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Abstract
The aim of this study is to establish the solution of the time-space fractional
Schrödinger equation subject to initial and boundary conditions which has many
applications in science such as nonlinear optics, plasma physics, super conductivity,
based on the residual power series method (RPSM). We first apply suitable
transformations to make the order of one of the fractional derivatives integer to
implement the RPSM easily to construct the fractional power series solution. The
method proposed in this article gives highly encouraging results. Illustrative examples
show that this method is compatible with solving such fractional differential
equations.
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1 Introduction
Mathematical modeling is an undeniably powerful tool for systems since a mathematical
description of processes allows us to figure out quantitative and qualitative behavior of it
in analysis. Moreover, mathematical models involving a fractional order derivative lead to
an excellent description for the properties of the behavior of nonlinear systems in various
branches of Science and Engineering [1–7]. From this point of view, fractional order mod-
els provide better predictions than integer order models. Therefore, in recent decades,
fractional order models have been used in a wide range of fields such as physics, chem-
istry, biology,engineering, optimal control theory, and finance [8–26]. Fractional order
mathematical models have been recently employed for complex systems with memory and
hereditary properties to provide deep understanding of the phenomena since fractional
derivatives are non-local operators. It is worth while mentioning that selecting the type
of fractional derivative is based on the experimental data to adjust the model to find the
evolution of the phenomena with nonlinear behavior and memory. Since the mathemati-
cal models involving a Caputo fractional order derivative have classical initial conditions,
the Caputo fractional derivative and its extensions are widely used to model systems in
diverse areas of sciences. Moreover, the Caputo fractional derivative of a constant is zero
unlike the other fractional derivatives. As a result, fractional order models in the Caputo
sense are developed to be able to study the complex behavior of real evolution processes
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with memory and hereditary properties much better. Besides modeling, developing reli-
able analytical methods to solve fractional differential equations is an emerging area since
finding exact solutions of many fractional differential equations is hard. Hence, consider-
able attention has been given to utilizing new powerful and efficient methods and software
programs to obtain analytical and accurate numerical solutions.

The fractional Schrödinger equation (SE) plays an important role in fractional quantum
mechanics [27–30]. Since the beginning the solution of a space-time SE is a significant
topic of physical, mathematical and engineering research, in this article the solution of
it is constructed based on the method so-called RPSM which is a well-known analytic
technique, with a new transformation [31]. Since the behavior of real world systems is
affected by their historical states, modeling them via fractional PDEs is recommended to
understand and analyze real world systems. Therefore fractional PDEs have drawn the
attention of many scientists in various research areas [32–35]. In many cases obtaining
the solution of a space-time SE analytically is not always possible, and that is why solving
them by numerical methods is very common [35–37].

The main purpose of the present study is to establish the space-time SE by using RPSM
and some new transformations. The main advantage of these new transformations is in
reducing the space-time SE to either time SE or space SE for which applying RPSM is
easier.

In the present article, a new transformation is constructed to implement RPSM to obtain
approximately the solution for the following space-time fractional SE general dimension-
less form:

iDα
t u + δDβ+1

x u + γ
∣
∣u(x, t)

∣
∣
2u(x, t) + φ(x)u(x, t) = 0, (1)

u(x, t0) = ϕ(x), (2)

u(x0, t) = μ1(t), (3)

ux(x0, t) = μ2(t), (4)

where x, δ,γ εR, t ≥ t0, 0 < α,β ≤ 1, i2 = –1, and | · | is the modulus. Here, u(x, t), φ(x) and
ϕ(x) represent the macroscopic wave function, the external trapping potential analytic
function and an analytic function, respectively. This mathematical and physical model
has various applications in science such as nonlinear optics, plasma physics, supercon-
ductivity, and quantum mechanics [27–30, 38–43].

2 Preliminaries
In this section properties of fractional calculus theory which allow us to construct the so-
lution of space-time fractional SE are presented [8]. We first give the main definitions and
various features of the fractional calculus theory in this section. The Riemann–Liouville
fractional integral operator of order α (α ≥ 0) is defined as

Jαf (x) =
1

Γ (α)

∫ x

0
(x – t)α–1f (t) dt, α > 0, x > 0, (5)

J0f (x) = f (x). (6)
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The Caputo fractional derivative of order α is defined as

Dαf (x) = Jm–αDmf (x) =
1

Γ (m – α)

∫ x

0
(x – t)m–α–1f (m)(t) dt,

m – 1 < α ≤ m, x > 0,
(7)

where Dm is the classical differential operator of order m.
Let n be the smallest integer greater than α, the time fractional derivative operator of

order α of u(x, t) is defined as [8]

Dα
t u(x, t) =

∂αu(x, t)
∂tα

=

⎧

⎨

⎩

1
Γ (n–α)

∫ t
0 (t – τ )n–α–1 ∂nu(τ ,t)

∂tn dτ , n – 1 < α ≤ n,
∂nu(x,t)

∂tn , α = nεN .
(8)

If n – 1 < α ≤ n, u(x, t) ∈ Cn
μ, nεN and μ ≥ –1 then Dα

t Jα
t u(x, t) = u(x, t) and Jα

t Dα
t u(x, t) =

u(x, t) –
∑n–1

j=0
∂ ju(x,s+)

∂tj
(t–s)j

j! , where t > s ≥ 0. The power series expansions about t = t0 and
x = x0,

∞
∑

k=0

n–1
∑

l=0

fkl(x)(t – t0)kα+l, 0 ≤ n – 1 < α ≤ n, t0 ≤ t < t0 + R, (9)

and

∞
∑

k=0

m–1
∑

l=0

gkl(t)(x – x0)kβ+l, 0 ≤ m – 1 < β ≤ m, x0 ≤ x < x0 + R, (10)

are called multiple fractional power series, where fkl(x) and gkl(t) are called the coefficients
of the series.

