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Abstract
We consider the generalized KdV–Burgers KdVB(p,m,q) equation. We have designed
exact and consistent nonstandard finite difference schemes (NSFD) for the numerical
solution of the KdVB(2, 1, 2) equation. In particular, we have proposed three explicit
and three fully implicit exact finite difference schemes. The proposed NSFD scheme is
linearly implicit. The chosen numerical experiment consists of tanh function. The
NSFD scheme is compared with a standard finite difference(SFD) scheme. Numerical
results show that the NSFD scheme is accurate and efficient in the numerical
simulation of the kink-wave solution of the KdVB(2, 1, 2) equation. We see that while
the SFD scheme yields numerical instability for large step sizes, the NSFD scheme
provides reliable results for long time integration. Local truncation error reveals that
the NSFD scheme is consistent with the KdVB(2, 1, 2) equation.

Keywords: Generalized KdV–Burgers equation; Exact finite difference scheme;
Nonstandard finite difference scheme

1 Introduction
Nonlinear ordinary differential equations (ODEs) and nonlinear partial differential equa-
tions (PDEs) play a very important role in describing some complex physical phenom-
ena arising in various fields of science and engineering such as condensed matter, plasma
physics, nonlinear quantum, nonlinear optics, biophysics, fluid mechanics, theory of tur-
bulence and phase transitions. Many scientists pay attention to the research into the exact
solution of these PDEs but, in general, it is difficult to obtain the exact solution of some
partial differential equations. Nonetheless, with the development of the soliton theory,
many powerful methods, such as inverse scattering theory [1], Hirota bilinear form [2, 3],
Bäclund transformation [4], Darboux trasformation [5], homotopy perturbation method
[6], a generalized Jacobi elliptic function expansion method [7], Lie symmetry [8–10] and
so on, have been presented to obtain the exact solution of nonlinear PDEs. When these
methods fail or are difficult to apply, numerical studies are essential to understand the be-
haviour of the solution of the nonlinear PDE. Numerical solutions of PDEs began in the
early 1950s by finite difference approximation. They were followed by the finite element
solution in 1960s and spectral methods in 1970s. Almost all of these standard schemes
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require a restriction on the step size for convergence to the exact solution. Mickens [11]
gave a novel approach for developing new finite difference schemes for ODEs. Accord-
ing to Mickens’s approach, denominator functions for the discrete derivatives, in gen-
eral, should be expressed in terms of more complicated functions of the step sizes than
those conventionally used. In addition to normalising the denominator function, nonlin-
ear terms must, in general, be modelled non-locally. The orders of the discrete derivatives
must be exactly equal to the orders of the corresponding derivatives of the differential
equations. If the orders of the discrete derivatives are larger than those occurring in the
differential equations, then numerical instabilities, in general, occur. This approach may
avoid the numerical instabilities by incorporating dynamics of the system into the scheme.

Recently, many scientist have paid attention to nonstandard finite difference (NSFD)
solution of PDEs. Appadu [12] studied numerical solution of the 1D advection-diffusion
equation using standard and NSFD schemes. Also, in [13] the author constructed three
numerical methods to solve a 1-D KdVB equation. Appadu et al. [14] used three numerical
methods to solve two test problems. Aydin et al. [15] proposed a linearly implicit nonstan-
dard finite difference method for the numerical solution of modified Korteweg–de Vries
equation. Koroglu et al. [16] studied the numerical solution of the modified Korteweg–
de Vries (MKdV) equation by using an NSFD scheme with theta method which includes
the implicit Euler and a Crank–Nicolson type discretization. Zhang et al. [17] developed
an explicit NSFD scheme for the numerical solution of a coupled Burgers equation. In
[18] Cui et al. proposed an NSFD scheme for an SIR epidemic model of childhood dis-
ease with constant strategy. In [19] Khalsaraei et al. introduced positivity preserving ex-
plicit finite difference schemes based on the nonstandard discretization method to ap-
proximate solution of the cross-diffusion system from bioscience. In [20] Chapwanya et
al. designed several dynamically consistent NSFD schemes for some reaction-diffusion
equations, advection-reaction equations and advection-reaction-diffusion equations by
using the exact scheme of the Michaelis–Menten ordinary differential equation. Agbavon
et al. [21] proposed four schemes, namely FTCS-ε, NSFD-ε, FTCS with artificial viscos-
ity and NSFD with artificial viscosity. In [22] the authors presented numerical solutions
of the FitzHugh–Naguma system of equations. The authors constructed four numerical
methods to solve the Burgers–Huxley equation in [23].

The exact finite difference scheme is also an important issue for the construction of new
numerical algorithms in ODE and PDE, and it plays a key role in determining the appro-
priate denominator function. It is a special NSFD scheme which is available if the solu-
tion of the ODE exists [24]. It is proposed to annihilate the weakness of a finite difference
scheme such as numerical instability. Numerical instability is removed when a convenient
denominator function is used instead of the standard step length �t. In [25, 26] Rogers et
al. constructed exact finite difference schemes for one- and two-dimensional linear sys-
tems with constant coefficients. Exact finite difference schemes for first order differential
equations having three distinct fixed-points are studied in [27]. In [28] Jiang et al. con-
structed exact finite difference schemes for linear stochastic differential equations with
constant coefficients.

