 0) is the carrying capacity of the popula-
tion, and time-delay τ was considered as hatching time. φ(θ ) is continuous on θ ∈ [–τ , 0].
(This equation is referred to as Hutchinson’s equation or delayed logistic equation.)

A simple general two-dimensional delayed model of interaction between prey x(t) and
a generalist predator y(t) is represented by

dx(t)
dt

= x(t)G1
(
x(t – τ1), K

)
– y(t)F

(
x(t)

)
,

dy(t)
dt

= y(t)G2
(
y(t)

)
+ μy(t)F

(
x(t – τ2)

)
.

(1)

The function G1(x(t – τ1), K) is logistic per capita growth rate of prey, where K is the en-
vironmental carrying capacity, and G2(y) is the per capita growth rate of predator. F (x(t))
and μF (x(t)) are 0 extra responses of predator for a particular prey, and μ is the conver-
sion efficiency (0 < μ < 1). Time-delay τ1 represents the gestation period of the prey or
reflects the impact of density-dependent feedback mechanism [24]. Time-delay τ2 is in-
corporated in the functional response of predator equation to represent the reaction time
with the prey. In reality, the reproduction of predators is not immediate to the consump-
tion of prey, as there is some discrete time lag necessary for prey gestation [17].

There exist various and extensive studies of the dynamics of the delayed PP model; see,
e.g., [25–28]. In [27], the authors investigated the complex dynamics of a delayed PP sys-
tem with cooperation among the prey species, they have considered time delays in the
growth components for each of the species. Berec [28] assumed a Holling type II func-
tional response of the form F (x, y) = σ (y)x

1+c(y)σ (y)x , where σ is the consumption rate of prey
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Table 1 One biological meaning for the parameters of model (2)

Parameter Description

r Intrinsic growth rate
K Environmental carrying capacity
δ Death rate for predator
μ Conversion efficiency
α Cooperative hunting parameter
c Handling time of predator
a Predator intra-specific competition rate

by their predator and c is the handling time of the predator, both σ and c are not constant
quantities. Alves et al. [6] considered consumption rate depending on the predator den-
sity to implement predator cooperation for searching and capturing the prey. Assuming
that α > 0 is the cooperative ‘hunting’ parameter, with functional response of the form
F (x, y) = (1+αy)x

1+c(1+αy)x , the suggested model takes the form

dx(t)
dt

= rx(t)
(

1 –
x(t – τ1)

K

)
–

[1 + αy(t)]x(t)y(t)
1 + c(1 + αy(t))x(t)

,

dy(t)
dt

= y(t)
(
–δ – ay(t)

)
+

μ[1 + αy(t)]x(t – τ2)y(t)
1 + c(1 + αy(t))x(t – τ2)

,
(2)

where δ > 0 is the death rate of predator and a > 0 is an intra-specific competition rate for
predators. The description of the model parameters is presented in Table 1.

It is known that deterministic models, such as (2), are stable with a cyclic behavior in
the common period for the sizes of species populations. However, in practice, stochastic
variations will occur in the values of x and y, which may produce a qualitatively differ-
ent behavior. These variations may lead to an extinction of the predator as a result of a
possible extinction of the prey. Deterministic models may be inadequate for capturing the
exact variability in nature. Then, stochastic models are required for an accurate approxi-
mation of the dynamics of such interactions. The random fluctuations result in changing
some degree of parameters in the deterministic environment. Many authors have stud-
ied stochastic population models and revealed the effects of environmental noises on the
dynamics of population models (see [14, 29–31]). Hattaf et al. [14] studied the impact of
random noise in the dynamics of delayed SIR epidemic model. They deduced a threshold
parameter to determine the extinction and persistence of the disease. However, in [32],
the authors studied the effect of environmental fluctuations of a delayed Harrison-type PP
model, they analyzed the impact of the combination of delay and noise in the dynamical
behavior of the model. In [33], the authors studied the effect of environmental fluctua-
tions on a competitive model for two phytoplankton species where one species liberate
toxic substances by considering a discrete time delay parameter in the growth equations
of both species.

In this paper, we consider and investigate a stochastic version of PP system (2), so that

dx(t) =
[

rx(t)
(

1 –
x(t – τ1)

K

)
–

[1 + αy(t)]x(t)y(t)
1 + c(1 + αy(t))x(t)

]
dt + σ1x(t) dB1(t),

dy(t) =
[

–δy(t) – ay2(t) +
μ[1 + αy(t)]x(t – τ2)y(t)
1 + c(1 + αy(t))x(t – τ2)

]
dt + σ2y(t) dB2(t).

(3)
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B1(t), B2(t) are standard independent Wiener processes defined on a complete probability
space (Ω ,A, {A}t≥0, P) with a filtration {A}t≥0 satisfying the usual conditions; and σ1, σ2

are the positive intensities of white noises.
The rest of this paper is organized as follows. In Sect. 2, we briefly investigate the qual-

itative behavior for deterministic model (2). In Sect. 3, we study stochastic delay differen-
tial equations (SDDEs) (3). Sufficient criteria for global existence, stochastically ultimate
boundedness, persistence in mean, and extinction of the system are obtained. Some nu-
merical simulations to validate our mathematical findings are given in Sect. 4, and finally
the essential results and their ecological explanations are summarized in Sect. 5.

2 Deterministic analysis
Herein, we study the qualitative behavior of the deterministic model. Under some restric-
tions on the parameters of system (2), there exist three equilibrium points E0, E1, and
E∗ (see Appendix). We linearize the system around E∗ = (x∗, y∗), so that x(t) = x∗ + x̃(t),
y(t) = y∗ + ỹ(t), then we have

dx̃(t)
dt

= a1x̃(t) + a2ỹ + a3x̃(t – τ1),

dỹ(t)
dt

= a4ỹ(t) + a5x̃(t – τ2),
(4)

where the coefficients are given by

a1 =
c(1 + αy∗)2y∗x∗

(1 + c(1 + αy∗)x∗)2 , a2 = –
(2αy∗ + cx∗(1 + αy∗)2 + 1)x∗

(1 + c(1 + αy∗)x∗)2 , a3 = –
rx∗

K
,

a4 = –ay∗, a5 =
μ(1 + αy∗)y∗

(1 + c(1 + αy∗)x∗)2 .

