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Abstract
The primary purpose of this study is to perform the comparison of deterministic and
stochastic modeling. The effect of threshold number is also observed in this model.
For numerical simulations, we have developed some stochastic explicit approaches,
but they are dependent on time step size. The implicitly driven explicit approach has
been developed for a stochastic meme model. The proposed approach is always
independent of time step size. Also, we have presented theorems in support of
convergence of the proposed approach for the stochastic meme model.
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1 Literature survey
Dawkins elaborated the meme for the first time as “a unit of cultural transmission, or a unit
of imitation” [1]. Nowadays, due to calm tech communication between the individuals,
transfer of memes occurs more swiftly than ever before. Examples of the meme are a way
of living like dining, wearing, and thinking. Propagation of meme and spread of rumor are
quite similar to each other and act like a virus that can blow out through the population due
to listening, viewing, reading, or some other way. An epidemiological model is primarily
utilized by researchers to describe the dynamics of the social system. Mainly this model is
used to study the changing aspects of rumors spread and transfer of opinions. This model
is based on the fact that human diseases and public behavior are a result of interaction
between the entities of society. Among the earliest researchers, Daley and Kendall were
the prominent ones who proposed that a rumor spread model and an epidemic model are
alike in [2]. Cane presented that various forms of a deterministic model for the spread of
epidemic or rumor are the same in [3]. At the start of this century, numerous scientists
have studied dynamics of rumors through multiple forms of the epidemiological model.
Kawachi et al. [4] suggested the deterministic model for constant and variable gossip in
an age-independent population; however, later, he found out the effect of various con-
tact interactions in a rumor transmission model. Bettencourt [5] and Wang and Wood [6]
both have applied epidemiological model, the former for the spread of ideas and the lat-
ter for the viral meme propagation. Two separate scientists Piqueira and Haung studied
the spread of rumors. Piqueira studied the equilibrium of rumor spread model according
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to propagation parameters and initial condition [7]. Haung investigated its range by ap-
plying denial and skepticism [8]. Zhao et al. did another addition in rumor spreading. He
proposed a rumor spread model considering the forgetting mechanism of spread in the
social network [9, 10]. Huo et al. studied the dynamics of rumor transmission model with
incubation mechanism [11].

On the other hand, Thompson explored the dynamics of rumor spread in a chat room
[12]. Al-Amoudi et al. quantitatively analyzed a meme propagation model of a constant
meme [13]. Rumor is essential to forming public communication, and its transmission has
important influence on the population or society. Research related to the spread of memes
has its significance. It provides a public drive to generate specific ideas, to change the
perception of something, and to persuade others. Rumor may contain secret information
regarding renowned persons and news that concerns critical social issues. It can affect
human beliefs and reshape public opinion by changing the market level of some product.
Its distribution plays a substantial part in various human activities. Different scientists
define it differently; for example, Hayakawa defines it as a “Type of societal interact in
which a false piece of information spread in population or community in a short period
through the public link”. Another scientist Shibutani redefines rumor as a shared problem
solving, in which people trapped in a complicated situation try to find out meaningful
results by collectively utilizing all of their cognitive powers. Rumor transmission is “social
contagion processes”.

In this paper, we use models like epidemiology for rumor spread and cessation. Track of
study to the spread of rumor is highly reliable on the epidemiological model. This is be-
cause of revolutionary contributions to the modeling. It involves the dispersion of ailment
and the elimination of affected persons. The rumor transmission model divides the in-
dividuals into three classes referred to as the susceptible, the infected, and the recovered.
These classes represent the epidemiological status of subjects; therefore, these models can
calculate average disease development by calculating the average of the population who
are infested, who are possible to suffer, and those who have improved from disorder over
some time. The term “rumor” refers to a fickler piece of information that can move from
person to person or a vague piece of knowledge, and it takes time to separate what is wrong
and right.

