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Abstract
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1 Introduction
It is well known that several physical phenomena are described by nonlinear differential
equations (both ODEs and PDEs). Therefore, the study of the many analytical and numer-
ical methods used for solving the nonlinear differential equations is a very important topic
for the analysis of engineering practical problems [1–19].

In 2016, the interesting and new derivatives without singular kernel were introduced by
Atangana and Baleanu, which generalized the Caputo–Fabrizio definition [8]. Atangana–
Baleanu derivative contains Mittag-Leffler function as a nonlocal and nonsingular kernel.
Many authors showed their interest in this definition as it holds the profits of Riemann–
Liouville and Caputo derivatives [20–30]. Last year, Atangana et al. provided the numerical
approximation to the fractional advection-diffusion equation whose fractional derivatives
are Atangana–Baleanu derivative of Riemann–Liouville type [14].

In the last decades, two topics have been densely studied: “fixed point theory” and
“fractional differential/integral equations”. Recently, several significant results have been
recorded [7, 31, 32].

In 2012, Samet et al. [33] studied the concept of α-admissible mappings that was ex-
panded by Karapınar and Samet in [34]. Also, Wardowski [35] proposed a new inequality
to guarantee the existence and uniqueness of a given mapping in the framework of stan-
dard metric space. This inequality has been known as F-contraction.
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In 2016, Gopal et al. considered new concepts of α-type F-contractive mappings (see
[12]). Very recently, Jleli and Samet [36] mentioned the concept of F -metric space and
obtained the generalization of Banach contraction principle.

In [1–4], the authors studied generalized Geraghty contractive mappings and their ap-
plications in b-metric spaces.

In this paper by applying some fixed point theorems for contractive mappings, like α-
γ -Geraghty type, α-type F-contraction, and some other contractions in F -complete F -
metric space, we study the existence of solutions for some Atangana–Baleanu fractional
differential equations in the Caputo sense. Throughout the article J denotes [0, 1].

Suppose that (M, d) is a complete b-metric space (with constant s1), also let Ω be a set of
all increasing and continuous functions γ : [0,∞) → [0,∞) satisfying: γ (cx) ≤ cγ (x) ≤ cx
for all c > 1, and Λ is the family of all nondecreasing functions λ : [0,∞) → [0, 1

s12 ), s1 ≥ 1.

Definition 1.1 ([2]) The mapping g : M → M is a generalized α-γ -Geraghty contraction
mapping whenever there exists α : M × M → [0,∞) with

α(w, z)γ
(
s1

3d(gw, gz)
) ≤ λ

(
γ
(
d(w, z)

))
γ
(
d(w, z)

)
(1)

for w, z ∈ M, λ ∈ Λ, and γ ∈ Ω .

Definition 1.2 ([33]) Let ϕ : M → M, where M is nonempty, and α : M × M → [0,∞) be
given, g is α-admissible if

α(w, z) ≥ 1 �⇒ α(ϕw,ϕz) ≥ 1, ∀w, z ∈ M. (2)

Theorem 1.3 ([2]) Let (M, d) be a complete b-metric space and ϕ : M → M be a general-
ized α-γ -Geraghty contraction such that

(i) ϕ is α-admissible;
(ii) ∃ w0 ∈ M with α(w0,ϕw0) ≥ 1;

(iii) {wn} ⊆ M, wn → u in M and α(wn, wn+1) ≥ 1, then α(wn, w) ≥ 1.
Then ϕ has a fixed point.