The characteristic equation of linearization model (4) is given by

λ2 – (a1 + a4)λ + a1a4 + (a3a4 – a3λ)e–λτ1 – a2a5e–λτ2 = 0. (5)

Let us define a threshold parameter Rd
0 = μK

δ(1+cK ) .

Remark 1 The extinction equilibrium E0 is always a saddle point, and the boundary equi-
librium point E1 is locally asymptotically stable if Rd

0 ≡ μK
δ(1+cK ) < 1.

To gain insight regarding interior equilibrium E∗, we consider different values of time-
lags τ1 and τ2: (i) τ1 = τ2 = 0, (ii) τ1 > 0, τ2 = 0, (iii) τ1 = 0, τ2 > 0, (iv) τ1 > 0, τ2 > 0.

• Case (i): When τ1 = τ2 = 0, equation (5) becomes

λ2 – (a1 + a3 + a4)λ + a1a4 + a3a4 – a2a5 = 0. (6)

Thus all the roots of (6) have negative real parts if

(H1) a3 + a4 < –a1 and a1a4 + a3a4 > a2a5 hold.
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• Case (ii): When τ2 = 0, τ1 > 0, equation (5) becomes

λ2 – (a1 + a4)λ + (a1a4 – a2a5) + (a3a4 – a3λ)e–λτ1 = 0. (7)

Let λ = iω be the root of (7), then it follows that

–ω2 + (a1a4 – a2a5) = a3ω sinωτ1 – a3a4 cosωτ1,

–(a1 + a4)ω = a3ω cosωτ1 + a3a4 sinωτ1,
(8)

which leads to

ω4 + c1ω
2 + c2 = 0, (9)

where c1 = (a1 + a4)2 – 2(a1a4 – a2a5) – a2
3 and c2 = (a1a4 – a2a5)2 – (a3a4)2. Thus, equation

(9) has at least one positive root ω1 if c2 < 0, therefore we have

τ1,j =
1
ω1

{
arccos

[
(–ω2

1 + a1a4 – a2a5)a3a4 + (a1 + a4)a3ω
2
1

a2
3ω

2
1 + (a3a4)2

]
+

2jπ
ω1

}
, j = 0, 1, 2, . . . ,

(10)

where j = 0, 1, 2, . . . . Thus, E∗ remains stable for τ1 < τ ′
1 and unstable for τ1 > τ ′

1 such that
τ ′

1 = min{τ1,j}.
• Case (iii): For τ1 = 0, τ2 > 0, in the same manner, we have

τ2,j =
1
ω2

{
arccos

[
–ω2

2 + a1a4 + a3a4

a2a5

]
+

2jπ
ω2

}
, j = 0, 1, 2, . . . , (11)

where j = 0, 1, 2, . . . . Therefore, E∗ remains stable for τ2 < τ ′
2 and unstable for τ2 > τ ′

2 such
that τ ′

2 = min{τ2,j} provided that (a1a4 + a3a4)2 < (a2a5)2.
• Case (iv): When τ1, τ2 > 0, we assume first that τ1 is varying and τ2 is fixed in its stable

interval τ2 ∈ [0, τ ′
2). Assume that there exists a real number ω > 0 such that λ = iω is a root

of characteristic equation (5), then separating real and imaginary parts, we get

–ω2 + a1a4 – a2a5 cosωτ2 = a3ω sinωτ1 – a3a4 cosωτ1,

–(a1 + a4)ω + a2a5 sinωτ2 = a3ω cosωτ1 + a3a4 sinωτ1.
(12)

Squaring and adding both sides yields

ω4 + b1ω
2 + b2ω + b3 = 0, (13)

where

b1 = a2
1 + a2

4 – a2
3 + 2a2a5 cosωτ2, b2 = –2(a1 + a4)a2a5 sinωτ2,

b3 = (a1a4)2 – (a3a4)2 + (a2a5)2 – 2a1a2a4a5 cosωτ2.
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Equation (13) is a peculiar equation in a complicated form, it is not easy to presume about
the nature of the roots. Thus, by applying Descartes rule of signs, we can say that (13) has
at least one positive root ω0 if

(H2) (a1a4)2 + (a2a5)2 < (a3a4)2 + 2a1a2a4a5 cosωτ2.

In this case, we have

τ1,j =
1
ω0

{
arccos

[
a3ω0(–(a1 + a4)ω0 + a2a5 sinω0τ2) – a3a4(–ω2

0 + a1a4 – a2a5 cosω0τ2)
(a3ω0)2 + (a3a4)2

]
+ 2jπ

}
,

(14)

where j = 0, 1, 2, . . . . Thus, E∗ remains stable for τ1 < τ ∗
1 such that τ ∗

1 = min{τ1,j} as in (14).
To check the transversality condition of Hopf bifurcation, we fix τ2 in its stable interval

and differentiate equations (12) with respect to τ1. Then, substituting τ1 = τ1,0 and w = w0,
we have

A2

(
d(�λ)

dτ1

)∣∣∣∣
τ1=τ1,0

) + A1

(
d(w)
dτ1

)∣∣∣∣
τ1=τ1,0

) = A3,

–A1

(
d(�λ)

dτ1

)∣∣∣∣
τ1=τ1,0

) + A2

(
d(w)
dτ1

)∣∣∣∣
τ1=τ1,0

) = A4,
(15)

where

A1 = –2ω0 + (–a3 – a3a4τ1,0) sinω0τ1,0 + a2a5τ2 sinω0τ2 – a3τ1,0ω0 cosω0τ1,0,

A2 = (a1 + a4) + (a3 + a3a4τ1,0) cosω0τ1,0 – a3ω0τ1,0 sinω0τ1,0 – a2a5τ2 cosω0τ2,

A3 = a3ω
2
0 cosω0τ1,0 + a3a4ω0 sinω0τ1,0,

A4 = a3a4ω0 cosω0τ1,0 – a3ω
2
0 sinω0τ1,0.