3 Solution for space-time fractional SE based on RPSM
In order to solve space-time fractional SE (1)–(4) by RPSM, the problem is first reduced
to either a space fractional SE or time fractional SE, which leads to the following cases.

Case 1: Simplification of the space-time fractional SE via the transformation u = Iβ–1
x v

To get rid of the space fractional derivative in Eq. (1) the transformation u = Iβ–1
x v is

taken into account. As a result the following problem is obtained:

iDα
t
(

Iβ–1
x v

)

+ δvxx + γ
∣
∣Iβ–1

x v
∣
∣
2Iβ–1

x v + φ(x)Iβ–1
x v = 0, (11)

v(x, t0) = I1–β
x ϕ(x), (12)

v(x0, t) = 0, (13)

vx(x0, t) = 0. (14)

Now, the RPSM is implemented to construct multiple fractional power series solution
subject to initial condition. To establish the approximate solution the real and imaginary
parts of the function v(x, t) and the initial condition I1–β

x ϕ(x) can be rewritten as follows:

v(x, t) = w(x, t) + iz(x, t), v(x, t0) = I1–β
x w0(x, t) + iI1–β

x z0(x, t), (15)
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i
[

Dα
t
(

Iβ–1
x w

)

+ δzxx + γ
((

Iβ–1
x w

)2 +
(

Iβ–1
x z

)2)Iβ–1
x z + φ(x)Iβ–1

x z
]

–
[

Dα
t
(

Iβ–1
x z

)

– δwxx – γ
((

Iβ–1
x w

)2 +
(

Iβ–1
x z

)2)Iβ–1
x w – φ(x)Iβ–1

x w
]

= 0, (16)

while the initial condition of Eq. (12) can be separated in the following form:

v(x, t0) = I1–β
x w0(x, t) + iI1–β

x z0(x, t) = f0(x) + ig0(x). (17)

According to the results of Eqs. (15), (16) and (17) the space-time fractional SE can be
converted into an equivalent system of PDEs as follows:

Dα
t
(

Iβ–1
x w

)

+ δzxx + γ
((

Iβ–1
x w

)2 +
(

Iβ–1
x z

)2)Iβ–1
x z + φ(x)Iβ–1

x z = 0,

Dα
t
(

Iβ–1
x z

)

– δwxx – γ
((

Iβ–1
x w

)2 +
(

Iβ–1
x z

)2)Iβ–1
x w – φ(x)Iβ–1

x w = 0,
(18)

based on the initial conditions

w(x, t0) = f0(x),

z(x, t0) = g0(x).
(19)

Let wk(x, t) and zk(x, t) be defined as follows:

wk(x, t) =
k

∑

j=0

fj(x)
(t – t0)jα

Γ (1 + jα)
,

zk(x, t) =
k

∑

j=0

gj(x)
(t – t0)jα

Γ (1 + jα)
,

(20)

which are called the kth truncated series of w(x, t) and z(x, t). It is clear that the conditions
w(x, t0) = f0(x) and z(x, t0) = g0(x) hold. To determine the coefficients fj(x) and gj(x), j =
1, 2, 3, . . . , k, in Eqs. (20), the residual functions are defined as follows:

Res1(x, t) = Dα
t
(

Iβ–1
x w

)

+ δzxx + γ
((

Iβ–1
x w

)2 +
(

Iβ–1
x z

)2)Iβ–1
x z + φ(x)Iβ–1

x z,

Res2(x, t) = Dα
t
(

Iβ–1
x z

)

– δwxx – γ
((

Iβ–1
x w

)2 +
(

Iβ–1
x z

)2)Iβ–1
x w – φ(x)Iβ–1

x w.
(21)

Hence the kth truncated residual functions are obtained in the following form:

Res1
k(x, t) = Dα

t
(

Iβ–1
x wk

)

+ δ(zk)xx + γ
((

Iβ–1
x wk

)2 +
(

Iβ–1
x zk

)2)Iβ–1
x zk + φ(x)Iβ–1

x zk ,

Res2
k(x, t) = Dα

t
(

Iβ–1
x zk

)

– δ(wk)xx – γ
((

Iβ–1
x wk

)2 +
(

Iβ–1
x zk

)2)Iβ–1
x wk – φ(x)Iβ–1

x wk .
(22)

Equating the equation including D(n–1)α
t of Res1

j (x, t) and Res2
j (x, t), j = 1, 2, 3, . . . , k, in

Eqs. (22) to zero the following algebraic system is obtained:

D(j–1)α
t Res1

j (x, t0) = 0, j = 1, 2, 3, . . . , k,

D(j–1)α
t Res1

j (x, t0) = 0, j = 1, 2, 3, . . . , k.
(23)
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In order to determine the coefficients of f1(x) and g1(x) in Eq. (20), the truncated series
w1(x, t) and z1(x, t) are plugged into the first truncated residual functions to obtain

Res1
1(x, t) = Dα

t
(

Iβ–1
x w1

)

+ δ(z1)xx + γ
((

Iβ–1
x w1

)2 +
(

Iβ–1
x z1

)2)Iβ–1
x z1 + φ(x)Iβ–1

x z1,

Res2
1(x, t) = Dα

t
(

Iβ–1
x z1

)

– δ(w1)xx – γ
((

Iβ–1
x w1

)2 +
(

Iβ–1
x z1

)2)Iβ–1
x w1 – φ(x)Iβ–1

x w1,
(24)

But since w1(x, t) = f0(x) + f1(x) (t–t0)α
Γ (1+α) and z1(x, t) = g0(x) + g1(x) (t–t0)α

Γ (1+α) , Eq. (24) leads to the
following results:

Res1
1(x, t) = Iβ–1

x f1(x) + δ

(

g ′′
0 (x) + g ′′

1 (x)
(t – t0)α

Γ (1 + α)

)

+ γ

((

Iβ–1
x

(

f0(x) + f1(x)
(t – t0)α

Γ (1 + α)

))2

+
(

Iβ–1
x

(

g0(x) + g1(x)
(t – t0)α

Γ (1 + α)

))2)

× Iβ–1
x

(

g0(x) + g1(x)
(t – t0)α

Γ (1 + α)

)

+ φ(x)Iβ–1
x

(

g0(x) + g1(x)
(t – t0)α

Γ (1 + α)

)

,
(25)

Res1
2(x, t) = Iβ–1

x g1(x) – δ

(

f ′′
0 (x) + f ′′

1 (x)
(t – t0)α

Γ (1 + α)

)

– γ

((

Iβ–1
x

(

g0(x) + g1(x)
(t – t0)α

Γ (1 + α)

))2

+
(

Iβ–1
x

(

f0(x) + f1(x)
(t – t0)α

Γ (1 + α)

))2)

× Iβ–1
x

(

f0(x) + f1(x)
(t – t0)α

Γ (1 + α)

)

– φ(x)Iβ–1
x

(

f0(x) + f1(x)
(t – t0)α

Γ (1 + α)

)

,

Substituting of t = t0 in Eq. (25) leads to the following:

Iβ–1
x f1(x) = –δg0′′ – γ

((

Iβ–1
x f0

)2 +
(

Iβ–1
x g0

)2)Iβ–1
x g0 – φ(x)Iβ–1

x g0,

Iβ–1
x g1(x) = δf0′′ + γ

((

Iβ–1
x f0

)2 +
(

Iβ–1
x g0

)2)Iβ–1
x f0 + φ(x)Iβ–1

x f0.
(26)

In a similar way, the unknown coefficients f2(x) and g2(x) are computed by substituting
w2(x, t) = f0(x) + f1(x) (t–t0)α

Γ (1+α) + f2(x) (t–t0)2α

Γ (1+2α) and z2(x, t) = g0(x) + g1(x) (t–t0)α
Γ (1+α) + g2(x) (t–t0)2α

Γ (1+2α) into
the second truncated residual functions Res1

2(x, t) and Res2
2(x, t) of Eq. (22) so we have

Res2
1(x, t) = Iβ–1

x

(

f1(x) + f2(x)
(t – t0)α

Γ (1 + α)

)

+ δ

(

g ′′
0 (x) + g ′′

1 (x)
(t – t0)α

Γ (1 + α)
+ g ′′

2 (x)
(t – t0)2α

Γ (1 + 2α)

)

+ γ

((

Iβ–1
x

(

f0(x) + f1(x)
(t – t0)α

Γ (1 + α)
+ f2(x)

(t – t0)2α

Γ (1 + 2α)

))2
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+
(

Iβ–1
x

(

g0(x) + g1(x)
(t – t0)α

Γ (1 + α)
+ g2(x)

(t – t0)2α

Γ (1 + 2α)

))2)

× Iβ–1
x

(

g0(x) + g1(x)
(t – t0)α

Γ (1 + α)
+ g2(x)

(t – t0)2α

Γ (1 + 2α)

)

+ φ(x)Iβ–1
x

(

g0(x) + g1(x)
(t – t0)α

Γ (1 + α)
+ g2(x)

(t – t0)2α

Γ (1 + 2α)

)

,
(27)

Res2
2(x, t) = Iβ–1

x

(

g1(x) + g2(x)
(t – t0)α

Γ (1 + α)

)

– δ

(

f ′′
0 (x) + f ′′

1 (x)
(t – t0)α

Γ (1 + α)
+ f ′′

2 (x)
(t – t0)2α

Γ (1 + 2α)

)

– γ

((

Iβ–1
x

(

g0(x) + g1(x)
(t – t0)α

Γ (1 + α)
+ g2(x)

(t – t0)2α

Γ (1 + 2α)

))2

+
(

Iβ–1
x

(

f0(x) + f1(x)
(t – t0)α

Γ (1 + α)
+ f2(x)

(t – t0)2α

Γ (1 + 2α)

))2)

× Iβ–1
x

(

f0(x) + f1(x)
(t – t0)α

Γ (1 + α)
+ f2(x)

(t – t0)2α

Γ (1 + 2α)

)

– φ(x)Iβ–1
x

(

f0(x) + f1(x)
(t – t0)α

Γ (1 + α)
+ f2(x)

(t – t0)2α

Γ (1 + 2α)

)

,

Now, applying the operator Dα
t and substituting of t = t0, solving the resultant system for

f2(x) and g2(x) one gets

Iβ–1
x f2(x) = –δg ′′

1 – 2γ Iβ–1
x f0Iβ–1

x g0Iβ–1
x f1 – γ

((

Iβ–1
x f0

)2)Iβ–1
x g1

– 3γ
((

Iβ–1
x g0

)2)Iβ–1
x g1 – φ(x)Iβ–1

x g1,
(28)

Iβ–1
x g2(x) = δf ′′

1 + 2γ Iβ–1
x g0Iβ–1

x f0Iβ–1
x g1 + γ

((

Iβ–1
x g0

)2)Iβ–1
x f1

+ 3γ
((

Iβ–1
x f0

)2)Iβ–1
x f1 + φ(x)Iβ–1

x f1.