The generalized KdV–Burger equation [29] is dispersive dissipative nonlinear PDE

ut + a
(
up)

x – b
(
um)

xxx + c
(
uq)

xx = 0, (1)
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where p, m, n are nonzero integers and a, b, c are nonzero real numbers. Equations of
this type with values of p, m, q will be denoted by KdVB(p, m, q). Equation (1) is a model
equation incorporating the effects of dispersion uxxx, dissipation uxx and nonlinearities
(up), (um), (uq). The KdVB(p, m, q) equation (1) is a generalized equation in the following
sense:

1 If p = 2, b = 0 and q = 1, equation (1) leads to the well-known Burgers equation
[30–32]

ut + 2auux + cuxx = 0 (2)

with the kink wave solution

u(x, t) =
k
a

+
ck
a

tanh(
(
k(x – 2kt)

)
. (3)

2 If p = 2, c = 0 and m = 1, equation (1) leads to the well-known Korteweg–de Vries
(KdV) equation [33]

ut + 2auux + buxxx = 0 (4)

with the soliton solution

u(x, t) =
6ck2

a
sec h2(k

(
x – 4ck2t

))
. (5)

3 If p = 2, m = 1 and q = 1, equation (1) leads to the KdV–Burger equation [34, 35]

ut + 2auux + buxxx + cuxx = 0 (6)

with the exact solution

u(x, t) = –
3c2

25ab
(
– sec h2(k(x – x0) – αt

)
+ 2 tanh

(
k(x – x0) – αt

)
+ 2

)
. (7)

4 If b = 0 and p = q = n, then equation (1) leads to the generalized Burger B(n, n)
equation [29]

ut + a
(
un)

x + c
(
uq)

xx = 0. (8)

5 If c = 0 and p = m = n, then equation (1) leads to the generalized KdV K(n, n) equation
[36]

ut + a
(
un)

x + b
(
un)

xxx = 0, (9)

which has compact and noncompact structures [37].
In this study, we consider the KdVB(2, 1, 2) equation

ut +
(
u2)

x – 0.1uxxx +
(
u2)

xx = 0 (10)
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and construct some exact finite difference and NSFD schemes which have never been pro-
posed and studied in the literature before. The rest of the paper is organised as follows. In
Sect. 2 three explicit and three fully implicit exact finite difference schemes are presented.
In Sect. 3 a consistent linearly implicit NSFD scheme is constructed by extending the rules
of NSFD schemes given in [38]. Local truncation error is also studied. We investigate the
linear stability analysis for the NSFD and SFD schemes by using von Neumann stability
analysis in Sect. 4. To illustrate the efficiency of the NSFD scheme, some numerical results
are given in Sect. 5. Numerical solutions obtained by the NSFD scheme are compared with
the standard finite difference (SFD) scheme. Finally, Sect. 6 gives a summary of the results
obtained in this paper.

2 Exact finite difference schemes for KdVB(2, 1, 2) equation
An exact finite difference scheme is a finite difference model for which the solution to
the difference equation has the same general solution as the associated differential equa-
tion [38]. Recently, there has been an increasing interest in exact finite difference mod-
els for particular ODEs and PDEs, because they let a better construction of finite differ-
ence schemes (see [39, 40] and the references therein). These finite difference models do
not exhibit numerical instabilities. However, not every ODE and PDE has an exact finite
difference model. In this section we construct six exact finite difference schemes for the
KdVB(2, 1, 2) equation (10).

We start with the kink-wave solution

u(x, t) = –
1

20

(
1 + tanh

[
t

20
+

x
2

])

= –
0.1

1 + e–(x+0.1t) . (11)

If �t = 10h, then it can be shown that u(x + h, t) = u(x, t + �t) and u(x – h, t) = u(x, t – �t).
The relations

1
u(x, t)

= –10
(
1 + e–(x+0.1t)),

1
u(x + h, t)

= –10
(
1 + e–(x+h+0.1t)),

1
u(x – h, t)

= –10
(
1 + e–(x–h+0.1t))

(12)

can be easily obtained from (11). Using these relations, we can write

1
u(x, t)

–
1

u(x + h, t)
=

(
10 +

1
u(x, t)

)
(
1 – e–h),

1
u(x, t)

–
1

u(x – h, t)
=

(
10 +

1
u(x, t)

)
(
1 – eh).