From (15), we get

(
d(�λ)

dτ1

)∣∣∣∣
τ1=τ1,0

) =
A2A3 – A1A4

A2
2 + A2

1
.

Assume that

(H3) A2A3 > A1A4 holds,

then a Hopf bifurcation occurs for τ1 = τ1,0.
Therefore, for Case (iv), we arrive at the following theorem.

Theorem 1 Suppose that E∗ exists for system (2) and (H1)–(H3) hold, such that τ2 ∈ [0, τ ′
2),

then there exists a positive threshold parameter τ ∗
1 such that the interior equilibrium E∗ is

locally asymptotically stable for τ1 < τ ∗
1 and unstable for τ1 > τ ∗

1 . Furthermore, system (2)
undergoes a Hopf bifurcation at E∗ where τ1 = τ ∗

1 .

If τ1 is fixed in its stable interval and τ2 varies, we arrive at the following remark.
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Remark 2 If τ1 ∈ [0, τ ′
1), there exists a threshold parameter τ ∗

2 such that the interior equi-
librium E∗ is locally asymptotically stable for τ2 < τ ∗

2 and unstable for τ2 > τ ∗
2 , where

τ ∗
2 = min{τ2,j} is given by

τ2,j =
1

w3
arccos

[
a3a4 cosω3τ1 – ω2

3 – a1a4 – a3ω3 sinω3τ1

a2a5

]
+

2jπ
w3

, j = 0, 1, 2, . . . .

(16)

3 Stochastic analysis
In this section, we extend the analysis to the stochastic model, where we incorporate white
noise into the growth equations of both prey and predator. Recall model (3)

dx(t) =
[

rx(t)
(

1 –
x(t – τ1)

K

)
–

[1 + αy(t)]x(t)y(t)
1 + c(1 + αy(t))x(t)

]
dt + σ1x(t) dB1(t),

dy(t) =
[

–δy(t) – ay2(t) +
μ[1 + αy(t)]x(t – τ2)y(t)
1 + c(1 + αy(t))x(t – τ2)

]
dt + σ2y(t) dB2(t).

(17)

We assume that κ ∈ [–τ , 0], τ = max{τ1, τ2}, i.e., (x0, y0) = (φ1,φ2)T ∈ C([–τ , 0],R2
+) with

R
2
+ = {(x, y) ∈ R

2 : x > 0, y > 0}, if (x, y) ∈ R
2, its norm is denoted by |(x, y)| =

√
x2 + y2. The

initial value of system (17) becomes

(
x(κ), y(κ)

)
=

{(
x(κ), y(κ)

)
: –τ ≤ κ ≤ 0

} ∈ C
(
[–τ , 0];R2

+
)
. (18)

Now, we investigate the existence and uniqueness of positive solutions.

3.1 Existence and uniqueness of positive solution
In order to prove that the model of SDDEs (17) has a unique global solution (i.e., no explo-
sion in a finite-time) for any given initial condition, the coefficients of system (17) are gen-
erally required to satisfy the linear growth condition and local Lipschitz condition [34, 35].

To show that model (17) has a global positive solution, let us firstly prove that the model
has a positive local solution by making the change of variables. Then we prove that this
solution will also not explode to infinity at any finite time by using a suitable stochastic
Lyapunov functional.

Theorem 2 Let the coefficients of system (17) be locally Lipschitz continuous, then for any
given initial data (18) there is a unique positive solution (x(t), y(t)) of system (17) on t ≥ –τ ,
and the solution will remain in R

2
+ with probability one.

Proof Let n(t) = ln x(t), p(t) = ln y(t), we have the system

dn(t) =
(

r –
r
K

en(t–τ1) –
(1 + αep(t))en(t)

1 + c(1 + αep(t))en(t) –
σ 2

1
2

)
dt + σ1 dB1(t),

dp(t) =
(

μ(1 + αep(t))en(t–τ2)

1 + c(1 + αep(t))en(t–τ2) – δ – aep(t) –
σ 2

2
2

)
dt + σ2 dB2(t),

(19)

for any initial values n(κ) = ln x(κ), p(κ) = ln y(κ), κ ∈ [–τ , 0]. It is easy to show that all the
coefficients of (19) satisfy the local Lipschitz condition; therefore, there is a unique local
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solution (n(t), p(t)) on [–τ , τe), where τe is explosion time [36]. By Ito’s formula, we can see
that x(t) = en(t), y(t) = ep(t); therefore, there is a unique local positive solution of (17) for
any given initial value (x0, y0) ∈R

2
+.

To show that this solution is global, we need to show τe = ∞ a.s. (almost surely). Let
l0 > 0 be sufficiently large so that (x(t), y(t)) = {(φ1(t),φ2(t)) : –τ ≤ t ≤ 0} ∈ C([–τ , 0];R2

+)
all lie within the interval [ 1

l0
, l0]. Now, for each integer l ≥ l0, define the stopping time

τl = inf{t ∈ [–τ , τe) : x(t) /∈ ( 1
l , l), y(t) /∈ ( 1

l , l)}, let infφ = ∞. τl is increasing with l and let
τ∞ = liml→∞ τl , then τ∞ ≤ τe. By showing τ∞ = ∞ a.s., we want to conclude that τe = ∞
a.s. If this assertion is erroneous, then there exists a pair of constants T > 0 and ε ∈ (0, 1)
such that P{τ∞ ≤ T} > ε. Therefore, there is an integer l1 ≥ l0 such that

P{τl ≤ T} > ε for all l ≥ l1. (20)

Define a C2-function V (x, y) : R+ ×R+ →R+ by

V (x, y) = (x – log x – 1) + (y – log y – 1) +
r
K

∫ t+τ1

t
x(s – τ1) ds.