Despite its definition, the important thing is to possibly tell if an individual has adopted,
remembered, and spread it. Daley and Thompson were the earlier scientists who intro-
duced the conventional representations for the rumor transmission, and then many schol-
ars have followed the model extensively in the past for their numerical studies. This model
has divided the individuals into three classes. Ignorants (who are not aware of the rumor),
spreaders (who spread it through social interaction), and stiflers (who have vague informa-
tion but stop spreading it after talking to a subject who is already aware of that, and they
have pairwise interaction). The findings of model revealed that when the spreader con-
tacts the ignorant, this may change him to spreader, while spreader contact will convert
both spreaders to stiflers. Spreader-stifler interaction will stifle the spreader. Another work
of Kawachi, along with his co-workers on the plasticity of the spreader-ignorant-stifler
model, revealed that spreader-to-ignorant and stifler-to-spreader transitions are possible.
The spreading process of rumor with many different ideas was studied by Bettencourt
et al., whereas Huang established two models to accommodate sceptics and found out
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the news dispersal procedure with denial and skepticism. In the Maki–Thompson model,
spreader-spreader contact will cause a rumor to spread but stifler will be the initiating one.

There are lots of studies proposed by various scientists who studied a very complex
model for the spread of false information based on several classical models. These studies
were connected with scale-free networks, like uncorrelated and assortative degree cor-
relation, and also were based on networks that were internet-mediated, such as “virtual”
communities and email networks. The main conclusion of these representations is that
they deserted the topological characteristic of social networking, and roughly these were
not appropriate for extensive dispersal procedure. Moreno et al. have done the study of
stochastic model based on scale-free networks.

He claimed that the standardization of systems profoundly influences the dynamic
mechanism of rumor spreading. Sudbury related the active process of rumor transmis-
sion on media, and he claimed that the versatility of the ways involved in the spread of
news matched that of the SIR model. Isham et al. revealed the final size distribution on
the global network. Zanette and Buzna et al. did work on the rumor circulating critical
value, and the final percentage of rumor heard in a population was done by Liu et al.

Various mathematical models during the past few centuries have developed for the study
of the transmission of rumor within the population. There is a fundamental difference be-
tween the spread of rumor and disease beyond qualitative parallels. Unlike a disease, the
spread of rumor is an intentional act committed by the spreader and the receiver. Rumors
always require authenticity and take time to identify, for example, news that needs con-
firmation is the core element connected with rumor. One should not ever believe rumor
without differentiating between true and false and should not transmit it without know-
ing the truthfulness of news. Social circle around an individual is an essential source of
information along with some readable resources from which an individual can find in-
formation. People do not believe in network information immediately because of its weak
credibility, but they believe in it when they hear it from their friends or relatives. Mostly ru-
mors come from the network and spread from person to person, and sometimes a person
does not spread it and keeps it into one’s own heart until he or she becomes a transmitter
or stifler in reality. Interest in spreading of information is an essential factor in its trans-
mission, so the classic rumor transmission model required to be improved and perfected.
Mathematical modeling has become very advanced to understand the epidemic diseases
thoroughly. Formation of models and simulation allows us to analyze the sensitivity and
make a comparison of conclusive opinions originating out of examples. This allows an-
ticipating mediators, environmental elements influencing, and public health. As a result,
higher authorities (policy makers) can scientifically implement or suggest safety measures.
Lots of studies have presented various models of meme transmission dynamics [11–13].

However, stochastic explicit approaches do not maintain the dynamical properties in
the stochastic meme model. So, the following question arises: Do we conserve all the dy-
namic features in a stochastic numerical approach? Our main purpose of this paper is to
introduce a stochastic approach that does not violate the dynamical properties, namely as
stochastic nonstandard finite difference scheme (SNSFD) presented in [14–16].