Definition 1.4 ([8]) Let δ ∈ H1(a, b), a < b, and 0 ≤ κ ≤ 1. The Atangana–Baleanu frac-
tional derivative in the Caputo sense of δ of order κ is defined by

(ABC
a Dκδ

)
(s) =

B(κ)
1 – κ

∫ s

a
δ′(ν)Eκ

[
–κ

(s – ν)κ

1 – κ

]
dν, (3)

where Eκ is the Mittag-Leffler function defined by Eκ (z) = Σ∞
n=0

zn

Γ (nκ+1) and B(κ) is a nor-
malizing positive function satisfying B(0) = B(1) = 1 (see [15, 19]). The associated frac-
tional integral is defined by

(AB
a Iκδ

)
(s) =

1 – κ

κ
δ(s) +

κ

B(κ)
(

aIκδ
)
(s), (4)

where aIκ is the left Riemann–Liouville fractional integral given as

(
aIκδ

)
(s) =

1
Γ (κ)

∫ s

a
(s – ν)κ–1δ(ν) dν. (5)
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Consider d : M × M → [0,∞) given by

d(δ,σ ) =
∥∥(δ – σ )2∥∥∞ = sup

s∈J

(
δ(s) – σ (s)

)2,

where M = C(J ,R) denotes the set of continuous functions, (M, d) is a complete b-metric
space with s1 = 2.

We discuss the problem

(ABC
0 Dκδ

)
(s) = h

(
s, δ(s)

)
, s ∈ J , 1 ≤ κ ≤ 1, (6)

δ(0) = δ0, (7)

where Dκ is the Atangana–Baleanu derivative in the Caputo sense of order κ and h : J ×
M → M is continuous with h(0, δ(0)) = 0.

Proposition 1.5 ([10]) For 0 < κ < 1, we have

(ABIκ
b

ABCDκδ
)
(s) = δ(s) – δ(b). (8)

2 Main result
Theorem 2.1 Suppose

(i) ∃ω : R2 →R such that

∣
∣h

(
s, δ(s)

)
– h

(
s,σ (s)

)∣∣

≤ 1
2
√

2
B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1

√
λ
(
γ
(∣∣δ(s) – σ (s)

∣
∣2))

γ
(∣∣δ(s) – σ (s)

∣
∣2)

for s ∈ J , γ ∈ Ω , and δ,σ ∈R with ω(δ,σ ) ≥ 0;
(ii) ∃δ1 ∈ C(J) with ω(δ1(s), Tδ1(s)) ≥ 0 for s ∈ J , where T : C(J) → C(J) is defined by

(Tδ)(s) = δ0 + AB
0 Iκh

(
s, δ(s)

)
;

(iii) for s ∈ J and δ,σ ∈ C(J), ω(δ(s),σ (s)) ≥ 0 implies ω(Tδ(s), Tσ (s)) ≥ 0;
(iv) {δn} ⊆ C(J), δn → δ in C(J) and ω(δn, δn+1) ≥ 0, then ω(δn, δ) ≥ 0, n ∈N.

Then problem (6) has at least one solution.

Proof Applying the Atangana–Baleanu integral to both sides of (6) and using Proposi-
tion 1.5, we get

δ(s) = δ0 + AB
0 Iκh

(
s, δ(s)

)
.

We show that T has a fixed point:

∣∣Tδ(s) – Tσ (s)
∣∣2

=
∣∣AB
0 Iκ

[
h
(
s, δ(s)

)
– h

(
s,σ (s)

)]∣∣2

≤
∣∣
∣∣

[
1 – κ

B(κ)
[
h
(
s, δ(s)

)
– h

(
s,σ (s)

)]
+

κ

B(κ) 0Iκ
[
h
(
s, δ(s)

)
– h

(
s,σ (s)

)]]
∣∣
∣∣

2
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≤
{

1 – κ

B(κ)
∣∣h

(
s, δ(s)

)
– h

(
s,σ (s)

)∣∣ +
κ

B(κ) 0Iκ
∣∣h

(
s, δ(s)

)
– h

(
s,σ (s)

)∣∣
}2

≤
{

1
2
√

2
1 – κ

B(κ)
× B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1

√
λ
(
γ
(∣∣δ(s) – σ (s)

∣
∣2))

γ
(∣∣δ(s) – σ (s)

∣
∣2)

+
1

2
√

2
κ

B(κ)
B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1 0Iκ (1)
√

λ
(
γ
(∣∣δ(s) – σ (s)

∣
∣2))