Clearly, this function is nonnegative for all x, y ≥ 0. Let l ≥ l0 and T > 0 be arbitrary. For
0 ≤ t ≤ τl ∧ T , by Itô’s formula for V , we get

dV =
[

(x – 1)
[

r –
r
K

x(t – τ1) –
(1 + αy)y

1 + c(1 + αy)x

]

+ (y – 1)
[

μ(1 + αy)x(t – τ2)
1 + c(1 + αy)x(t – τ2)

– δ – ay
]

+
σ 2

1 + σ 2
2

2

+
r
K

x –
r
K

x(t – τ1)
]

dt + σ1(x – 1) dB1(t) + σ2(y – 1) dB2(t)

≤
[

–ay2 + (1 + μ + a – δ)y + r
K + 1

K
x + (δ – r) +

σ 2
1 + σ 2

2
2

]
dt

+ σ1(x – 1) dB1(t) + σ2(y – 1) dB2(t)

≤ γ dt + σ1(x – 1) dB1(t) + σ2(y – 1) dB2(t),

where γ is a positive number. Therefore

∫ τl∧T

τl∧T–τ

dV (x, y) ≤
∫ τl∧T

τl∧T–τ

γ dt +
∫ τl∧T

τl∧T–τ

σ1(x – 1) dB1(t) +
∫ τl∧T

τl∧T–τ

σ2(y– 1) dB2(t). (21)

Taking expectation of both sides implies

E
[
V

(
x(tl ∧ T), y(tl ∧ T)

)] ≤ V
(
x(0), y(0)

)
+ γ T . (22)

Set Ωl = {τl ≤ T} for l ≥ l1 and by the virtue of (20), we obtain P(Ωl) ≥ ε. For every η ∈ Ωl ,
x(τl,η) and y(τl,η) equal either l or 1

l , Consequently, V (x(τl,η), y(τl,η)) is no less than either
l – log l – 1 or 1

l + log l – 1. Therefore, we can get

V
(
x(τl,η), y(τl,η)

) ≥ min

{
l – log l – 1,

1
l

+ log l – 1
}

.
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It follows from (22) that

V
(
x(0), y(0)

)
+ γ T ≥ E

[
1Ωl (η)V

(
x(τl), y(τl)

)]

≥ ε[l – log l – 1] ∧
[

1
l

+ log l – 1
]

,

where 1Ωl is the indicator function of Ωl . Letting l → ∞ leads to a contradiction that
∞ > V (x(0), y(0)) + γ T = ∞. Therefore, we get τ∞ = ∞ a.s. �

3.2 Stochastically ultimate boundedness
After discussion on the existence and uniqueness of positive solution of SDDEs (17), we
show that the positive solution does not explode to infinity in a finite time.

Definition 1 ([37]) The solution (x(t), y(t)) of SDDEs (17) is said to be stochastically ul-
timately bounded a.s. if, for any ε ∈ (0, 1), there is a positive constant ϕ = ϕ(ε) such that
limt→∞ sup P{|(x(t), y(t))| > ϕ} < ε.

Theorem 3 If any θ ∈ (0, 1) and μθ (μKeτ2 – δ) > a, and there exists a positive constant
N = N(θ ), which is independent of the initial value (18), such that

lim
t→∞ sup E

∣∣(x(t), y(t)
)∣∣θ ≤ N , (23)

then the positive solution (x(t), y(t)) of system (17) is stochastically ultimately bounded.

Proof To prove (23), define

V (x, y) = xθ + yθ , (x, y) ∈R
2
+. (24)

Applying Itô’s formula gives

LV (x, y) = θxθ

[
r –

r
K

x(t – τ1) –
(1 + αy)y

1 + c(1 + αy)x

]
+

σ 2
1

2
θ (θ – 1)xθ

+ θyθ

[
μ(1 + αy)x(t – τ2)

1 + c(1 + αy)x(t – τ2)
– δ – ay

]
+

σ 2
2

2
θ (θ – 1)yθ . (25)

Denote

LV (x, y) ≤ θxθ

(
r –

r
K

x(t – τ1)
)

–
σ 2

1
2

θ (1 – θ )xθ +
μθyθ (1 + αy)x(t – τ2)
1 + c(1 + αy)x(t – τ2)

–
σ 2

2
2

θ (1 – θ )yθ – θayθ+1

≤ rθxθ –
σ 2

1
2

θ (1 – θ )xθ –
σ 2

2
2

θ (1 – θ )yθ + μθ

(
μKeτ2 – δ

a

)∣∣x(t – τ2)
∣∣2

= H(x, y) – V (x, y) – eτ2
∣∣x(t)

∣∣2 + μθ

(
μKeτ2 – δ

a

)∣∣x(t – τ2)
∣∣2,

where

H(x, y) = (rθ + 1)xθ + yθ –
σ 2

1
2

(1 – θ )xθ –
σ 2

2
2

θ (1 – θ )yθ + eτ2
∣∣x(t)

∣∣2 ≤ N0
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for (x, y) ∈R
2
+. Note that H(x, y) is bounded in R

2
+. Hence, we have

LV (x, y) ≤ N0 – V (x, y) – eτ2
∣∣x(t)

∣∣2 +
μθ (μKeτ2 – δ)

a
∣∣x(t – τ2)

∣∣2.

Thus, we obtain

dV (x, y) = LV (x, y) dt + σ1θxθ dB1(t) + σ2θyθ dB2(t)

≤
(

N0 – V (x, y) – eτ2
∣∣x(t)

∣∣2 +
μθ (μKeτ2 – δ)

a
∣∣x(t – τ2)

∣∣2
)

dt

+ σ1θxθ dB1(t) + σ2θyθ dB2(t).

Again, using Itô’s formula, we have

d
(
etV (x, y)

)
= etV (x, y) dt + etdV (x, y)

≤ et
[

N0 – eτ2
∣∣x(t)

∣∣2 +
μθ (μKeτ2 – δ)

a
∣∣x(t – τ2)

∣∣2
]

dt

+ etσ1θxθ dB1(t) + etσ2θyθ dB2(t).