This paper has adopted the following strategy:
In Sect. 2, we present a deterministic meme model and its equilibria. We look at the

construction of the stochastic meme model in Sect. 3. We present the different stochastic
approaches and their contrast in Sect. 4. In Sect. 5, we give conclusion and directions.
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Figure 1 Flow map of meme model

2 Deterministic meme model
In this section, we consider the meme transmission model presented in [17]. The variables
of meme transmission model at any time t are defined as follows: S(t): the susceptible class,
I(t): the spreader class, who have tendency to talk about the meme in social interaction,
and Z(t): the stifler class, who have experienced the meme. The flow of the meme model
is given in Fig. 1.

The parameters of meme transmission model are defined as follows: B represents the
summation of birth and immigration rate of population, μ represents the rate of emi-
grant, α is the rate at which the susceptible change their meme class, β is the rate at which
spreaders become stiflers, γ is the rate at which spreaders become stiflers by contacting
stiflers, θ is the rate at which the susceptible become spreaders, 1 – θ is the fraction of
the susceptible who become stiflers, η is the rate at which stiflers become the susceptible
again.

The system of ODEs of meme model is as follows:

dS
dt

= B + ηZ – αSI – μS, (1)

dI
dt

= αθSI – βI2 – γ IZ – μI, (2)

dZ
dt

= α(1 – θ )SI + βI2 + γ IZ – ηZ – μZ, (3)

where N = S + I + Z. From system (1)–(3) we have that N ′(t) + μN(t) = B, which has the
solution N(t) = e–μt + B

μ
. Therefore, limt→∞ N(t) = B

μ
. Thus, the section for system (1)–

(3) is Γ = {(S, I, Z) : S + I + Z ≤ B
μ

, S ≥ 0, I ≥ 0, Z ≥ 0}. Hence, Γ is positively translation
invariant.

2.1 Equilibria of the meme model
There are two equilibria of meme model (1)–(3) as follows:

Meme free equilibrium = (MFE) =
(

B
μ

, 0, 0
)

,

Meme existence equilibrium = (MEE) = (S1, I1, Z1),

where

S1 =
β + ηZ1

αI1 + μ
=

1
αI1

[
(μ + η)Z1 + μI1

]
, Z1 =

–μI1

(αI1 + μ) + η

(
αI1

μ
+ 1 –

αB
μ2

)
,
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Table 1 Transition of meme model

Ti = Transitions Pi = Probabilities

T1 = [1, 0, 0]T P1 = B�t
T2 = [1, 0, –1]T P2 = ηZ�t
T3 = [–1, 0, 1]T P3 = αSI�t
T4 = [–1, 0, 0]T P4 =μS�t
T5 = [0, 1, –1]T P5 = αθSI�t
T6 = [0, –1, 1]T P6 = β I2�t
T7 = [0, –1, 1]T P7 = γ IZ�t
T8 = [0, –1, 0]T P8 =μI�t
T9 = [0, 0, –1]T P9 =μZ�t

I1 =
αθS1 – γ Z1 – μ

β
.

Note that Rd
o = αθβ

μ2 is a deterministic meme threshold number.

3 Stochastic meme model
We calculate the transmission probabilities of the model as presented in Table 1.

The expectations of meme model are as follows:

E∗[�M] =
9∑

i=1

PiTi,

Expectation = E∗[�M] =

⎡
⎢⎣

B + ηZ – αSI – μS
αθSI – βI2 – γ IZ – μI

α(1 – θ )SI + βI2 + γ IZ – ηZ – μZ

⎤
⎥⎦�t,

Variance = E∗[�M�MT]
=

9∑
i=1

Pi[Ti][Ti]T,

E∗[�M�MT]

=

⎡
⎢⎣

P1 + P2 + P3 + P4 0 –P2 – P3

0 P5 + P6 + P7 + P8 –P5 – P6 – P7

–P2 – P3 –P5 – P6 – P7 P2 + P3 + P5 + P6 + P7 + P9

⎤
⎥⎦�t.