γ
(∣∣δ(s) – σ (s)

∣
∣2)

}2

=
{

1
2
√

2
B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1

√
λ
(
γ
(∣∣δ(s) – σ (s)

∣
∣2))

γ
(∣∣δ(s) – σ (s)

∣
∣2)

}2

×
{

1 – κ

B(κ)
+

κ

B(κ)
1

κΓ (κ)

}2

≤
{

1
2
√

2
B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1

√

λ
(
γ
(

sup
s∈J

∣
∣δ(s) – σ (s)

∣
∣2

))
γ
(

sup
s∈J

∣
∣δ(s) – σ (s)

∣
∣2

)}2

×
{

1 – κ

B(κ)
+

κ

B(κ)
1

κΓ (κ)

}2

=
{

1
2
√

2
B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1

√
λ
(
γ
(
d(δ,σ )

))
γ
(
d(δ,σ )

)}2

×
{

1 – κ

B(κ)
+

1
B(κ)Γ (κ)

}2

=
1
8
λ
(
γ
(
d(δ,σ )

))
γ
(
d(δ,σ )

)
.

Hence, for δ,σ ∈ C(J), s ∈ J with ω(δ(s),σ (s)) ≥ 0, we have

8
∥
∥(Tδ – Tσ )2∥∥∞ ≤ λ

(
γ
(
d(δ,σ )

))
γ
(
d(δ,σ )

)
.

Put α : C(J) × C(J) → [0,∞) by

α(δ,σ ) =

⎧
⎨

⎩
1 ω(δ(s),σ (s)) ≥ 0 for all s ∈ J ,

0 else,

and

α(δ,σ )γ
(
8d(Tδ, Tσ )

) ≤ 8d(Tδ, Tσ )

≤ λ
(
γ
(
d(δ,σ )

))
γ
(
d(δ,σ )

)
.

Then T is an α-γ -contractive mapping. From (iii),

α(δ,σ ) ≥ 1 ⇒ ω
(
δ(s),σ (s)

) ≥ 0

⇒ ω
(
T(δ), T(σ )

) ≥ 0

⇒ α
(
T(δ), T(σ )

) ≥ 1,

for δ,σ ∈ C(J). Therefore, T is α-admissible. From (ii), there exists δ0 ∈ C(J) with
α(δ0, Tδ0) ≥ 1. By (iv) and Theorem 1.3, we conclude there exists δ∗ ∈ C(J) with δ∗ = Tδ∗.
Hence, δ∗ is a solution of the problem. �

We denote by F the family of all functions that satisfy the following conditions:
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(i) F : R+ →R is a strictly increasing mapping;
(ii) limn→∞ F(αn) = –∞ if and only if, for each sequence {αn}n∈N of positive numbers,

limn→∞ αn = 0;
(iii) there exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.

Definition 2.2 Let (M, d) be a metric space, g : M → M is said to be an α-type F-
contraction on M if there exist ν > 0 and two functions F ∈ F and α : M × M → {–∞} ∪
(0,∞) such that, for all δ,σ ∈ M satisfying d(gδ, gσ ) > 0, we have

ν + α(δ,σ )F
(
d(gδ, gσ )

) ≤ F
(
d(δ,σ )

)
.

Theorem 2.3 ([12]) Let (M, d) be a metric space and g : M → M be an α-type F-
contraction such that:

(i) ∃δ0 ∈ M with α(δ0, gδ0) ≥ 1,
(ii) g is α-admissible,

(iii) if {δn} ⊆ M with α(δn, δn+1) ≥ 1 and δn → δ, then α(δn, δ) ≥ 1, n ∈ N ,
(iv) F is continuous.

Then g has a fixed point δ∗ ∈ M and, for every δ0 ∈ M, the sequence {gnδ0}n∈N is convergent
to δ∗.