If μθ (μKeτ2 – δ) > a, then

etEV (x, y) ≤ V
(
x(0), y(0)

)
+ N0et

– E
∫ t

0
es+τ2

∣∣x(s)
∣∣2 ds + μθ

μKeτ2 – δ

a
E

∫ t

0
es∣∣x(s – τ2)

∣∣2 ds

= V
(
x(0), y(0)

)
+ N0et – E

∫ t

0
es+τ2

∣∣x(s)
∣∣2 ds +

μ2θK
a

E
∫ t–τ2

–τ2

es+τ2
∣∣x(s)

∣∣2 ds

–
δμθ

a
E

∫ t

0
es∣∣x(s – τ2)

∣∣2 ds

≤ V
(
x(0), y(0)

)
+ N0et +

μ2θK
a

E
∫ 0

–τ2

es+τ2
∣∣x(s)

∣∣2 ds,

which implies that

lim
t→∞ sup EV

(
x(t), y(t)

) ≤ N0.

We get

lim
t→∞ sup E

∣∣x(t), y(t)
∣∣θ ≤

√
2θ lim

t→∞ sup EV
(
x(t), y(t)

) ≤
√

2θ N0 = N(θ ).

Since limt→∞ sup E|x(t), y(t)|θ ≤ N , then, for any ε > 0, let ϕ = N2/ε2. By Chebyshev’s
inequality

P
{∣∣(x(t), y(t)

)∣∣ > ϕ
} ≤ E(

√|(x(t), y(t))|)√
ϕ

,
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we obtain

lim
t→∞ sup P

{∣∣(x(t), y(t)
)∣∣ > ϕ

} ≤ N√
ϕ

:= ε.

Thus, model (17) is stochastically ultimately bounded. �

3.3 Persistence
Under certain restrictions on the parameter values with small intensities of white noise,
we investigate the conditions under which the persistence of system SDDEs (17) occurs.

Let us first define persistence in the mean of a dynamical system.

Definition 2 The species y(t) is said to be persistent (see [16]) in the mean if

lim inf
t→∞

1
t

∫ t

0
y(s) ds > 0 a.s.

In order to show the persistence, we go through some necessary lemmas.

Lemma 1 ([38]) Let M = {Mt}t≥0 be a real-valued continuous local martingale vanishing
at t = 0. Then

lim
t→∞〈M, M〉t = ∞ a.s. ⇒ lim

t→∞
Mt

〈M, M〉t
= 0 a.s.,

and also

lim sup
t→∞

〈M, M〉t

t
< ∞ a.s. ⇒ lim

t→∞
Mt

t
= 0 a.s.,

where 〈M, M〉t denotes the quadratic variation of M.

Lemma 2 ([39]) Let y(t) ∈C[[0,∞)×Ω , (0,∞)]. If there exist positive constants λ0, λ such
that

ln y(t) ≥ λt – λ0

∫ t

0
y(s) ds + F(t) a.s.

for all t ≥ 0, where F ∈ C[[0,∞) × Ω ,R] and limt→∞ F(t)
t = 0 a.s., then

lim inf
t→∞

1
t

∫ t

0
y(s) ds ≥ λ

λ0
a.s.

Let us define a threshold parameter Rs
0 as follows:

Rs
0 =

μK
δ̃(1 + c)

> 0, where δ̃ = δ +
σ 2

2
2

. (26)

Theorem 4 Let (x(t), y(t)) be the solution of SDDEs (17) with initial conditions (18).
Assume that 2r > σ 2

1 , then system (17) will be persistent if Rs
0 > 1, so that lim inft→∞ 1

t ×∫ t
0 y(s) ds > 0, a.s.
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Proof Using Itô’s formula to the first equation of system (17) yields

d
(

ln x(t) –
r
K

∫ t+τ1

t
x(s – τ1) ds

)
≤

((
r –

σ 2
1

2

)
–

r
K

x(t)
)

dt + σ1 dB1(t). (27)

Integrating inequality (27) from 0 to t results in

ln x(t) – r
K

∫ t+τ1
t x(s – τ1) ds
t

–
ln x(0) – r

K
∫ τ1

0 x(s – τ1) ds
t

≤
(

r –
σ 2

1
2

)
–

r
K

〈
x(t)

〉
+

σ1B1(t)
t

.

Thus,

〈
x(t)

〉 ≤ K
r

(
r –

σ 2
1

2

)
+ γ1(t), (28)

where

γ1(t) =
K
r

[
σ1B1(t)

t
–

ln x(t) – r
K

∫ t+τ1
t x(s – τ1) ds
t

+
ln x(0) – r

K
∫ τ1

0 x(s – τ1) ds
t

]
,

it follows from Lemma 1 that

lim
t→∞

B1(t)
t

= 0 a.s.

Note

∫ t+τ1
t x(s – τ1) ds

t
=

1
t

∫ t

t–τ1

x(s) ds =
1
t

[∫ t

0
x(s) ds –

∫ t–τ1

0
x(s) ds

]
.

Therefore, limt→∞
∫ t+τ1

t
x(s–τ1) ds

t = 0. Moreover, limt→∞
∫ τ1

0
x(s–τ1) ds

t = limt→∞
∫ 0

–τ1
φ1(t) dt
t =

0. Thus, we obtain

lim
t→∞γ1 = 0 a.s. (29)

By Itô’s formula, we get

d
(

ln x(t) –
r
K

∫ t+τ1

t
x(s – τ1) ds

)

=
[

r
(

1 –
x(t – τ1)

K

)
–

(1 + αy)y(t)
1 + c(1 + αy)x(t)

–
r
K

x(t) +
r
K

x(t – τ1) –
σ 2

1
2

]
dt + σ1 dB1(t)

≥
[

r –
r
K

x(t) – 2(1 + α)y(t) –
σ 2

1
2

]
dt + σ1 dB1(t),
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so we have

ln x(t) – r
K

∫ t+τ1
t x(s – τ1) ds
t

–
ln x(0) – r

K
∫ τ1

0 x(s – τ1) ds
t

≥
(

r –
σ 2

1
2

)
– 2(1 + α)〈y〉 –

r
K

〈x〉 +
σ1B1(t)

t
.