(13)

Let the step functions be Ψ1 = eh – 1, Ψ2 = 1 – e–h, Φ1 = 1–e–0.1�t

0.1 and Φ2 = e0.1�t–1
0.1 . Then

Φ1 = 10Ψ2 and Φ2 = 10Ψ1. Using relations (13), we can obtain the following forward and
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backward difference quotients:

∂xu =
u(x + h, t) – u(x, t)

Ψ2
= u(x + h, t)

(
1 + 10u(x, t)

)
,

∂xu =
u(x, t) – u(x – h, t)

Ψ1
= u(x – h, t)

(
1 + 10u(x, t)

)
(14)

for first order spatial derivatives.
For the second and third derivatives, we have some possibilities. For the second deriva-

tive uxx, we consider the four possibilities uxx = ∂x∂xu, uxx = ∂x∂xu, uxx = ∂x∂xu or uxx =
∂x∂xu, and for the third derivative uxxx, we consider the six possibilities uxxx = ∂x∂x∂xu,
uxxx = ∂x∂x∂xu, uxxx = ∂x∂x∂xu, uxxx = ∂x∂x∂xu, uxxx = ∂x∂x∂xu or uxxx = ∂x∂x∂xu.

2.1 Implicit exact finite differences for KdVB(2, 1, 2) equation
In this section three implicit exact finite difference model are constructed for the
KdVB(2, 1, 2) equation (10). If we select uxx = ∂x∂xu, with the help of (14), we can get

∂x∂xu =
u(x + h, t) – u(x, t)

Ψ1
+ 10u(x, t)

u(x + h, t) – u(x – h, t)
Ψ1

. (15)

If we select uxxx = ∂x∂x∂xu, using equations (14) and (15), we can get

∂x∂x∂xu = 10
u(x, t + �t) – u(x, t)

Φ1

+ 10u(x + h, t)
u(x + 2h, t) – u(x + h, t)

Ψ2

+ 10u(x + h, t)
u(x + h, t) – u(x, t)

Ψ2

+ 10u(x, t)
u(x + 2h, t) – 2u(x + h, t) + u(x, t)

Ψ1Ψ2

+ 10u(x, t)
u(x + h, t) – 2u(x, t) + u(x – h, t)

Ψ1Ψ2

+ 20
u(x + h, t) – u(x, t)

Ψ2

u(x + h, t) – u(x – h, t)
2Ψ1

. (16)

Now we consider solution (11) at the discrete point (xj, tn):

Un
j = u(xj, tn) = –

0.1
1 + e–(xj+0.1tn) . (17)

Then we can write an implicit exact finite difference scheme (IMPEXFDI) by means of
(16):

Un+1
j+2 – 3Un+1

j+1 + 3Un+1
j – Un+1

j–1

Ψ1Ψ
2

2

= 10
Un+1

j – Un
j

Φ1
+ 10Un+1

j+1

(Un+1
j+2 – Un+1

j+1

Ψ2

)

+ 10Un+1
j+1

(Un+1
j+1 – Un+1

j

Ψ2

)
+ 10Un+1

j

(Un+1
j+2 – 2Un+1

j+1 + Un+1
j

Ψ1Ψ2

)
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+ 10Un+1
j

(Un+1
j+1 – 2Un+1

j + Un+1
j–1

Ψ1Ψ2

)

+ 20
(Un+1

j+1 – Un+1
j

Ψ2

)(Un+1
j+1 – Un+1

j–1

2Ψ1

)
. (18)

Now we select uxx = ∂x∂xu. Using the first order derivative approximation (14), we get

∂x∂xu =
u(x, t) – u(x – h, t)

Ψ2
+ 10u(x, t)

u(x + h, t) – u(x – h, t)
Ψ2

. (19)

We select uxxx = ∂x∂x∂xu, using (19), we have

∂x∂x∂xu = 10
u(x, t + �t) – u(x, t)

Φ1
+ 20u(x, t)

u(x + h, t) – u(x – h, t)
2Ψ2

+ 20
u(x + h, t) – u(x, t)

Ψ2

u(x + h, t) – u(x – h, t)
2Ψ2

+ 10u(x, t)
u(x + 2h, t) – 2u(x + h, t) + u(x, t)

Ψ 2
2

+ 10u(x, t)
u(x + h, t) – 2u(x, t) + u(x – h, t)

Ψ 2
2

. (20)

Using (17), we can write the second implicit exact finite difference scheme (IMPEXFDII)
by means of (20)

Un+1
j+2 – 3Un+1

j+1 + 3Un+1
j – Un+1

j–1

Ψ1Ψ
2

2

= 10
Un+1

j – Un
j

Φ1
+ 20Un+1

j
Un+1

j+1 – Un+1
j–1

2Ψ2

+ 20
Un+1

j+1 – Un+1
j

Ψ2

Un+1
j+1 – Un+1

j–1

2Ψ2

+ 10Un+1
j

Un+1
j+2 – 2Un+1

j+1 + Un+1
j

Ψ 2
2

+ 10Un+1
j

Un+1
j+1 – 2Un+1

j + Un+1
j–1

Ψ 2
2

. (21)

If we select uxx = ∂x∂xu. Using the first order derivative approximation (14), we can ob-
tain

∂x∂xu =
u(x + 2h, t) – u(x + h, t)