As before, the same procedure for j = 3 is applied to construct the following Iβ–1
x f3, Iβ–1

x g3:

Iβ–1
x f3(x) = –δg ′′

2 – φ(x)Iβ–1
x g2

– γ
[

2Iβ–1
x f0Iβ–1

x g0Iβ–1
x f2 + γ

((

Iβ–1
x f0

)2)Iβ–1
x g2 + 3γ

((

Iβ–1
x g0

)2)Iβ–1
x g2

]

– γ
[

2Iβ–1
x f0Iβ–1

x g1Iβ–1
x f1 +

((

Iβ–1
x f1

)2)Iβ–1
x g0 + 3

((

Iβ–1
x g1

)2)Iβ–1
x g0

]

× Γ (1 + 2α)
Γ (1 + α)2 ,

(29)
Iβ–1

x g3(x) = δf ′′
2 + φ(x)Iβ–1

x f2

+ γ
[

2Iβ–1
x g0Iβ–1

x f0Iβ–1
x g2 + γ

((

Iβ–1
x g0

)2)Iβ–1
x f2 + 3γ

((

Iβ–1
x f0

)2)Iβ–1
x f2

]

+ γ
[

2Iβ–1
x g0Iβ–1

x g1Iβ–1
x f1 +

((

Iβ–1
x g1

)2)Iβ–1
x f0 + 3

((

Iβ–1
x g1

)2)Iβ–1
x g0

]

× Γ (1 + 2α)
Γ (1 + α)2 .
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The recurrence relation among the coefficients of the multiple fractional power series so-
lution for space-time fractional SE is constructed by repeating this procedure:

u(x, t) = ϕ(x) +
(

Iβ–1
x f1

(t – t0)α

Γ (1 + α)
+ Iβ–1

x f2
(t – t0)2α

Γ (1 + 2α)

+ Iβ–1
x f3

(t – t0)3α

Γ (1 + 3α)
+ · · ·

)

+ i
(

Iβ–1
x g1

(t – t0)α

Γ (1 + α)

+ Iβ–1
x g2

(t – t0)2α

Γ (1 + 2α)
+ Iβ–1

x g3
(t – t0)3α

Γ (1 + 3α)
+ · · ·

)

, (30)

which is equivalent to the jth truncated series of u(x, t); that is,

uk(x, t) =
k

∑

j=0

ϕj(x)
(t – t0)jα

Γ (1 + jα)
. (31)

Case 2: Simplification of the space-time fractional SE via the transformation u = Iα–1
t v

To get rid of the time fractional derivative in Eq. (1) the transformation u = Iα–1
t v is taken

into account. As a result the following problem is obtained:

ivt + δDβ+1
x

(

Iα–1
t v

)

+ γ
∣
∣Iα–1

t v
∣
∣
2Iα–1

t v + φ(x)Iα–1
t v = 0, (32)

v(x, t0) = 0, (33)

v(x0, t) = I1–α
t μ1(t), (34)

vx(x0, t) = I1–α
t μ2(t). (35)

Now, the RPSM is implemented to construct a multiple fractional power series solution
subject to boundary conditions. To establish the approximate solution the real and imag-
inary parts of the function v(x, t) and the initial condition I1–α

t ϕ(x) can be rewritten as
follows:

v(x, t) = w(x, t) + iz(x, t), v0(x, t) = v(x0, t) + (x – x0)vx(x0, t) = w0(x, t) + iz0(x, t), (36)

i
[

wt + δDβ+1
x

(

Iα–1
t z

)

+ γ
((

Iα–1
t w

)2 +
(

Iα–1
t z

)2)Iα–1
t z + φ(x)Iα–1

t z
]

–
[

zt – δDβ+1
x

(

Iα–1
t w

)

– γ
((

Iα–1
t w

)2 +
(

Iα–1
t z

)2)Iα–1
t w – φ(x)Iα–1

t w
]

= 0, (37)

while the initial condition of Eq. (36) can be separated in the following form:

v0(x, t) = I1–β
x w0(x, t) + iI1–β

x z0(x, t) = f0(t) + (x – x0)f1(t) + i
(

g0(t) + (x – x0)g1(t)
)

. (38)

According to the results of Eqs. (36), (37) and (38) the space-time fractional SE can be
converted into an equivalent system of PDEs as follows:

wt + δDβ+1
x

(

Iα–1
t z

)

+ γ
((

Iα–1
t w

)2 +
(

Iα–1
t z

)2)Iα–1
t z + φ(x)Iα–1

t z = 0,

zt – δDβ+1
x

(

Iα–1
t w

)

– γ
((

Iα–1
t w

)2 +
(

Iα–1
t z

)2)Iα–1
t w – φ(x)Iα–1

t w = 0,
(39)
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based on boundary conditions:

w0(x, t) = f0(t) + (x – x0)f1(t),

z0(x, t) = g0(t) + (x – x0)g1(t).
(40)

To determine the coefficients fj(t) and gj(t), j = 1, 2, 3, . . . , k, in Eqs. (39), the residual func-
tions are defined as follows:

Res1(x, t) = wt + δDβ+1
x

(

Iα–1
t

)

z + γ
((

Iα–1
t w

)2 +
(

Iα–1
t z

)2)Iα–1
t z + φ(x)Iα–1

t z,

Res2(x, t) = zt – δDβ+1
x

(

Iα–1
t

)

w – γ
((

Iα–1
t w

)2 +
(

Iα–1
t z

)2)Iα–1
t w – φ(x)Iα–1

t w,
(41)

and the kth truncated residual functions are

Res1
k = (wk)t + δDβ+1

x
(

Iα–1
t

)

zk + γ
((

Iα–1
t wk

)2 +
(

Iα–1
t zk

)2)Iα–1
t zk + φ(x)Iα–1

t zk ,

Res2
k = (zk)t – δDβ+1

x
(

Iα–1
t

)

wk – γ
((

Iα–1
t wk

)2 +
(

Iα–1
t zk

)2)Iα–1
t wk – φ(x)Iα–1

t wk .
(42)

In order to determine the coefficients of f1(x) and g1(x) in Eq. (20), the truncated series
w1(x, t) and z1(x, t) are plugged into the first truncated residual functions to obtain