Therefore,

〈
x(t)

〉 ≥ –
2K(1 + α)

r
〈
y(t)

〉
+

K
r

(
r –

σ 2
1

2

)
+ γ1(t). (30)

Let

V = ln y(t) +
∫ t+τ2

t

[
μx(s – τ2)

1 + cx(s – τ2)

]
ds, (31)

utilizing Itô’s formula, we obtain

dV =
[

μ(1 + αy)x(t – τ2)
1 + c(1 + αy)x(t – τ2)

– δ – ay –
1
2
σ 2

2 +
μx(t)

1 + cx(t)
–

μx(t – τ2)
1 + cx(t – τ2)

]
dt + σ2 dB2(t).

(32)

According to (32), we have

dV ≥
[

μx(t)
1 + cx(t)

– δ – ay –
1
2
σ 2

2

]
dt + σ2 dB2(t). (33)

• Case (1): When x(t) ≤ 1, then

dV ≥
[

μx(t)
1 + c

– δ – ay –
1
2
σ 2

2

]
dt + σ2 dB2(t). (34)

V (t) – V (0)
t

≥ μ

1 + c
〈
x(t)

〉
– a

〈
y(t)

〉
–

[
δ +

1
2
σ 2

2

]
+

σ2

t
B2(t). (35)

Substituting (30) into (35), we obtain

V (t) – V (0)
t

≥ μ

1 + c

[
–2K(1 + α)

r
〈
y(t)

〉
+ K

(
1 –

σ 2
1

2r

)
+ γ1(t)

]
– a

〈
y(t)

〉
– δ̃ +

σ2

t
B2(t).

(36)

Therefore,

ln y(t) ≥
[

μK
(1 + c)

(
1 –

σ 2
1

2r

)
– δ̃

]
t –

[
2μK(1 + α)

r(1 + c)
+ a

]〈
y(t)

〉
t +

μ

1 + c
γ1(t)t + σ2B2(t)

+ ln y(0) +
∫ τ2

0

μx(s – τ2)
1 + cx(s – τ2)

ds –
∫ t+τ2

t

μx(t – τ2)
1 + cx(t – τ2)

ds

=: λt – λ0

∫ t

0
y(s) ds + F(t), (37)
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where

λ =
μK

(1 + c)

(
1 –

σ 2
1

2r

)
– δ̃, λ0 =

2μK(1 + α)
r(1 + c)

+ a,

F(t) =
μ

1 + c
γ1(t)t + σ2B2(t) + ln y(0) +

∫ τ2

0

μx(s – τ2)
1 + cx(s – τ2)

ds –
∫ t+τ2

t

μx(t – τ2)
1 + cx(t – τ2)

ds.

Since 2r > σ 2
1 and Rs

0 > 1, this implies that λ > 0. Using this together with (29) and
Lemma 2, one obtains

lim inf
t→∞

〈
y(t)

〉 ≥ r(1 + c)
2μK(1 + α) + ar(1 + c)

(
μK(2r – σ 2

1 )
2r(1 + c)

– δ̃

)
> 0.

• Case (2): When x(t) > 1, from (33) we can get

dV ≥
[

μ

1 + c
– δ – ay –

1
2
σ 2

2

]
dt + σ2 dB2(t), (38)

V (t) – V (0)
t

≥ μ

1 + c
– a

〈
y(t)

〉
– δ̃ +

σ2

t
B2(t). (39)

Since Rs
0 > 1, and following a similar proof to Case (1), we can obtain

lim inf
t→∞

〈
y(t)

〉 ≥ 1
a

(
μ

1 + c
– δ̃

)
> 0.

This completes the proof. �

3.4 Extinction
Extinction is one of the most important terms in population dynamics. A species is said to
be extinct if there is no existing member in the habitat. Although, under some conditions,
the solution to the original deterministic DDEs (2) may be persistent, the solution to the
associated SDDEs will become extinct with probability one. This reveals the important
fact that the environmental noise may make the population extinct. Now, we establish the
conditions under which extinction of predator population occurs.

Definition 3 The species y(t) is said to go to extinction with probability one if
limt→∞ y(t) = 0 a.s.

Theorem 5 Let a > μα. If Rs
0 < 1, then the solution (x(t), y(t)) of model (17), for any given

initial value (18), satisfies

lim sup
t→∞

ln y(t)
t

< 0 a.s., (40)

which means limt→∞ y(t) = 0 exponentially almost surely. In other words, the predators die
out with probability one. In addition,

lim
t→∞

〈
x(t)

〉
= K

(
1 –

σ 2
1

2r

)
.
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Proof According to (32), we have

dV ≤
[

μ(1 + αy)x(t – τ2)
1 + cx(t – τ2)

– δ – ay –
1
2
σ 2

2 +
μx(t)

1 + cx(t)
–

μx(t – τ2)
1 + cx(t – τ2)

]
dt + σ2 dB2(t)

≤
[

μx(t)
1 + cx(t)

– δ – (a – μα)y(t) –
1
2
σ 2

2

]
dt + σ2 dB2(t), (41)

since (a > μα), then

dV ≤
[

μx(t)
1 + cx(t)

– δ –
1
2
σ 2

2

]
dt + σ2 dB2(t). (42)

Thus, we have two cases.
• When x(t) ≤ 1, according to (42), we can get

dV ≤
[

μ

1 + c
– δ̃

]
dt + σ2 dB2(t), (43)

therefore, we have

V (t) – V (0)
t

≤ μ

1 + c
– δ̃ +

σ2

t
B2(t). (44)

So,

ln y(t)
t

≤ μ

1 + c
– δ̃ + χ1(t), (45)

where

χ1(t) =
σ2

t
B2(t) +

ln y(0)
t

+
1
t

∫ τ2

0

μx(s – τ2)
1 + cx(t – τ2)

ds –
1
t

∫ t+τ2

t

μx(s – τ2)
1 + cx(s – τ2)

ds. (46)

In view of the strong law of large numbers of Brownian motion, we can easily obtain that

lim
t→∞χ1(t) = 0 a.s.