Theorem 2.4 Suppose
(i) ∃ω : R2 →R such that

∣∣h
(
s, δ(s)

)
– h

(
s,σ (s)

)∣∣ ≤ B(κ)Γ (κ)
(1 – κ)Γ (κ) + 1

e
–ν
2
∣∣δ(s) – σ (s)

∣∣

for s ∈ J and δ,σ ∈R with ω(δ,σ ) ≥ 0;
(ii) ∃δ1 ∈ C(J) such that ω(δ1(s), Tδ1(s)) ≥ 0 for s ∈ J , where T : C(J) → C(J) is defined

by

(Tδ)(s) = δ0 + AB
0 Iκh

(
s, δ(s)

)
; (9)

(iii) for s ∈ J and δ,σ ∈ C(J), ω(δ(s),σ (s)) ≥ 0 implies ω(Tδ(s), Tσ (s)) ≥ 0:
(iv) {δn} ⊆ C(J), δn → δ in C(J) and ω(δn, δn+1) ≥ 0, then ω(δn, δ) ≥ 0, n ∈ N .

Then problem (6) has at least one solution.

Proof Similar to the previous theorem, we demonstrate that T has a fixed point:

∣∣Tδ(s) – Tσ (s)
∣∣2

=
∣∣AB
0 Iκ

[
h
(
s, δ(s)

)
– h

(
s,σ (s)

)]∣∣2

≤
∣∣
∣∣

[
1 – κ

B(κ)
[
h
(
s, δ(s)

)
– h

(
s,σ (s)

)]
+

κ

B(κ) 0Iκ
[
h
(
s, δ(s)

)
– h

(
s,σ (s)

)]]
∣∣
∣∣

2

≤
{

1 – κ

B(κ)
∣∣h

(
s, δ(s)

)
– h

(
s,σ (s)

)∣∣ +
κ

B(κ) 0Iκ
∣∣h

(
s, δ(s)

)
– h

(
s,σ (s)

)∣∣
}2

≤
{

1 – κ

B(κ)
× B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1
e

–ν
2

√∣
∣δ(s) – σ (s)

∣
∣2
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+
κ

B(κ)
B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1 0Iκ (1)e
–ν
2

√∣∣δ(s) – σ (s)
∣∣2

}2

=
{

B(κ)Γ (κ)
(1 – κ)Γ (κ) + 1

e
–ν
2

√∣∣δ(s) – σ (s)
∣∣2

}2

×
{

1 – κ

B(κ)
+

κ

B(κ)
1

κΓ (κ)

}2

≤
{

B(κ)Γ (κ)
(1 – κ)Γ (κ) + 1

e
–ν
2

√
sup
s∈J

∣
∣δ(s) – σ (s)

∣
∣2

}2

×
{

1 – κ

B(κ)
+

κ

B(κ)
1

κΓ (κ)

}2

=
{

B(κ)Γ (κ)
(1 – κ)Γ (κ) + 1

e
–ν
2
√

d(δ,σ )
}2

×
{

1 – κ

B(κ)
+

1
B(κ)Γ (κ)

}2

= e–νd(δ,σ ).

Hence, for δ,σ ∈ C(J), s ∈ J with ω(δ(s),σ (s)) ≥ 0, we have

d(Tδ, Tσ ) ≤ e–νd(δ,σ ).

So

ln
(
d(Tδ, Tσ )

) ≤ ln
(
e–νd(δ,σ )

)
,

therefore

ν + ln
(
d(Tδ, Tσ )

) ≤ ln
(
d(δ,σ )

)
.

Now, let F : [0,∞) → R given by F(u) = ln u, u > 0, then F ∈F .
Put α : C(J) × C(J) → {–∞} ∪ [0,∞) by

α(δ,σ ) =

⎧
⎨

⎩
1 ω(δ(s),σ (s)) ≥ 0 for all s ∈ J ,

–∞ else.