Res1
1 = (w1)t + δDβ+1

x
(

Iα–1
t

)

z1 + γ
((

Iα–1
t w1

)2 +
(

Iα–1
t z1

)2)Iα–1
t z1 + φ(x)Iα–1

t z1,

Res2
1 = (z1)t – δDβ+1

x
(

Iα–1
t

)

w1 – γ
((

Iα–1
t w1

)2 +
(

Iα–1
t z1

)2)Iα–1
t w1 – φ(x)Iα–1

t w1.
(43)

But since w1(x, t) = f0(t) + f1(t)(x – x0) + f2(t) (x–x0)β+1

Γ (2+β) and z1(x, t) = g0(t) + g1(t)(x – x0) +

g2(t) (x–x0)β+1

Γ (2+β) , Eq. (43) leads to the following results:

Res1
1(x, t) = f ′

0(t) + f ′
1(t)(x – x0) + f ′

2(t)
(x – x0)β+1

Γ (2 + β)
+ δIα–1

t g2(t)

+ γ

((

Iα–1
t

(

f0(t) + f1(t)(x – x0) + f2(t)
(x – x0)β+1

Γ (2 + β)

))2

+
(

Iα–1
t

(

g0(t) + g1(t)(x – x0) + g2(t)
(x – x0)β+1

Γ (2 + β)

))2)

× Iα–1
t

(

g0(t) + g1(t)(x – x0) + g2(t)
(x – x0)β+1

Γ (2 + β)

)

+ φ(x)Iα–1
t

(

g0(t) + g1(t)(x – x0) + g2(t)
(x – x0)β+1

Γ (2 + β)

)

,
(44)

Res2
1(x, t) = g ′

0(t) + g ′
1(t)(x – x0) + g ′

2(t)
(x – x0)β+1

Γ (2 + β)
– δIα–1

t f2(t)

– γ

((

Iα–1
t

(

f0(t) + f1(t)(x – x0) + f2(t)
(x – x0)β+1

Γ (2 + β)

))2

+
(

Iα–1
t

(

g0(t) + g1(t)(x – x0) + g2(t)
(x – x0)β+1

Γ (2 + β)

))2)

× Iα–1
t

(

f0(t) + f1(t)(x – x0) + f2(t)
(x – x0)β+1

Γ (2 + β)

)
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– φ(x)Iα–1
t

(

f0(t) + f1(t)(x – x0) + f2(t)
(x – x0)β+1

Γ (2 + β)

)

.

Substituting of x = x0 in Eq. (44) leads to the following:

Iα–1
t g2(t) =

[

–f0′ – γ
((

Iα–1
t f0

)2 +
(

Iα–1
t g0

)2)Iα–1
t g0 – φ(x)Iα–1

t g0
]

/δ,

Iα–1
t f2(t) =

[

g0′′ – γ
((

Iα–1
t f0

)2 +
(

Iα–1
t g0

)2)Iα–1
t f0 – φ(x)Iα–1

t f0
]

/δ.
(45)

In a similar way, the unknown coefficients f3(t) and g3(t) are computed by substituting
w3(x, t) = f0(t) + f1(t)(x – x0) + f2(t) (x–x0)β+1

Γ (2+β) + f3(t) (x–x0)β+2

Γ (3+β) and z3(x, t) = g0(t) + g1(t)(x – x0) +

g2(t) (x–x0)β+1

Γ (2+β) + g3(t) (x–x0)β+2

Γ (3+β) into the second truncated residual functions, Res1
2(x, t) and

Res2
2(x, t), of Eq. (45) to have

Res2
1(x, t) = f ′

0(t) + f ′
1(t)(x – x0) + f ′

2(t)
(x – x0)β+1

Γ (2 + β)
+ f ′

3(t)
(x – x0)β+2

Γ (3 + β)

+ δIα–1
t

(

g2(t) + g3(t)(x – x0)
)

+ γ

((

Iα–1
t

(

f0(t) + f1(t)(x – x0) + f2(t)
(x – x0)β+1

Γ (2 + β)
+ f3(t)

(x – x0)β+2

Γ (3 + β)

))2

+
(

Iα–1
t

(

g0(t) + g1(t)(x – x0) + g2(t)
(x – x0)β+1

Γ (2 + β)
+ g3(t)

(x – x0)β+2

Γ (3 + β)

))2)

× Iα–1
t

(

g0(t) + g1(t)x + g2(t)
xβ+1

Γ (2 + β)
+ g3(t)

xβ+2

Γ (3 + β)

)

+ φ(x)Iα–1
t

(

g0(t) + g1(t)(x – x0) + g2(t)
(x – x0)β+1

Γ (2 + β)
+ g3(t)

(x – x0)β+2

Γ (3 + β)

)

,
(46)

Res2
2(x, t) = g ′

0(t) + g ′
1(t)(x – x0) + g ′

2(t)
(x – x0)β+1

Γ (2 + β)
+ g ′

3(t)
(x – x0)β+2

Γ (3 + β)

– δIα–1
t

(

f2(t) + f3(t)(x – x0)
)

– γ

((

Iα–1
t

(

f0(t) + f1(t)(x – x0) + f2(t)
(x – x0)β+1

Γ (2 + β)
+ f3(t)

(x – x0)β+2

Γ (3 + β)

))2

+
(

Iα–1
t

(

g0(t) + g1(t)(x – x0) + g2(t)
(x – x0)β+1

Γ (2 + β)
+ g3(t)

(x – x0)β+2

Γ (3 + β)

))2)

× Iα–1
t

(

f0(t) + f1(t)(x – x0) + f2(t)
(x – x0)β+1

Γ (2 + β)
+ f3(t)

(x – x0)β+2

Γ (3 + β)

)

– φ(x)Iα–1
t

(

f0(t) + f1(t)(x – x0) + f2(t)
(x – x0)β+1

Γ (2 + β)
+ f3(t)

(x – x0)β+2

Γ (3 + β)

)

.