Thus, it follows from (45) and since Rs
0 < 1

lim sup
t→∞

ln y(t)
t

≤ μ

1 + c
– δ̃ < 0 a.s. (47)

• When x(t) > 1, by (42), we have

dV ≤
[

μx(t)
1 + c

– δ̃

]
dt + σ2 dB2(t), (48)

then

V (t) – V (0)
t

≤ μK
1 + c

–
μ

1 + c
γ1(t) – δ̃ +

σ2

t
B2(t). (49)
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Therefore,

ln y(t)
t

≤ μK
1 + c

– δ̃ + χ2(t), (50)

where

χ2(t) =
σ2

t
B2(t) +

ln y(0)
t

+
1
t

∫ τ2

0

μx(s – τ2)
1 + cx(s – τ2)

ds –
1
t

∫ t+τ2

t
(

μx(s – τ2)
1 + cx(s – τ2)

ds

–
μ

1 + c
γ1(t). (51)

In view of the strong law of large numbers of Brownian motion, we can easily obtain that

lim
t→∞χ2(t) = 0 a.s.

Therefore,

lim sup
t→∞

ln y(t)
t

≤ μK
1 + c

– δ̃ < 0 a.s., (52)

which implies that y(t) tends to zero exponentially with probability one,

lim
t→∞ y(t) = 0 a.s. (53)

By taking the limit on both sides of (28) and (30) at the same time, we can get

lim
t→∞

〈
x(t)

〉
= K

(
1 –

σ 2
1

2r

)
.

This completes the proof. �

4 Numerical simulations
In this section, we attempt to validate the mathematical results obtained in the previous
sections. We utilize Milstein’s scheme with a strong order of convergence one discussed
in [40]. The corresponding discretization system to SDDEs (17) is

xn+1 = xn + hxn

[
r
(

1 –
xn–m1

K

)
–

(1 + αyn)yn

1 + c(1 + αyn)xn

]

+ σ1xnξ1,n +
σ 2

1
2

xn
[(

ξ1,n(h)
1
2
)2 – h

]
,

yn+1 = yn + hyn

[
μ(1 + αyn)xn–m2

1 + c(1 + αyn)xn–m2
– δ – ayn

]

+ σ2ynξ2,n +
σ 2

2
2

yn
[(

ξ2,n(h)
1
2
)2 – h

]
.

(54)

Here, ξ1,n and ξ2,n are mutually independent N(0, 1) random variables, m1, m2 are inte-
gers such that the time delays can be expressed in terms of the step-size as τ1 = m1h &
τ2 = m2h. We provide some numerical simulations of the stochastic model (17) and its
corresponding deterministic model (2).
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Taking the parameter values α = 0.12, a = 0.08, c = 0.3, r = 1, μ = 0.9, δ = 0.39, K = 1,
σ1 = σ2 = 0.001, and τ1 = τ2 = 0.1, Fig. 1 shows the persistence of system (17) with initial
values (0.4, 0.8) such that Rs

0 = μK
δ̃(1+c) = 1.78 > 1. If we increase the hunting cooperative

parameter α as α = 1.2 keeping all other parameters the same, we can observe that the
predator dominates the prey population; see Fig. 1 (right). The population densities vary
around the deterministic steady state values.

Figure 2 shows the impact of small white noise on dynamics of the system. The fig-
ure displays a periodic solution of the deterministic system when τ1 = τ ∗

1 = 0.8 & τ2 =

Figure 1 Numerical simulations of system (17) which display the persistence of the system, whenRs
0 > 1

with α = 0.12, a = 0.08, c = 0.3, r = 1, μ = 0.9, δ = 0.39, K = 1, σ1 = σ2 = 0.001, and τ1 = τ2 = 0.1. However, the
right banner illustrates that the predator population dominates the prey population as time goes when α is
increased to α = 1.2

Figure 2 Numerical simulations of the solutions for system (17) and the corresponding deterministic system
(2), whenRs

0 > 1 with τ1 = τ ∗
1 = 0.8 & τ2 = 0.1 < τ ∗

2 , a = 0.08, δ = 0.19, α = 1.6, c = 0.6, K = 1, μ = 0.9, r = 1,
while the intensities of Brownian motions are relatively small σ1 = 0.004 & σ2 = 0.0001. We can observe a
damped periodic solution
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0.1 < τ ∗
2 , a = 0.08, δ = 0.19, α = 1.6, c = 0.6, K = 1, μ = 0.9, r = 1. However, with small

noises σ1 = 0.004 & σ2 = 0.0001, where Rs
0 = 2.96 > 1, we can observe that the periodic

solution is damped in both population densities. If the intensity of white noises increases,
then the predator goes to extinction, as Rs

0 < 1.
Figure 3 shows that the population of prey varies around the deterministic steady state

value (left), and the predator population goes to extinction at t = 70 with the deterministic
model; while with white noise at t = 20 (right). In this simulation, we choose initial values
(x(0), y(0)) = (0.8, 0.4) and parameter values a = 0.19, μ = 0.8, α = 0.1, c = 0.8, K = 1, δ =
0.59, r = 1, σ1 = 0.001, σ2 = 0.023, τ1 = τ2 = 0.1. Then Rs

0 = 0.75 < 1. According to Theorem
5, the solution of (17) obeys lim supt→∞

ln y(t)
t < 0 a.s., that is, y(t) tends to zero exponentially

with probability one. On the other hand, for deterministic model (2), the condition of
Rd