Therefore ν + α(δ,σ )F(d(Tδ, Tσ )) ≤ F(d(δ,σ )) for δ,σ ∈ M with d(Tδ, Tσ ) > 0. For this
reason, T is an α-type F-contraction. From (iii),

α(δ,σ ) ≥ 1 ⇒ ω
(
δ(s),σ (s)

) ≥ 0

⇒ ω
(
T(δ), T(σ )

) ≥ 0

⇒ α
(
T(δ), T(σ )

) ≥ 1,

for all δ,σ ∈ C(J). Thus, T is α-admissible. From (ii), there exists δ0 ∈ C(J) with
α(δ0, Tδ0) ≥ 1. By (iv) and Theorem 2.3, we conclude δ∗ ∈ C(J) with δ∗ = Tδ∗. Hence,
δ∗ is a solution of the problem. �

Now let F be the set of functions g : (0,∞) →R with the conditions:
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(F1) If 0 < s < t, then g(s) ≤ g(t);
(F2) If {sn} ⊂ (0, +∞), then

lim
n→+∞ sn = 0 if and only if lim

n→+∞ g(sn) = –∞.

The space of an F -metric is defined as follows.

Definition 2.5 ([36]) Let M be nonempty, d : M × M → [0, +∞) and (g, a) ∈F × [0, +∞)
such that

(d1) (δ,σ ) ∈ M × M, d(δ,σ ) = 0 ⇔ δ = σ ;
(d2) d(δ,σ ) = d(σ , δ), for (δ,σ ) ∈ M × M;
(d3) For (δ,σ ) ∈ M×M, N ∈N, N ≥ 2, and for (ui)N

i=1 ⊂ M with (u1, uN ) = (δ,σ ), we have

d(δ,σ ) > 0 implies g
(
d(δ,σ )

) ≤ g

(N–1∑

i=1

d(ui, ui+1)

)

+ a.

Then d is said to be an F -metric on M, and the pair (M, d) is said to be an F -metric space.

A sequence {δn} in (M, d) is convergent to δ with respect to the F -metric d if

lim
n→∞ d(δn, δ) = 0.

A sequence {δn} in (M, d) is called F -Cauchy if

lim
n,m→+∞ d(δn, δm) = 0.

(M, d) is F -complete if every F -Cauchy sequence in M is F -convergent to a specified
element in M. Let Γ be the set of functions γ : [0,∞) → [0,∞) such that

(γ1) γ is nondecreasing;
(γ2)

∑∞
n=1 γ n(s) < ∞ for s ∈R

+, where γ n is the nth iterate of γ .

Definition 2.6 ([37]) Let α : M × M → [0,∞), then g : M → M is said to be an α-orbital
admissible if, for s ∈ M, we have

α(s, gs) ≥ 1 ⇒ α
(
gs, g2s

) ≥ 1. (10)

Theorem 2.7 ([9]) Assume (M, d) to be an F -complete metric space and g : M → M such
that

α(δ,σ )d(gδ, gσ ) ≤ γ
(
d(δ,σ )

)

for δ,σ ∈ M, where γ ∈ Γ . Suppose
(i) g is orbital α-admissible;

(ii) there exists δ0 ∈ M with α(δ0, gδ0) ≥ 1;
(iii) g ∈F verifying (d3) is assumed to be continuous; also, γ is chosen to be continuous

and to satisfy that g(u) > g(γ (u)) + a, u ∈ (0,∞), where a is also given in (d3);
then f has a fixed point.
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Consider the F -metric d : M × M → [0,∞) with M = C(J ,N), given as

d(δ,σ ) =

⎧
⎨

⎩
e|δ–σ | if δ �= σ ,

0 if δ = σ ,

where M = {0, 1, 2, . . .}, g(s) = – 1
s for s > 0, a = 1 and g is continuous on (0,∞). The condi-

tion g(u) > g(γ (u)) + a, u > 0, becomes – 1
u > 1

γ (u) > 1, that is, γ is chosen to be continuous
such that

γ (u) <
u

u + 1
.

Also consider that γ satisfies the following additional condition:

eγ (s) ≤ γ
(
es), s ∈ {0, 1, 2, 3, . . .}.