So, drift = G1(M(t), t) = E∗[�M]
�t and diffusion = G2(M(t), t) =

√
E∗[�M�MT]

�t of the model
are as follows:

dM(t) = G1
(
M(t), t

)
dt + G2

(
M(t), t

)
dB(t). (4)

Thus, equation (4) is called stochastic differential equation of the model with initial con-
dition M(0) = [0.5, 0.3, 0.2]T, 0 ≤ t ≤ T . Brownian motion is represented by B(t).

3.1 Euler–Maruyama approach
The given approach for system (1)–(3) is presented in [18, 19] and we shall use Table 2 of
parameter values as follows:

Mn+1 = Mn + G1(Mn, t)�t + G2(Mn, t)�Bn, (5)
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Table 2 Parameter values

Parameters Values (years) Source

B 0.05 [17]
μ 0.34 [17]
θ 0.333 [17]
β 0.05 [17]
α MFE = 1.0125 [17]

MPE = 10.0125
η 0.023 [17]
σ 0.09 [17]

Figure 2 (a) Susceptible class for MFE at h = 0.1. (b) Susceptible class for MFE at h = 1. (c) Spreader class for
MPE at h = 0.1. (d) Spreader class for MPE at h = 1

where the time step is represented by ‘�t’ and �Bn is a standard normal distribution, i.e.,
�Bn ∼ N(0, 1).

The solution of system (1)–(3), i.e., MFE is D = ( B
μ

, 0, 0) and MPE is E = (0.1107, 0.2851,
0.5991), as presented in Fig. 2.

4 Parametric noise in the meme model
In this approach, we select a parameter with small noise as α dt = α dt + σ dB. So, meme
system (1)–(3) is as follows [20]:

dS = (B + ηZ – αSI – μS) dt – σSI dB, (6)

dI =
(
αθSI – βI2 – γ IZ – μI

)
dt + σθSI dB, (7)

dZ =
[(

α(1 – θ )SI + βI2 + γ IZ – ηZ – μZ
)

dt + σ (1 – θ )SI dB
]
, (8)



Raza et al. Advances in Difference Equations        (2020) 2020:176 Page 7 of 16

where B represents Brownian motion and σ is the randomness of system (6)–(8). Sys-
tem (6)–(8) is nonintegrable because of Brownian motion. In the coming section, we use
different stochastic numerical approaches for system (6)–(8).

4.1 Stochastic threshold dynamics
For system (6)–(8) the infected individuals I(t) are said to be extinct if limt→∞ I(t) = 0
almost surely.

Let us introduce RS
o = Rd

o – σ 2θ2B2

2μ2 .

Theorem 4.1 If σ 2 < αμ

B and RS
o < 1, then the infected individuals of system (6)–(8) tend to

zero exponentially almost surely.

Proof Assume that (S(t), I(t), Z(t)) is a solution of system (6)–(8) satisfying the initial value
(S(0), I(0), Z(0)) ∈ R3

+ by Ito’s formula f (I) = ln(I).

d ln(I) = f ′(I) dI +
1
2

f ′′(I)I2(σ 2θ2S2)dt,

d ln(I) =
1
I
[(

αθSI – βI2 – γ IZ – μI
)

dt + σθSI dB
]

+
1
2

(
1
I2

)
I2(σ 2θ2S2)dt,

d ln(I) =
[
(αθS – βI – γ Z – μ) dt + σθS dB

]
–

σ 2θ2S2

2
dt,

d ln(I) =
[
αθS – βI – γ Z – μ –

σ 2θ2S2

2

]
dt + σθS dB,

ln I(t) = ln I(0) +
∫ t

0

(
αθS – βI – γ Z – μ –

σ 2θ2S2

2

)
dt +

∫ t

0
σθS dB.

If σ 2 > αμ

B ,

ln I(t) ≤
(

α2θ2

2σ 2 – μ

)
t + M1(t) + ln I(0),

ln I(t)
t

≤
(

α2θ2

2σ 2 – μ

)
+

M1(t)
t

+
ln I(0)

t
.