Now, applying the operator Dx and substituting of x = x0 as follows:

Iα–1
t g3(t) =

[

–f ′
1 – γ

[

3
(

Iα–1
t g0

)2Iα–1
t g1 + 2(Iα–1

t f0Iα–1
t f1Iα–1

t g0 +
(

Iα–1
t f0

)2Iα–1
t g1

]

– φ(x)Iα–1
t g1

]

/δ,
(47)

Iα–1
t f3(t) =

[

–g ′
1 – γ

[

3
(

Iα–1
t f0

)2Iα–1
t f1 + 2(Iα–1

t f0Iα–1
t g1Iα–1

t g0 +
(

Iα–1
t g0

)2Iα–1
t f1

]

– φ(x)Iα–1
t g1

]

/δ.
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The recurrence relation among the coefficients of the multiple fractional power series so-
lution for space-time fractional SE is constructed by repeating this procedure,

u(x, t) = μ1(t) + μ2(t)(x – x0) +
(

Iα–1
t f2

(x – x0)β+1

Γ (2 + β)
+ Iα–1

t f3
(x – x0)β+2

Γ (3 + β)
+ · · ·

)

+ i
(

Iα–1
t g2

(x – x0)β+1

Γ (2 + β)
+ Iα–1

t g3
(x – x0)β+2

Γ (3 + β)
+ · · ·

)

, (48)

which is equivalent to the jth truncated series of u(x, t); that is,

uk(x, t) = μ1(t) + μ2(t)(x – x0) +
k

∑

j=3

μj(t)
(x – x0)β+j–2

Γ (j – 1 + β)
. (49)

4 Numerical examples
This section is devoted to the following illustrative examples.

Example 1 Let us consider the problem including a space-time fractional SE

iDα
t u – Dβ+1

x u = 0, (50)

u(x, 0) = e3ix, (51)

u(0, t) = e9it , (52)

ux(0, t) = 3ie9it , (53)

Case 1: Eqs. (50)–(53) transform as follows:

iDα
t
(

Iβ–1
x v

)

– vxx = 0, (54)

v(x, 0) = I1–β
x e3ix, (55)

v(0, t) = 0, (56)

vx(0, t) = 0. (57)

To establish the approximate solution, Eqs. (54)–(55) are converted into an equivalent
system of the space-time fractional SE via u(x, t) = w(x, t) + iz(x, t) as follows:

Dα
t
(

Iβ–1
x w

)

– zxx = 0,

Dα
t
(

Iβ–1
x z

)

– wxx = 0,
(58)

with the initial conditions

w(x, 0) = I1–β
x cos(3x) = 3β–1 cos

(

3x +
π

2
(β – 1)

)

,

z(x, 0) = I1–β
x sin(3x) = 3β–1 sin

(

3x +
π

2
(β – 1)

)

.
(59)

Here, δ = 1, γ = 1, φ(x) = 0, f0(x) = I1–β
x cos(3x), g0(x) = I1–β

x sin(3x). The unknown coef-
ficients Iβ–1

x fj, Iβ–1
x gj, j = 0, 1, 2, 3, are computed via the initial approximations w0(x, t) =
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I1–β
x cos(3x), z0(x, t) = I1–β

x sin(3x) and RPSM. We have

Iβ–1
x f0(x) = cos(3x),

Iβ–1
x f1(x) = Dβ+1

x sin(3x) =
9i
2

x1–β
[

E1,2–β(3ix) – E1,2–β(–3ix)
]

,

Iβ–1
x f2(x) = –D2β+2

x cos(3x) =
–81

2
x2–2β

[

E1,3–2β(3ix) + E1,3–2β(–3ix)
]

,

Iβ–1
x f3(x) = –D3β+3

x sin(3x) =
–729i

2
x3–3β

[

E1,4–3β(3ix) – E1,4–3β(–3ix)
]

,

(60)

Iβ–1
x g0(x) = sin(3x),

Iβ–1
x g1(x) = –Dβ+1

x cos(3x) =
9
2

x1–β
[

E1,2–β(3ix) + E1,2–β(–3ix)
]

,

Iβ–1
x g2(x) = –D2β+2

x sin(3x) =
81i
2

x2–2β
[

E1,3–2β(3ix) – E1,3–2β(–3ix)
]

,

Iβ–1
x g3(x) = D3β+3

x cos(3x) =
–729

2
x3–3β

[

E1,4–3β(3ix) + E1,4–3β(–3ix)
]

.

(61)

The third order RPS solutions can be constructed as follows:

w3(x, t) = cos(3x) + Dβ+1
x sin(3x)

tα

Γ (1 + α)
– D2β+2

x cos(3x)
t2α

Γ (1 + 2α)

– D3β+3
x sin(3x)

t3α

Γ (1 + 3α)
,

(62)
z3(x, t) = sin(3x) – Dβ+1

x cos(3x)
tα

Γ (1 + α)
– D2β+2

x sin(3x)
t2α

Γ (1 + 2α)

+ D3β+3
x cos(3x)

t3α

Γ (1 + 3α)
.