Theorem 2.8 Assume
(i) ∃ω : R2 →R with

∣∣h
(
s, δ(s)

)
– h

(
s,σ (s)

)∣∣ ≤ B(κ)Γ (κ)
(1 – κ)Γ (κ) + 1

γ
(∣∣δ(s) – σ (s)

∣∣)

for s ∈ J and δ,σ ∈R with ω(δ,σ ) ≥ 0;
(ii) ∃ δ1 ∈ C(J) with ω(δ1(s), Tδ1(s)) ≥ 0 for s ∈ J , where T : C(J) → C(J) is defined by

(Tδ)(s) = δ0 + AB
0 Iκh

(
s, δ(s)

)
; (11)

(iii) for s ∈ J and δ ∈ C(J), ω(δ(s), Tδ(s)) ≥ 0 implies ω(Tδ(s), T2δ(s)) ≥ 0.
Then (6) has at least one solution.

Similar to the previous theorem, we demonstrate that T has a fixed point:

∣∣Tδ(s) – Tσ (s)
∣∣

=
∣∣AB
0 Iκ

[
h
(
s, δ(s)

)
– h

(
s,σ (s)

)]∣∣

≤
∣∣
∣∣

[
1 – κ

B(κ)
[
h
(
s, δ(s)

)
– h

(
s,σ (s)

)]
+

κ

B(κ) 0Iκ
[
h
(
s, δ(s)

)
– h

(
s,σ (s)

)]]
∣∣
∣∣

≤
{

1 – κ

B(κ)
∣∣h

(
s, δ(s)

)
– h

(
s,σ (s)

)∣∣ +
κ

B(κ) 0Iκ
∣∣h

(
s, δ(s)

)
– h

(
s,σ (s)

)∣∣
}

≤
{

1 – κ

B(κ)
× B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1
γ
(∣∣δ(s) – σ (s)

∣∣)
}

+
{

κ

B(κ)
B(κ)Γ (κ)

(1 – κ)Γ (κ) + 1 0Iκ (1)γ
(∣∣δ(s) – σ (s)

∣
∣)

}

=
{

B(κ)Γ (κ)
(1 – κ)Γ (κ) + 1

γ
(∣∣δ(s) – σ (s)

∣
∣)

}{
1 – κ

B(κ)
+

κ

B(κ)
1

κΓ (κ)

}

= γ
(∣∣δ(s) – σ (s)

∣
∣).
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Hence, for δ,σ ∈ C(J), s ∈ J with ω(δ(s),σ (s)) ≥ 0, we have

d(Tδ, Tσ ) = e|Tδ(s)–Tσ (s)| ≤ eγ (|δ(s)–σ (s)|) ≤ γ
(
e|δ(s)–σ (s)|) = γ

(
d(δ,σ )

)
.

Put α : C(J) × C(J) → [0,∞) by

α(δ,σ ) =

⎧
⎨

⎩
1 ω(δ(s),σ (s)) ≥ 0 for all s ∈ J ,

0 else.

Therefore α(δ,σ )d(Tδ, Tσ ) ≤ d(Tδ, Tσ ) ≤ γ (d(δ,σ )) for all δ,σ ∈ M with d(Tδ, Tσ ) > 0.
From (iii),

α(δ, Tδ) ≥ 1 ⇒ ω
(
δ(s), Tδ(s)

) ≥ 0

⇒ ω
(
T(δ), T2(δ)

) ≥ 0

⇒ α
(
T(δ), T2(δ)

) ≥ 1,

for δ ∈ C(J). Thus, T is orbital α-admissible. From (ii), there exists δ1 ∈ C(J) with
α(δ1, Tδ1) ≥ 1. By (iii) and Theorem 2.7, we get σ ∗ ∈ C(J) with δ∗ = Tδ∗. Hence, δ∗ is a
solution of the problem.

3 Conclusion
In this manuscript, we extend some of the fractional differential equations of Riemann–
Liouville and Caputo type to the fractional differential equations of Atangana–Baleanu in
the Caputo sense.
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