Ψ2
+ 10u(x + h, t)

u(x + 2h, t) – u(x, t)
Ψ2

. (22)

Now, we select uxxx = ∂x∂x∂xu, using (22) we have

∂x∂x∂xu = 10
u(x, t + �t) – u(x, t)

Φ1
+ 10u(x + h, t)

u(x + 2h, t) – u(x + h, t)
Ψ2

+ 10u(x + h, t)
u(x + h, t) – u(x, t)

Ψ2
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+ 20
u(x + h, t) – u(x, t)

Ψ1

u(x + 2h, t) – u(x, t)
2Ψ2

+ 10u(x + h, t)
u(x + 2h, t) – 2u(x + h, t) + u(x, t)

Ψ1Ψ2

+ 10u(x + h, t)
u(x + h, t) – 2u(x, t) + u(x – h, t)

Ψ1Ψ2
. (23)

Using (17), we can write the third implicit exact finite difference scheme (IMPEXFDIII)
by means of (23):

Un+1
j+2 – 3Un+1

j+1 + 3Un+1
j – Un+1

j–1

Ψ1Ψ
2

2

= 10
Un+1

j – Un
j

Φ1
+ 10Un+1

j+1
Un+1

j+2 – Un+1
j+1

Ψ2

+ 10Un+1
j+1

Un+1
j+1 – Un+1

j

Ψ2

+ 20
Un+1

j+1 – Un+1
j

Ψ1

Un+1
j+2 – Un+1

j

2Ψ2

+ 10Un+1
j+1

Un+1
j+2 – 2Un+1

j+1 + Un+1
j

Ψ1Ψ2

+ 10Un+1
j+1

Un+1
j+1 – 2Un+1

j + Un+1
j–1

Ψ1Ψ2
. (24)

2.2 Explicit exact finite differences for KdVB(2, 1, 2) equation
Now, we will derive three explicit exact finite difference schemes for the KdVB(2, 1, 2)
equation (10). First, we select uxx = ∂x∂xu. Using the first order derivative approximation
(14), we can obtain

∂x∂xu =
u(x – h, t) – u(x – 2h, t)

Ψ1
+ 10u(x – h, t)

u(x, t) – u(x – 2h, t)
Ψ1

. (25)

Now, we select uxxx = ∂x∂x∂xu, using (25), we have

∂x∂x∂xu = 10
u(x, t) – u(x, t – �t)

Φ2
+ 10u(x – h, t)

u(x, t) – u(x – h, t)
Ψ1

+ 10u(x – h, t)
u(x – h, t) – u(x – 2h, t)

Ψ1

+ 20
u(x, t) – u(x – h, t)

Ψ2

u(x, t) – u(x – 2h, t)
2Ψ1

+ 10u(x – h, t)
u(x + h, t) – 2u(x, t) + u(x – h, t)

Ψ1Ψ2

+ 10u(x – h, t)
u(x, t) – 2u(x – h, t) + u(x – 2h, t)

Ψ1Ψ2
. (26)
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Using (17), we can write the first explicit exact finite difference scheme (EXPEXFDI) by
means of (26):

Un
j+1 – 3Un

j + 3Un
j–1 – Un

j–2

Ψ 2
1 Ψ2

= 10
Un

j – Un–1
j

Φ2
+ 10Un

j–1
Un

j – Un
j–1

Ψ1
+ 10Un

j–1
Un

j–1 – Un
j–2

Ψ1

+ 20
Un

j – Un
j–1

Ψ2

Un
j – Un

j–2

2Ψ1
+ 10Un

j–1
Un

j+1 – 2Un
j + Un

j–1

Ψ1Ψ2

+ 10Un
j–1

Un
j – 2Un

j–1 + Un
j–2

Ψ1Ψ2
. (27)

We select uxx = ∂x∂xu. Using the first order derivative approximation (14), we can obtain

∂x∂xu =
u(x, t) – u(x – h, t)

Ψ2
+ 10u(x, t)

u(x + h, t) – u(x – h, t)
Ψ2

. (28)

Now, we select uxxx = ∂x∂x∂xu, using (28), we have

∂x∂x∂xu = 10
u(x, t) – u(x, t – �t)

Φ2
+ 10u(x – h, t)

u(x, t) – u(x – h, t)
Ψ1

+ 10u(x – h, t)
u(x – h, t) – u(x – 2h, t)

Ψ1

+ 20
u(x, t) – u(x – h, t)

Ψ1

u(x + h, t) – u(x – h, t)
2Ψ2

+ 10u(x, t)
u(x + h, t) – 2u(x, t) + u(x – h, t)

Ψ1Ψ2

+ 10u(x, t)
u(x, t) – 2u(x – h, t) + u(x – 2h, t)

Ψ1Ψ2
. (29)

Using (17), we can write the second explicit exact finite difference scheme (EXPEXFDII)
by means of (29):