If limt→∞ M1(t)
t = 0,

lim
t→∞ Sup

I(t)
t

≤ –
(

μ –
α2θ2

2σ 2

)
< 0.

When σ 2 > α2θ2

2μ
, limt→∞ I(t) = 0 almost surely.

If σ 2 < αμ

B , then

ln I(t) ≤
(

αθβ

μ
– μ –

σ 2θ2B2

2μ2 – μ

)
t + M1(t) + ln I(0),

ln I(t)
t

≤
(

αθβ

μ
– μ –

σ 2θ2B2

2μ2 – μ

)
t +

M1(t)
t

+
ln I(0)

t
, (9)

lim
t→∞

ln I(t)
t

≤ μ

(
αθβ

μ2 –
σ 2θ2B2

2μ3 – 1
)

≤ μ
[
RS

0 – 1
]
,
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then

lim
t→∞ I(t) = 0, almost surely,

RS
o = Rd

o –
σ 2θ2B2

2μ3 < 1.

Note that RS
o is the stochastic meme generation number. The stochastic meme generation

number RS
o = 0.9467 < 1 means meme free population. The stochastic meme epidemic

generation number RS
o = 9.7615 > 1 means that the meme is present in the population. �

4.2 Stochastic Euler approach
The given approach is constructed for system (6)–(8) as follows [20–22]:

Sn+1 = Sn + h
[
B + ηZn – αSnIn – μSn – σSnIn�Bn

]
, (10)

In+1 = In + h
[
αθSnIn – βInIn – γ In – μIn + σθSnIn�Bn

]
, (11)

Zn+1 = Zn + h
[
α(1 – θ )SnIn + βInIn + γ InZn – ηZn – μZn + σ (1 – θ )SnIn�Bn

]
. (12)

So, h denotes time step size and thus �Bn ∼ N(0, 1).

4.3 Stochastic Runge–Kutta approach
The given approach is constructed for system (6)–(8) as follows [20–22]:

Stage 1

K1 = h
[
B + ηZn – αSnIn – μSn – σSnIn�Bn

]
,

M1 = h
[
αθSnIn – βInIn – γ In – μIn + σθSnIn�Bn

]
,

N1 = h
[
α(1 – θ )SnIn + βInIn + γ InZn – ηZn – μZn + σ (1 – θ )SnIn�Bn

]
.

Stage 2

K2 = h
[

B + η

(
Zn +

N1

2

)
– α

(
Sn +

K1

2

)(
In +

M1

2

)
– μ

(
Sn +

K1

2

)

– σ

(
Sn +

K1

2

)(
In +

M1

2

)
�Bn

]
,

M2 = h
[
αθ

(
Sn +

K1

2

)(
In +

M1

2

)
– β

(
In +

M1

2

)(
In +

M1

2

)
– γ

(
In +

M1

2

)

– μ

(
In +

M1

2

)
+ σθ

(
Sn +

K1

2

)(
In +

M1

2

)
�Bn

]
,

N2 = h
[
α(1 – θ )

(
Sn +

K1

2

)(
In +

M1

2

)
+ β

(
In +

M1

2

)(
In +

M1

2

)

+ γ

(
In +

M1

2

)(
Zn +

N1

2

)
– (η + μ)

(
Zn +

N1

2

)

+ σ (1 – θ )
(

Sn +
K1

2

)(
In +

M1

2

)
�Bn

]
.
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Stage 3

K3 = h
[

B + η

(
Zn +

N2

2

)
– α

(
Sn +

K2

2

)(
In +

M2

2

)
– μ

(
Sn +

K2

2

)

– σ

(
Sn +

K2

2

)(
In +

M2

2

)
�Bn

]
,

M3 = h
[
αθ

(
Sn +

K2

2

)(
In +

M2

2

)
– β

(
In +

M2

2

)(
In +

M2

2

)
– γ

(
In +

M2

2

)