By making some algebraic properties of complex numbers, the general pattern coinciding
with the exact solution can be established as follows:

u(x, t) = e3ix + iDβ+1
x e3ix tα

Γ (1 + α)
+ i2D2β+2

x e3ix t2α

Γ (1 + 2α)

+ i3D3β+3
x e3ix t3α

Γ (1 + 3α)
+ · · · . (63)

Case 2: Eqs. (50)–(53) transform as follows:

ivt – Dβ+1
x Iα–1

t v = 0, (64)

v(x, 0) = 0, (65)

v(0, t) = I1–α
t e9it , (66)

vx(0, t) = 3iI1–α
t e9it . (67)
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To construct the approximate solution, from Eq. (36), Eqs. (64)–(67) can be converted into
an equivalent system of PDEs as follows:

wt – Dβ+1
x Iα–1

t z = 0,

zt – Dβ+1
x Iα–1

t w = 0,
(68)

subject to the boundary conditions

w0(x, t) = I1–α
t cos(9t) – 3xI1–α

t sin(9t),

z0(x, t) = I1–α
t sin(9t) + 3xI1–α

t cos(9t).
(69)

Here, δ = 1, γ = 1, φ(x) = 0, f0(x) = I1–α
t cos(9t), f1(x) = –3I1–α

t sin(9t) and g0(x) = I1–α
t sin(9t),

g1(x) = 3I1–α
t cos(9t). Anyhow, using RPS method, starting with the initial guesses approx-

imations w0(x, t) = I1–α
t cos(9t) – 3xI1–α

t sin(9t) and z0(x, t) = I1–α
t sin(9t) + 3xI1–α

t cos(9t)
with the kth truncated residual functions of Eq. (58) is used when j = 3 throughout the
computations; the following forms for the unknown coefficients Iα–1

t fj, Iα–1
t gj, j = 0, 1, 2, 3,

are obtained:

Iα–1
t f0(t) = cos(9t),

Iα–1
t f1(t) = –3 sin(9t),

Iα–1
t f2(t) = –Dα

t sin(9t) =
–9
2

t1–α
[

E1,2–α(9it) + E1,2–α(–9it)
]

,

Iα–1
t f3(t) = –3Dα

t cos(9t) =
–27i

2
t1–α

[

E1,2–α(9it) – E1,2–α(–9it)
]

,

(70)

Iα–1
t g0(t) = sin(9t),

Iα–1
t g1(t) = 3 cos(9t),

Iα–1
t g2(t) = Dα

t cos(9t) =
9i
2

t1–α
[

E1,2–α(9it) – E1,2–α(–9it)
]

,

Iα–1
t g3(t) = –3Dα

t sin(9t) =
–27

2
t1–α

[

E1,2–α(9it) + E1,2–α(–9it)
]

.

(71)

The third order RPS solutions can be constructed as follows:

w3(x, t) = cos(9t) – 3x sin(9t) – Dα
t sin(9t)

xβ+1

Γ (2 + β)

– 3Dα
t cos(9t)

xβ+2

Γ (3 + β)
,

(72)
z3(x, t) = sin(9t) + 3x cos(9t) + Dα

t cos(9t)
xβ+1

Γ (2 + β)

– 3Dα
t sin(9t)

xβ+2

Γ (3 + β)
.
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Figure 1 The approximate solution of Example 1 for Case 1 and α = β = 1

Figure 2 The approximate solution of Example 1 for Case 1 and α = β = 0.75

By making some algebraic properties of complex numbers, the general pattern form coin-
ciding with the exact solution can be established as follows:

u(x, t) = e9it + 3xe9it + iDα
t e9it xβ+1

Γ (2 + β)
+ 3i2Dα

t e9it xβ+2

Γ (3 + β)
+ · · · (73)

It is clear from Figs. 1–6, the approximate solutions of Example 1 for case 1 and case 2 for
different orders of fractional derivatives give better results for small values x and t.

Example 2 Let us consider the problem including space-time fractional SE

iDα
t u + Dβ+1

x u – 2|u|2u = 0, (74)

u(x, 0) = eix, (75)

u(0, t) = e–3it , (76)

ux(0, t) = ie–3it . (77)
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Figure 3 The approximate solution of Example 1 for Case 1 and α = β = 0.5

Figure 4 The approximate solution of Example 1 for Case 2 and α = β = 1

Figure 5 The approximate solution of Example 1 for Case 2 and α = β = 0.75

Case 1: Eqs. (74)–(77) transform as follows:

iDα
t
(

Iβ–1
x v

)

+ vxx – 2
∣
∣Iβ–1

x v
∣
∣
2Iβ–1

x v = 0, (78)
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Figure 6 The approximate solution of Example 1 for Case 2 and α = β = 0.5

v(x, 0) = I1–β
x eix, (79)

v(0, t) = 0, (80)

vx(0, t) = 0. (81)

To establish the approximate solution, Eqs. (78)–(79) are converted into an equivalent
system of space-time fractional SE via u(x, t) = w(x, t) + iz(x, t) as follows:

Dα
t
(

Iβ–1
x w

)

+ zxx – 2
[(

Iβ–1
x w

)2 +
(

Iβ–1
x z

)2]Iβ–1
x z = 0,

Dα
t
(

Iβ–1
x z

)

– wxx + 2
[(

Iβ–1
x w

)2 +
(

Iβ–1
x z

)2]Iβ–1
x w = 0,

(82)

with the initial conditions

w(x, 0) = I1–β
x cos(x) = cos

(

x +
π

2
(β – 1)

)

,

z(x, 0) = I1–β
x sin(x) = sin

(

x +
π

2
(β – 1)

)

.
(83)

Here δ = 1, γ = 2, φ(x) = 0, f0(x) = I1–β
x cos(x), g0(x) = I1–β

x sin(x). The unknown coefficients
Iβ–1

x fj, Iβ–1
x gj, j = 0, 1, 2, are computed via the initial approximations w0(x, t) = I1–β

x cos(x)
and z0(x, t) = I1–β

x sin(x) and RPSM. We have

Iβ–1
x f0(x) = cos(x),

Iβ–1
x f1(x) = –Dβ+1

x sin(x) + 2 sin(x),

Iβ–1
x f2(x) = –

(

D2β+2
x cos(x) – 2Dβ+1

x cos(x)
)

+ 4 sin(x) cos(x)
(

–Dβ+1
x sin(x) + 2 sin(x)

)

+
(

2 cos2(x) + 6 sin2(x)
)(

Dβ+1
x cos(x) – 2 cos(x)

)

,

(84)
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Iβ–1
x f0(x) = sin(x),

Iβ–1
x f1(x) = Dβ+1

x cos(x) – 2 cos(x),

Iβ–1
x f2(x) = –D2β+2

x sin(x) + 2Dβ+1
x sin(x) – 4 sin(x) cos(x)

(

Dβ+1
x cos(x) – 2 cos(x)

)

–
(

6 cos2(x) + 2 sin2(x)
)(

–Dβ+1
x sin(x) + 2 sin(x)

)

.