Un
j+1 – 3Un

j + 3Un
j–1 – Un

j–2

Ψ 2
1 Ψ2

= 10
Un

j – Un–1
j

Φ2
+ 10Un

j–1
Un

j – Un
j–1

Ψ1
+ 10Un

j–1
Un

j–1 – Un
j–2

Ψ1

+ 20
Un

j – Un
j–1

Ψ1

Un
j+1 – Un

j–1

2Ψ2
+ 10Un

j
Un

j+1 – 2Un
j + Un

j–1

Ψ1Ψ2

+ 10Un
j

Un
j – 2Un

j–1 + Un
j–2

Ψ1Ψ2
. (30)

Finally, select uxx = ∂x∂xu. Using the first order derivative approximation (14), we can
obtain

∂x∂xu =
u(x + h, t) – u(x, t)

Ψ1
+ 10u(x, t)

u(x + h, t) – u(x – h, t)
Ψ1

. (31)
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Now, we select uxxx = ∂x∂x∂xu, using (31), we have

∂x∂x∂xu = 10
u(x, t) – u(x, t – �t)

Φ2
+ 10u(x, t)

u(x + h, t) – u(x, t)
Ψ1

+ 10u(x, t)
u(x, t) – u(x – h, t)

Ψ1

+ 20
u(x, t) – u(x – h, t)

Ψ1

u(x + h, t) – u(x – h, t)
2Ψ1

+ 10u(x, t)
u(x + h, t) – 2u(x, t) + u(x – h, t)

Ψ 2
1

+ 10u(x, t)
u(x, t) – 2u(x – h, t) + u(x – 2h, t)

Ψ 2
1

. (32)

Using (17), we can write the third explicit exact finite difference scheme (EXPEXFDIII) by
means of (32):

Un
j+1 – 3Un

j + 3Un
j–1 – Un

j–2

Ψ 2
1 Ψ2

= 10
Un

j – Un–1
j

Φ2
+ 10Un

j
Un

j+1 – Un
j

Ψ1
+ 10Un

j
Un

j – Un
j–1

Ψ1

+ 20
Un

j – Un
j–1

Ψ1

Un
j+1 – Un

j–1

2Ψ1
+ 10Un

j
Un

j+1 – 2Un
j + Un

j–1

Ψ 2
1

+ 10Un
j

Un
j – 2Un

j–1 + Un
j–2

Ψ 2
1

. (33)

Thus we have proven the following theorem.

Theorem 1 For the generalized KdV–Burgers’ KdVB(2, 1, 2) equation

ut +
(
u2)

x – 0.1uxxx +
(
u2)

xx = 0,

the implicit exact finite difference schemes are given by (18), (21) and (24) and the explicit
exact finite difference schemes are given by (27),(30) and (33). The temporal step size satis-
fies �t = 10h and the step size functions satisfy

Ψ1 = eh – 1, Ψ2 = 1 – e–h, Φ1 =
1 – e–0.1�t

0.1
, Φ2 =

e0.1�t – 1
0.1

.

3 NSFD scheme for the KdVB(2, 1, 2) equation
We set up six exact finite difference schemes in Sect. 2. Although numerical instabilities
do not arise in an exact finite difference model, it is not possible to construct an exact fi-
nite difference model for an arbitrary differential equation. In recent years, NSFD models
have been proven to be one of the efficient numerical algorithms for large step sizes. They
are not exact models, but they do not possess numerical instabilities when they are com-
pared with standard finite difference models (see [16] and the references therein). In the
construction of an NSFD model, it is assumed that the orders of the derivatives must be
exactly equal to the orders of the corresponding derivatives of the differential equations
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[38]. In this study, we extend this rule and discretize the third order derivative by a sec-
ond order finite difference. In this section, we build an NSFD scheme for the numerical
solution of the KdVB(2, 1, 2) equation (10).

The exact travelling wave solution of (10) is given by [41]

u(x, t) = –
1

20

(
1 + tanh

[
t

20
+

x
2

])

= –
0.1

1 + e–(x+0.1t) . (34)

In the classical sense, a discrete scheme for the KdVB(2, 1, 2) equation (10) can be

un+1
j – un

j

�t
+

(u2)n
j+1 – (u2)n

j

h
+

(u2)n
j–1 – 2(u2)n

j + (u2)n
j+1

h2

– 0.1
–(u)n

j–2 + 2(u)n
j–1 – 2(u)n

j+1 + (u)n
j+2

2h3 = 0. (35)

We re-write the KdVB(2, 1, 2) equation (10) as follows:

ut +
(
u2)

x – 0.1uxxx +
(
u2)

xx = 0,

ut + 2uux – 0.1uxxx + 2(ux)2 + 2uuxx = 0
(36)

and propose the following nonstandard finite difference discretization:

Un+1
j – Un

j

Φ
+ 2Un+1

j
Un

j – Un
j–1

Γ
+ 2Un+1

j
Un

j+1 – 2Un
j + Un

j–1

Γ 2

+ 2
(Un

j+1 – Un
j

Γ

)(Un
j – Un

j–1

Γ

)
– 0.1

(–Un
j–2 + 2Un

j–1 – 2Un
j+1 + Un

j+2

2Γ 3

)
= 0, (37)

where Φ and Γ are time-step and space-step functions, respectively.
We solve for Φ and define sn

j = e–(xj+0.1tn). After tedious calculations, we get

Φ = 0.1s
(
e–0.1�t – 1

)
2Γ 4 × A

B
, (38)

where

A = (1 + s)
(
1 + se2h)(1 + seh)(1 + se–h)(1 + se–2h),

B = (0.1)2Γ se–3h(eh – 1
)3(eh + 1

)(
1 + se–0.1�t)(1 + s)2

× (
s – eh + 2seh + se2h – s2eh)

– 4Γ 3(0.1)2s
(
eh – 1

)
(1 + s)

(
1 + se–h)(1 + se–2h)(1 + se2h)

– 4Γ 2(0.1)2se–h(eh – 1
)2(s – 1)(1 + s)

(
1 + se2h)(1 + se–2h)

– 4(0.1)2s2Γ 2e–h(1 – eh)2(1 + se–0.1�t)(1 + se2h)(1 + se–2h).

If we select

Γ = eh – 1 = h + O
(
h2),
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then Φ can be written in a simple form

Φ =
1 – e–0.1�t

0.1
= �t + O

(
�t2).

Therefore, the NSFD scheme for the KdVB(2, 1, 2) equation is

Un+1
j – Un

j

Φ
+ 2Un+1

j
Un

j – Un
j–1

Γ
+ 2Un+1

j
Un

j+1 – 2Un
j + Un

j–1

Γ 2

+ 2
(Un

j+1 – Un
j

Γ

)(Un
j – Un

j–1

Γ

)
– 0.1

(–Un
j–2 + 2Un

j–1 – 2Un
j+1 + Un

j+2

2Γ 3

)
= 0, (39)

where Φ = 1–e–0.1�t

0.1 and Γ = eh – 1.
To analyse the local truncation error of NSFD scheme (39), we introduce the difference

quotients:

∂un
j

∂t
=

un+1
j – un

j

Φ
,

∂un
j

∂x
=

un
j – un

j–1

Γ
,

∂un
j

∂x
=

un
j+1 – un

j

Γ
,

∂∂un
j

∂x2 =
un

j+1 – 2un
j + un

j–1

Γ 2 ,
∂3un

j

∂x3 =
–un

j–2 + 2un
j–1 – 2un

j+1 + un
j+2

2Γ 3 .

(40)

We define the residual

τ n
j =

∂un
j

∂t
+ 2un+1

j
∂un

j

∂x
+ 2un+1

j
∂∂un

j

∂x2 + 2
∂un

j

∂x
∂un

j

∂x
– 0.1

∂3un
j

∂x3

=
(

∂un
j

∂t
– ut(xj, tn)

)
+ 2

(
un+1

j
∂un

j

∂x
– u(xj, tn)ux(xj, tn)

)
– 0.1

(
∂3un

j

∂x3 – uxxx(xj, tn)
)

+ 2
(

∂un
j

∂x
∂un

j

∂x
– ux(xj, tn)ux(xj, tn)

)
+ 2

(
un+1

j
∂∂un

j

∂x2 – u(xj, tn)uxx(xj, tn)
)

.

If we choose �t and �x small enough, we know that Φ ≈ �t and Γ ≈ �x. Then using
Taylor’s series expansion about (xj, tn), after the tedious computations, we conclude that
τ n

j = O(�t + �x2), and hence NSFD scheme (39) has the order of accuracy O(�t + �x2).
It is consistent with the KdVB(2, 1, 2) equation (10) when (�t,�x) −→ (0, 0).

4 Linear stability analysis
In this section, we investigate the linear stability analysis for NSFD (39) and SFD (35)
schemes by using von Neumann stability analysis. Although an application of the linear
stability analysis to nonlinear equations cannot be justified, it is found to be effective in
practice [42–45]. Since the von Neumann method is applicable only for linear PDE, we
linearised the KdVB(2, 1, 2) equation (10) around the constant solution. Assume that v :
R2 → R is a three times continuously differentiable function such that |v(t, x)| � 1, and let
u = u + v(t, x), where u and u are solutions to (10). Substituting u = u + v(t, x) into (10), we
get

(u + v)t + (u + v)2
x – 0.1(u + v)xxx + (u + v)2

xx = 0, (41)
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which yields

ut + vt +
(
u2 + 2uv + v2)

x – 0.1(uxxx + vxxx) +
(
u2 + 2uv + v2)

xx = 0. (42)

Using the fact that u is a solution of (10) and ignoring the higher order terms v2, we obtain

vt + (2u)vx – 0.1vxxx + (2u)vxx = 0. (43)

Linearisation about the constant solution u = c/2 takes the form

vt + cvx – 0.1vxxx + cvxx = 0. (44)

Now we apply NSFD (39) and SFD (35) schemes to linearised equation (44). Application
of NSFD scheme (39) to linearised equation (44) yields