– μ

(
In +

M2

2

)
+ σθ

(
Sn +

K2

2

)(
In +

M2

2

)
�Bn

]
,

N3 = h
[
α(1 – θ )

(
Sn +

K2

2

)(
In +

M2

2

)
+ β

(
In +

M2

2

)(
In +

M2

2

)

+ γ

(
In +

M2

2

)(
Zn +

N2

2

)
– (η + μ)

(
Zn +

N2

2

)

+ σ (1 – θ )
(

Sn +
K2

2

)(
In +

M2

2

)
�Bn

]
.

Stage 4

K4 = h
[
B + η

(
Zn + N3

)
– α

(
Sn + K3

)(
In + M3

)
– μ

(
Sn + K3

)
– σ

(
Sn + K3

)(
In + M3

)
�Bn

]
,

M4 = h
[
αθ

(
Sn + K3

)(
In + M3

)
– β

(
In + M3

)(
In + M3

)
– γ

(
In + M3

)
– μ

(
In + M3

)
+ σθ

(
Sn + K3

)(
In + M3

)
�Bn

]
,

N4 = h
[
α(1 – θ )

(
Sn + K3

)(
In + M3

)
+ β

(
In + M3

)(
In + M3

)
+ γ

(
In + M3

)(
Zn + N3

)
– (η + μ)

(
Zn + N3

)
+ σ (1 – θ )

(
Sn + K3

)(
In + M3

)
�Bn

]
.

Final stage

Sn+1 = Sn +
1
6

[K1 + 2K2 + 2K3 + K4],

In+1 = In +
1
6

[M1 + 2M2 + 2M3 + M4],

Zn+1 = Zn +
1
6

[N1 + 2N2 + 2N3 + N4].

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(13)

So, h represents time step size and thus �Bn ∼ N(0, 1).

4.4 Stochastic NSFD approach
The given approach is constructed for system (6)–(8) as follows [20–22]:

Sn+1 =
Sn + hB + hηZn

1 + hαIn + hμ + hσ In�Bn
, (14)

In+1 =
In + hαθSnIn + hσθSnIn�Bn

1 + hβIn + hγ + hμ
, (15)
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Zn+1 =
Zn + hα(1 – θ )SnIn + hβInIn + hγ InZn + hσ (1 – θ )SnIn�Bn

1 + hη + hμ
. (16)

So, h represents time step size and thus �Bn ∼ N(0, 1).

4.4.1 Convergence analysis
We give the following theorems in support of the given analysis.

Theorem 4.2 The given initial value system (Sn(0), In(0), Zn(0)) ∈ R3
+, so system (14)–(16)

has a unique nonnegative solution (Sn, In, Zn) ∈ R3
+ on n ≥ 0, almost surely.

Theorem 4.3 The region

Ω =
{(

Sn, In, Zn) ∈ R3
+ : Sn ≥ 0, In ≥ 0, Zn ≥ 0, Sn + In + Zn ≤ B

μ

}
for all n ≥ 0

is a nonnegative invariant set for system (14)–(16).

Proof System (14)–(16) may be written as follows:

Sn+1 – Sn

h
=

[
B + ηZn – αSnIn – μSn – σSnIn�Bn

]
,

In+1 – In

h
=

[
αθSnIn – βInIn – γ In – μIn + σθSnIn�Bn

]
,

Zn+1 – Zn

h
=

[
α(1 – θ )SnIn + βInIn + γ InZn – ηZn – μZn + σ (1 – θ )SnIn�Bn

]
,

(Sn+1 + In+1 + Zn+1) – (Sn + In + Zn)
h

= B – μ
(
Sn + In + Zn),

(
Sn+1 + In+1 + Zn+1) –

(
Sn + In + Zn) = hB – hμ

(
Sn + In + Zn),

(
Sn+1 + In+1 + Zn+1) ≤ B

μ
,

almost surely. �

Theorem 4.4 The discretized system (14)–(16) has the same equilibria as the continuous
system (6)–(8) for all n ≥ 0.