(85)

By making some algebraic properties of complex numbers, the general pattern coinciding
with the exact solution can be established as follows:

u(x, t) = eix + i
(

Dβ+1
x eix – 2eix) tα

Γ (1 + α)

+ i2[(D2β+2
x eix – 2Dβ+1

x eix)] t2α

Γ (1 + 2α)

+
[

4 sin(x) cos(x)
(

–Dβ+1
x sin(x) + 2 sin(x)

)

– 4i sin(x) cos(x)
(

Dβ+1
x cos(x) – 2 cos(x)

)

+
(

2 cos2(x) + 6 sin2(x)
)(

Dβ+1
x cos(x) – 2 cos(x)

)

– i
(

6 cos2(x) + 2 sin2(x)
)

)
(

–Dβ+1
x sin(x) + 2 sin(x)

)] t2α

Γ (1 + 2α)
+ · · · . (86)

Case 2: Eqs. (74)–(77) transform as follows:

ivt + Dβ+1
x Iα–1

t v – 2
∣
∣Iα–1

t v
∣
∣
2Iα–1

t v = 0, (87)

v(x, 0) = 0, (88)

v(0, t) = I1–α
t e–3it , (89)

vx(0, t) = iI1–α
t e–3it . (90)

To construct the approximate solution, then from Eq. (36), Eqs. (64)–(67) can be converted
into an equivalent system of PDEs as follows:

wt + Dβ+1
x Iα–1

t z – 2
[(

Iα–1
t w

)2 +
(

Iα–1
t z

)2]Iα–1
t z = 0,

zt – Dβ+1
x Iα–1

t w + 2
[(

Iα–1
t w

)2 +
(

Iα–1
t z

)2]Iα–1
t w = 0,

(91)

with the boundary conditions

w0(x, t) = I1–α
t cos(3t) + xI1–α

t sin(3t),

z0(x, t) = –I1–α
t sin(3t) + xI1–α

t cos(3t).
(92)

Here δ = 1, γ = 1, φ(x) = 0, f0(x) = I1–α
t cos(3t), f1(x) = I1–α

t sin(3t) and g0(x) = –I1–α
t sin(3t),

g1(x) = I1–α
t cos(3t). Anyhow, using the RPS method, starting with the initial guessed ap-

proximations w0(x, t) = I1–α
t cos(3t) + xI1–α

t sin(3t) and z0(x, t) = –I1–α
t sin(3t) + xI1–α

t cos(3t)
with the kth truncated residual functions of Eq. (82) used when j = 3 throughout the com-
putations, the following forms for the unknown coefficients Iα–1

t fj, Iα–1
t gj, j = 0, 1, 2, 3, are
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obtained:

Iα–1
t f0(t) = cos(3t),

Iα–1
t f1(t) = sin(3t),

Iα–1
t f2(t) = –Dα

t sin(3t) + 2 cos(3t)

=
–3
2

t1–α
[

E1,2–α(3it) + E1,2–α(–3it)
]

+ 2 cos(3t),

Iα–1
t f3(t) = Dα

t cos(3t) + 2
(

sin3(3t) + sin(3t) cos2(3t)
)

=
3i
2

t1–α
[

E1,2–α(3it) – E1,2–α(–3it)
]

+ 2
(

sin3(3t) + sin(3t) cos2(3t)
)

,

(93)

Iα–1
t g0(t) = – sin(3t),

Iα–1
t g1(t) = cos(3t),

Iα–1
t g2(t) = –Dα

t cos(3t) – 2 sin(3t),

=
3i
2

t1–α
[

E1,2–α(3it) – E1,2–α(–3it)
]

– 2 sin(3t),

Iα–1
t g3(t) = –Dα

t sin(3t) – 2
(

cos3(3t) – cos(3t) sin2(3t)
)

,

=
–3
2

t1–α
[

E1,2–α(3it) + E1,2–α(–3it)
]

– 2
(

cos3(3t) – cos(3t) sin2(3t)
)

.

(94)

By using some algebraic properties of complex numbers, the general pattern coinciding
with the exact solution can be established as follows:

u(x, t) = e–3it + ie–3itx + 3i2e–3it xβ+1

Γ (2 + β)
+ 9i3e–3it xβ+2

Γ (3 + β)
+ · · · . (95)

It is clear from Figs. 7–9, the approximate solutions of Example 2 for case 1 for different
orders of fractional derivatives give better results for small values x and t. However, from
Figs. 10–12 the approximate solutions of Example 2 for case 2 give a better result for 0 ≤ x,
t ≤ 1.

Figure 7 The approximate solution of Example 2 for Case 1 and α = β = 1
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Figure 8 The approximate solution of Example 2 for Case 1 and α = β = 0.75

Figure 9 The approximate solution of Example 2 for Case 1 and α = β = 0.5

Figure 10 The approximate solution of Example 2 for Case 2 and α = β = 1
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Figure 11 The approximate solution of Example 2 for Case 2 and α = β = 0.75

Figure 12 The approximate solution of Example 2 for Case 2 and α = β = 0.5
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