V n+1
j – V n

j

Φ
+ c

V n
j – V n

j–1

Γ
+ c

V n
j+1 – 2V n

j + V n
j–1

Γ 2

– 0.1
–V n

j–2 + 2V n
j–1 – 2V n

j+1 + V n
j+2

2Γ 3 = 0. (45)

We define the error εn
j = v(xj, tn) – V n

j , where v(xj, tn) is the exact solution at the mesh point
(xj, tn) and V n

j is the approximate solution. Substituting V n
j = v(xj, tn) – εn

j into difference
equation (45), the error εn

j satisfies the same discrete equation

εn+1
j – εn

j

Φ
+ c

εn
j – εn

j–1

Γ
+ c

εn
j+1 – 2εn

j + εn
j–1

Γ 2 – 0.1
–εn

j–2 + 2εn
j–1 – 2εn

j+1 + εn
j+2

2Γ 3 = 0. (46)

The von Neumann stability analysis uses the fact that every linear constant coefficient
difference equation has a solution of the form

εn
j =

(
eα�t)neiβj�x = (ξ )neiβj�x, α,β ∈ R, i2 = –1. (47)

The function ξ is determined from the difference equation by substituting the Fourier
mode (47) into (46), and we obtain ξ = a + ib, where a = 1 – 2c Φ

Γ
sin2( β�x

2 ) + 4c Φ

Γ 2 sin2( β�x
2 )

and b = –c Φ
Γ

sin(β�x) – 0.4 Φ

Γ 3 sin2( β�x
2 ) sin(β�x). Taking r = Φ

Γ 2 and using |ξ | ≤ 1, we find

r ≤ c(Γ – 2)
[0.2c + 4c2 + 1.25c2Γ 2 – 4c2Γ ] + 0.04

Γ 2
.

Similarly, we apply SFD scheme (35) to linear equation (44) and get

V n+1
j – V n

j

�t
+ c

V n
j+1 – V n

j

h
+ c

V n
j+1 – 2V n

j + V n
j–1

h2

– 0.1
–V n

j–2 + 2V n
j–1 – 2V n

j+1 + V n
j+2

2h3 = 0. (48)

Following similar steps as before, we obtain

r ≤ c(h – 2)
[0.2c + c2 + 1.25c2h2 + c2h] + 0.01

h2
.
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Table 1 The errors at T = 10 of NSFD scheme (39) with h = 0.5

�t L∞-error L2-error

1.0 7.44354e-3 1.06743e-2
0.5 7.23976e-4 1.03267e-3
0.25 7.08568e-4 1.01050e-3
0.125 7.00859e-4 9.99443e-4

Table 2 The errors at various time of NSFD scheme (39) with �t = h2 = 0.25

T L∞-error L2-error

1 7.08568e-4 1.01050e-3
25 1.63208e-2 2.39217e-2
50 2.97822e-2 4.38477e-2
75 4.07325e-2 6.07020e-2
100 4.86742e-2 7.56387e-2

Figure 1 (a) Exact, (b) NSFD, (c) SFD: Surface of the wave for h = 0.5,�t = 0.6

5 Numerical results
In this section, we illustrate the accuracy and efficiency of NSFD scheme (39). For this
purpose, we consider the KdVB(2, 1, 2) equation (10)

ut +
(
u2)

x – 0.1uxxx +
(
u2)

xx = 0, xL < x < xR, t > 0 (49)
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Figure 2 Instability of SFD scheme for step size
�t = 0.6

Figure 3 (a) NSFD, (b) SFD: Absolute errors

with the initial condition

u(x, 0) = –
1

20

(
1 + tanh

(
x
2

))
, xL ≤ x ≤ xR (50)

and the boundary conditions

u(xL, t) = –
1

20

(
1 + tanh

(
t

20
+

xL

2

))
,

u(xR, t) = –
1

20

(
1 + tanh

(
t

20
+

xR

2

))
, t > 0.

(51)
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Figure 4 (a) L∞ errors, (b) L2 errors

We choose the spatial domain xL = –25 ≤ x ≤ 25 = xR and the temporal domain 0 ≤
t ≤ T in all computations. We consider equally spaced mesh points xj = xL + jh and tn =
n�t, j = 1, 2, . . . , M + 1, n = 0, 1, 2, . . . , N , with the spatial mesh size h = �x = (xR – xL)/M
and the temporal mesh size �t = T/N . The accuracy is measured by using the L∞ and L2

errors

L∞ = max
0≤j≤M

{∣∣u(xj, tn) – Un
j
∣∣}, L2 =

(

h
M∑

j=1

∣∣u(xj, tn) – Un
j
∣∣2

)1/2

at t = T , where u(xj, tn) is the exact solution obtained from (11) and Un
j is the discrete

solution obtained from NSFD scheme (39) or the standard finite difference (SFD) scheme
(35). The absolute error at each mesh points is measured according to

Abs(err) =
∣∣u(xj, tn) – Un

j
∣∣, j = 1, 2, . . . , M + 1, n = 0, 1, . . . , N .