Proof For solving system (14)–(16), we get two states as follows:

MFE i.e. D3 =
(
Sn, In, Zn) =

(
B
μ

, 0, 0
)

,

MPE i.e. E3 =
(
Sn, In, Zn),

where

Sn =
β + ηZn

αIn + μ
=

1
αIn

[
(μ + η)Zn + μIn],

Zn =
–μIn

(αIn + μ) + η

(
αIn

μ
+ 1 –

αB
μ2

)
,
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In =
αθSn – γ Zn – μ

β
,

almost surely. �

Theorem 4.5 The eigenvalues of the discretized system (14)–(16) lie in the unit circle for
all n ≥ 0.

Proof Let us suppose F , G, and H from system (14)–(16) as follows:

F =
S + hB + hηZ

1 + hα + hμ + hσ I�Bn
,

G =
I + hαθSI + hσθSI�Bn

1 + hβI + h(γ + μ)
,

H =
Z + hα(1 – θ )SI + hβI2 + hγ IZ + hσ (1 – θ )SI�Bn

1 + h(η + μ)
,

∂F
∂S

=
1

1 + hα + hμ + hσ I�Bn
,

∂F
∂I

=
–hσ�Bn(S + hB + hηZ)

[1 + hα + hμ + hσ I�Bn]2 ,

∂F
∂Z

=
hη

1 + hα + hμ + hγ I�Bn
,

∂G
∂S

=
hαθ I + hσθ I�Bn

1 + hβI + h(γ + μ)
,

∂G
∂I

=
[1 + hβI + h(γ + μ)][1 + hαθS + hσθS�Bn] – hβ[I + hαθSI + hσθSI�Bn]

[1 + hα + hμ + hσ I�Bn]2 ,

∂G
∂Z

= 0,
∂H
∂S

=
hα(1 – θ )SI + hσ (1 – θ )I�Bn

1 + h(η + μ)
,

∂H
∂I

=
hα(1 – θ )S + 2hβI + hγ Z + hσ (1 – θ )S�Bn

1 + h(η + μ)
,

∂H
∂Z

=
1 + hγ I

1 + h(η + μ)
.

The given Jacobian matrix at D1 = (S, I, Z) = ( B
μ

, 0, 0) and RS
o < 1 is as follows:

J =

⎡
⎢⎢⎣

∂F
∂S

∂F
∂I

∂F
∂Z

∂G
∂S

∂G
∂I

∂G
∂Z

∂H
∂S

∂H
∂I

∂H
∂Z

⎤
⎥⎥⎦ ,

J
(

B
μ

, 0, 0
)

=

⎡
⎢⎢⎢⎣

1
1+hα+hμ

–hσ�Bn( B
μ +hB)

[1+hα+hμ+hσ I�Bn]2
hη

1+hα+hμ

0
1+ hαθB

μ + hσθB�Bn
μ

1+h(η+μ) 0

0 hα(1–θ )B+hσ (1–θ )B�Bn
1+h(η+μ)

1
1+h(η+μ)

⎤
⎥⎥⎥⎦ .

The eigen values are

λ1 =
1

1 + hα + hμ
< 1, λ2 =

μ + hαθB + hσθB�Bn

μ[1 + hα + hμ]
< 1 when RS

o < 1;

λ3 =
1

1 + h(α + μ)
< 1.