0 = μK
δ(1+cK ) = 0.7 < 1 is satisfied, so the boundary equilibrium point (E1, 0) = (1, 0) is a

stable point.
Figure 4 shows that the environmental noise plays an important role in extinction of

the predator population. When we increase the intensity of Brownian motion B2(t) to
σ2 = 0.1, c = 0.3, μ = 0.6, and δ = 0.4 with other parameters as in Fig. 3, the extinction

Figure 3 Numerical simulations of the solutions for system (17) and the corresponding deterministic system
(2), whenRs

0 < 1 with a = 0.19, μ = 0.8, α = 0.1, c = 0.8, K = 1, δ = 0.59, r = 1, σ1 = 0.001, σ2 = 0.023, and
τ1 = τ2 = 0.1. Predator population goes to extinction at t = 70 for the deterministic system; while extinction
occurs at t = 20 with the stochastic model

Figure 4 Numerical simulations of the solutions for system (17) and the corresponding deterministic system
(2), whenRs

0 < 1 with a = 0.19, μ = 0.6, α = 0.1, c = 0.3, K = 1, δ = 0.4, r = 1, σ1 = 0.001, σ2 = 0.1, and
τ1 = τ2 = 0.1. The large scale of white noises may lead to no surviving predator individuals that can reproduce
and create a new generation; while the deterministic one is survival
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occurs in the predator population when Rs
0 = 0.92 < 1. This means y(t) of system (17) will

go to extinction with probability one. However, with the same parameters, deterministic
model (2) has an interior stable equilibrium E∗ = (0.82, 0.22). Therefore, the population
y(t) becomes extinct exponentially with probability one when white noise increases.

Remark 3 Extinction of the predator population possibly occurs when the intensity of
white noise is large, such that Rs

0 < 1. This would not happen in deterministic system (2)
without noises (see Fig. 4). If the predator death rate is large, extinction of the predators
can also occur in deterministic model (2); while with a small noise in the stochastic model,
extinction of the predator population occurs faster than in the deterministic model (see
Fig. 3).

5 Discussion and conclusion
In this paper, we studied the dynamics of SDDEs for a prey–predator system with hunt-
ing cooperation in predators. We investigated the effect of environmental fluctuations on
the model. We first studied the qualitative behaviors of the deterministic model through
local stability analysis of the interior equilibrium points and obtained critical values of
delays, where the Hopf bifurcation occurs for the deterministic model. We then consid-
ered how environmental fluctuations affect extinction of predator and prey populations.
We established the existence and uniqueness of global positive solution and the stochas-
tically ultimate boundedness of the system. We have shown the effect of environmental
noises on the persistence and possible extinction of prey and predator populations. We
verified the obtained analytical results with supportive numerical simulations using Mil-
stein’s scheme. Conditions under which persistence of the system occurs have been estab-
lished when Rs

0 > 1; while with Rs
0 < 1, extinction of the predator occurs. It can also be

observed that the extinction of the predator population occurs more rapidly for stochas-
tic system (17) when the intensity of white noise increases, see Figs. 3–4. It has also been
shown numerically that the predator population dominates the prey population as coop-
erative hunting parameter increases (see Fig. 1).

Our main findings, theoretically and numerically, are all represented in terms of the
system parameters and the intensity of randomly fluctuating driving forces. This indicates
that time-delay and white noise have a considerable impact on the dynamics and presence
of prey and predator populations. For future investigation, one may extend our results
with other kinds of environmental noise such as color noise [41] or telephone noise [42].

Appendix: Preliminaries and analysis for deterministic model
There are three types of equilibrium points for deterministic system (2): (i) Trivial equilib-
rium point E0 ≡ (0, 0); (ii) Axial equilibrium point E1 ≡ (K , 0); and (iii) Interior equilibrium
point E∗ ≡ (x∗, y∗). Here,

x∗ =
δ + ay

(1 + αy)[μ – c(δ + ay)]
. (55)

y∗ is a positive real root of the equation

η5y5 + η4y4 + η3y3 + η2y2 + η1y1 + η0 = 0, (56)
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where

η5 = Kc2a2, η4 = 2Kc2a2α + 2δaKc2 – 2Kμca,

η3 = Kc2δ2 + μ2K + 4δaKc2α + Kc2a2 – 2μKcδ – 4Kμcaα,

η2 = 2Kc2δ2α + 2αμ2K + 2δaKc2 + rKμαca – 4αμKcδ – 2Kμca,

η1 = Kc2δ2 + μ2K + μra + rμαcδ – 2μKδc – rKμ2α – rKμa,

η0 = rKμ(cδ – μ).

(57)

Equation (56) must have at least one positive real root if cδ < μ. Therefore, the existence
of the coexisting equilibrium E∗ assumes restrictions on the parameters so that

cδ < μ and y∗ ≤ μ – cδ
ac

. (58)

Lemma 3 The positive solution of deterministic model (2), (x(t), y(t)), satisfies

lim
t→∞ sup x(t) ≤ Kerτ1 , lim

t→∞ sup y(t) ≤ μKerτ2 – δ

a

for τ1, τ2 > 0 with μKerτ2 > δ.

Proof With the positive initial condition (x(0), y(0)), we can verify that the solution
(x(t), y(t)) of system (2) is positive. From the first equation of system (2) we can consider

dx(t)
dt

≤ rx(t). (59)

Integrating both sides of (59) from t – τ1 to t, we have

x(t – τ1) ≥ x(t)e–rτ1 . (60)

Using (60) and from the first equation of (2), we get

dx(t)
dt

≤ x(t)
(

r –
r
K

e–rτ1 x(t)
)

⇒ lim
t→∞ sup x(t) ≤ Kerτ1 , (61)

i.e., for ε > 0, there exists T1 > 0 such that x(t) ≤ Kerτ1 + ε for all t > T1.
Similarly, from the second equation of (2), we get

lim
t→∞ sup y(t) ≤ μK(erτ2 + ε) – δ

a
= ξ . (62)

Thus, y(t) ≤ ξ + ε for all t > T2, conclusion of this theorem can be achieved by letting
ε → 0. �
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