Table 1 shows the L∞ and L2 errors of NSFD scheme (39) at T = 10. Table 2 shows the
efficiency of NSFD scheme (39) for various times. From Tables 1 and 2 we see that there is
a good agrement between NSFD scheme (39) and exact solution (11). Figure 1 represents
the surface of the wave obtained from exact solution (11) with SFD scheme (35) and NSFD
schemes (39) for the spatial mesh size h = 0.5 and temporal mesh size �t = 0.6. Figure 2
represents the wave in the spatial domain –25 ≤ x ≤ 25 at T = 20. In Figs. 1–2, we see that
while the NSFD scheme does not produce spurious oscillations, the SFD scheme produces
instability for �t = 0.6. Figure 3 shows the absolute errors for the NSFD and SFD schemes.
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Figure 5 (a) Exact, (b) NSFD: Surface of the wave
up to t = 60

Figure 6 Solution generated by the SFD scheme at
T = 20 with �t = 0.5

Figure 4 depicts the L∞ and L2 errors for the same set of parameters. From those figures,
we see that the NSFD scheme has good efficiency even for large step sizes.

Figure 5 represents the long time integration of the NSFD scheme in the temporal do-
main 0 ≤ t ≤ 60. We see that there is no difference between the exact solution and the nu-
merical solution generated by the NSFD scheme. On the other hand, we know that the SFD
scheme shows blow-up at T = 20 (see Fig. 1(c)). This blow-up phenomenon is corrected
by choosing a small step size. Figure 6 depicts the exact solution together with numerical
solutions generated by the SFD and the NSFD schemes for �t = 0.5. In this case, we see
that there are no big differences between the exact solution and the numerical solutions
obtained by SFD and NSFD schemes. We know that Γ = eh – 1 = h + O(h2) ≈ h for small
h and Φ = (1 – e–0.1�t)/0.1 = �t + O(�t2) ≈ �t for small �t. For this reason, we should
note that the behaviour of the NSFD scheme will be similar to that of the SFD scheme for
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Figure 7 (a) Exact, (b) NSFD, (c) SFD: Surface of the
wave for h = 0.5,�t = 0.005

small h and �t. To verify this fact, we choose h = 0.5,�t = 0.005 and depict the solution in
Fig. 7. Figures 8–9 represent the absolute errors and the L∞,L2 errors, respectively. From
these figures, we see that the NSFD scheme is efficient as well as the SFD scheme.

Tables 3 and 4 represent the L∞ and L2-errors of the exact finite difference methods,
IMPEXFDI (18), IMPEXFDII (21), IMPEXFDIII (24), EXPEXFDI (27), EXPEXFDII (30),
EXPEXFDIII (33). If we select the step size h = 0.5 with different time steps �t, the exact
schemes are reduced to the NSFD scheme [39]. Figure 10 shows the L∞ and L2-errors of
the exact schemes as h = 0.5 with different time steps �t.
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Figure 8 (a) NSFD, (b) SFD: Absolute errors

Figure 9 (a) L∞ errors, (b) L2 errors

6 Conclusion
In this work, we have constructed implicit and explicit exact finite difference schemes
and a consistent linearly implicit NSFD scheme for the numerical solution of the gener-
alized KdVB(2, 1, 2) equation, which have never been proposed and studied in the litera-
ture before. Numerical solutions obtained from the NSFD scheme are compared with an
SFD model. We show that the NSFD scheme well simulates the kink-wave solution of the
KdVB(2, 1, 2) equation even in the case of large step size, though the SFD scheme shows
numerical instabilities. In addition, we see that there are no big differences between the
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Table 3 The errors of the implicit exact finite difference schemes with �t = 10h

h IMPEXFDI IMPEXFDII IMPEXFDIII

L∞-error L2-error L∞-error L2-error L∞-error L2-error

0.016 0.007887 0.005223 0.007887 0.005223 0.007899 0.005230
0.032 0.02887 0.02144 0.02887 0.02144 0.02876 0.02136
0.064 0.3675 0.3222 0.3674 0.3222 0.3744 0.3231

Table 4 The errors of the explicit exact finite difference schemes with �t = 10h

h EXPEXFDI EXPEXFDII EXPEXFDIII

L∞-error L2-error L∞-error L2-error L∞-error L2-error

0.016 3.5959 0.6189 3.5960 0.6190 5.4038 0.8368
0.032 1.8098 0.4389 1.8098 0.4389 2.7303 0.5976
0.064 0.9180 0.3125 0.9180 0.3125 1.3942 0.4310

Figure 10 (a) L∞ and (b) L2 errors of exact finite difference

exact solution and the NSFD scheme for small step sizes. Absolute errors, L∞ and L2 er-
rors show that the proposed NSFD model is very accurate, efficient and a powerful tool for
the numerical solution of the KdVB(2, 1, 2) equation. Following the process in this paper,
exact and NSFD models for some other nonlinear PDEs can be obtained.
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