So, all the eigenvalues of a given matrix are in the range of unit circle. So, system (14)–(16)
is linearizable around D1. �



Raza et al. Advances in Difference Equations        (2020) 2020:176 Page 12 of 16

4.5 Contrast section
We present a contrast of the aforesaid stochastic approaches in what follows.

4.6 Covariance of meme model
In this section, we discuss the covariance of meme transmission epidemic model among
its compartments. For this, we calculate the correlation coefficients and outcomes as de-
scribed in Table 3. The solutions in Table 3 show an inverse relationship among the sus-
ceptible class and others. The given model will attain meme free equilibria if the suscep-
tible class has inverse relation, which means that the decrease in this compartment will
eventually lead to the increase in other compartments.

5 Results and discussion
For discretization parameter h = 0.1, we see that Euler–Maruyama (EM) approach meets
the equilibria of the meme model; on the other hand, the ODEs solution is the mean of its
solution; this can be seen in Fig. 2(a) and Fig. 2(c). The Euler–Maryuama (EM) approach
fails to sustain positivity and shows divergence when we increase the step size for both
points; this can be seen in Fig. 2(b) and Fig. 2(d). For discretization parameter h = 0.1, we

Table 3 Correlation coefficients

Sub-populations Correlation coefficient (ρ) Relationship

(S, I) –0.0255 Inverse
(I,Z) –0.6288 Inverse
(S,Z) –0.7604 Inverse

Figure 3 (a) Susceptible class for MFE at h = 0.1. (b) Susceptible class for MFE at h = 2. (c) Spreader class for
MPE at h = 0.1. (d) Spreader class for MPE at h = 2
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Figure 4 (a) Susceptible class for MFE at h = 0.1. (b) Susceptible class for MFE at h = 5. (c) Spreader class for
MPE at h = 0.1. (d) Spreader class for MPE at h = 5

Figure 5 (a) Susceptible class for MFE at h = 0.1. (b) Susceptible class for MFE at h = 100. (c) Spreader class for
MPE at h = 0.1. (d) Spreader class for MPE at h = 100
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Figure 6 (a) Spreader class at h = 0.1 with Euler–Maruyama. (b) Spreader class at h = 1 with Euler–Maruyama.
(c) Spreader class at h = 0.1 with stochastic Euler. (d) Spreader class at h = 2 with stochastic Euler. (e) Spreader
class at h = 0.1 with stochastic Runge–Kutta. (f) Spreader class at h = 5 with stochastic Runge–Kutta

see the stochastic Euler approach convergence to the equilibrium point, this can be seen in
Fig. 3(a) and Fig. 3(c). For both meme free and meme present equilibria, the stochastic Eu-
ler approach fails to preserve the structure of the model when we increase time step size,
this can be seen in Fig. 3(b) and Fig. 3(d). For step size h = 0.1, we see that the stochastic
Runge–Kutta approach converges to meme free equilibrium and meme-present equilib-
rium, this can be seen graphically in Fig. 4(a) and Fig. 4(c). The stochastic Runge–Kutta
approach fails to maintain stability and positivity for both meme free and meme present
equilibrium points when we increase the step size; this change happens in Fig. 4(b) and
Fig. 4(d).

Thus the aforementioned stochastic approaches do not retain all the dynamical prop-
erties [15, 16, 18]. For discretization parameter h = 0.1 and h = 100, the stochastic NSFD
approach converges for both equilibrium points for any parameter; this can be seen in
Fig. 5. The contrast of numerical approaches presented in Fig. 6 proved the efficiency of
the proposed stochastic nonstandard finite difference approach.
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6 Conclusion and directions
After this analysis, we can give the idea that SDEs analysis of a meme model is suitable
as compared to ODEs analysis. All stochastic approaches violate dynamical properties.
These approaches give nonpositive and unbounded solutions. This type of dynamics has
no significance in physical systems. We have introduced stochastic NSFD approach for
this type of modeling under the assumption discussed by Mickens in the stochastic con-
text [14–16]. This approach always satisfies the dynamical properties such as dynamical
consistency, nonnegativity, and boundedness of a model. In the future, we shall extend
this idea in the field of all types of social systems. Also, we shall construct fractional order
social interaction models [23].
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