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Abstract
In this article, new definitions of fractional substantial sum and difference operators
are introduced. Some properties are established and used to generate a fixed point
operator for an arbitrary real order substantial system with conditions involving
fractional order difference. We inspect solution existence and Ulam–Hyers–Rassias
stability. A property missing in the literature for delta Laplace transform, namely delta
exponential shift, is established and used for finding delta Laplace transform for the
newly introduced substantial fractional sum and difference.
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1 Introduction
Substantial fractional order integral and derivative were introduced by Chen and Deng [1]
in recent form. The definition in Riemann–Liouville(RL) sense is as follows:

Assume that a function f is (m – 1)-times continuously-differentiable on interval (a,∞),
and mth order derivatives are integrable on some finite subinterval of [a,∞), where m–1 <
μ < m for a positive integer m. Furthermore, assume σ to be a constant, then Dμ

s f (x) =
Dm

s [I(m–μ)
s f (x)], where

Dm
s =

(
∂

∂x
+ σ

)m

, and I(m–μ)
s =

∫ y=x

y=a

(x – y)m–μ–1

Γ (m – μ)
e–σ (x–y)f (y) dy.

Chen and Deng discussed some useful composition properties of substantial fractional in-
tegral and derivative in [1]. The majority of researchers considered fractional substantial
and tempered derivative with an extensive variety of applications in physics, for instance,
we refer to a few of them [2–7]. It is assumed that substantial calculus and tempered frac-
tional calculus are equivalent concepts. Cao et al. [8] presented the fact that the expres-
sion of fractional order tempered integral and derivative is similar to that of fractional or-
der substantial integral and derivative respectively, but they are different in nature. How-
ever, tempered derivative becomes a special case of substantial derivative for nonnegative
values of parameter σ . These operators arise from unassociated physical phenomenon.
Mathematically arbitrary order substantial calculus is defined on time and space, but the
tempered calculus is different from couple of time and space. However, arbitrary order
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tempered integral and derivative are mostly utilized in truncated exponential power law
phenomenon.

A variety of results that helped in developing the theory of discrete fractional calculus
are given in [9–22]. Atici and Eloe carefully evoked the interest in theory of fractional dif-
ference (F�). Abdeljawad defined F� with different types of kernel having discrete power
law [23, 24], with discrete exponential and generalized Mittag-Leffler functions [15, 25],
with discrete exponential and Mittag-Leffler functions on generalized hZ time scale [26],
and kernel containing product of both power law and exponential function in [27]. A delta
Laplace transform has been developed and studied in [17, 20, 21, 28]. However, an impor-
tant shifting property is missing in this setting. Only few simple cases have been addressed
by implication of the definition (see Theorem 2.10 and Theorem 2.11 in [20]). Our pro-
posed shifting property is a modest attempt to fill that void.

First we define the product ec1 (x, a)ec2 (y, a) for x, y ∈Na as a solution of the delta partial
difference problem

c2�xu(x, y) – c1�yu(x, y) = 0, with

u(x, a) = ec1 (x, a), u(a, y) = ec2 (y, a),

where c1, c2 ∈R for the set of regressive functions R. Note that the product of two expo-
nential functions in continuous calculus enjoys the exponent law, namely ec1xec2y = ec1x+c2y.
This is the key motivation behind the product of two delta exponential functions in dis-
crete calculus. Surprisingly, analogous result does not hold in general for the discrete case.
However, ec(x, 0)ec(y, 0) = ec(x + y, 0) holds for x, y ∈ N0. Discrete analogues are practically
important and easier to use in real life problems. A brief discussion on the need to study
discrete analogue operator is given by Abdeljawad [27]. A discrete version of substantial
derivative is a potential candidate to productively describe many physical phenomena.
Moreover, in Theorem 3.5 of [29] Lizama derived a relation between RL fractional differ-
ence and derivative by applying Poisson transformation. These combined facts allow us to
define substantial F� in delta fractional setting in the RL sense. By introducing substan-
tial F� analogously in the Caputo sense, one can examine the qualitative properties. In
discrete setup, Ulam type stability is discussed in [30–32]. Stability analysis can be further
explored in the Ulam–Hyers–Rassias sense from [33–36].

The following Cauchy type substantial F� problem is discussed in this paper:

⎧⎨
⎩

s�ν
au(x) + f (x + ν – 1, u(x + ν – 1)) = 0, for x ∈Na,

s�ν–i+1u(x0 = a + m – ν) = ui, i = 0, 1, . . . , m – 1,
(1)

where m – 1 < ν ≤ m with positive integer m. Here we use a type of initial conditions
involving noninteger order differences suggested by Heymans and Podlubny [37]. How-
ever, these conditions may be converted to whole order conditions by a technique used by
Holm [22] in his doctoral dissertation. Physical entity of initial conditions that involves RL
derivative has been challenged by few researchers. However, Heymans and Podlubny dis-
cussed some expositions and provided a physical interpretation for the initial conditions
[37, 38].

This paper is organized in four sections. In Sect. 2, we give some preliminaries from dis-
crete calculus. In the third section, analogous substantial operators are introduced. Com-
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position and delta exponential shift properties along with relations between RL and sub-
stantial F� are presented. Existence theory and stability conditions are obtained in the
last section of the paper.

2 Preliminaries
For convenience, this section comprises some basic definitions and results for later use
in the sequel. The sets considered in this paper are Na := {a, a + 1, a + 2, . . .}, NT

a :=
{a, a + 1, a + 2, . . . , T}, and [a, T]Na := [a, T] ∩ Na for fixed a, T ∈ R. For t ∈ Na, the jump
operator is given by σ (t) = t + 1.

Definition 2.1 ([28]) Suppose that f : Na → R, the delta Laplace transform based on a, is
given as

La{f }(y) =
∫ ∞

a
e�y

(
σ (x), a

)
f (x)�x

for complex numbers y �= –1.

The following concepts are discussed in [20]. The set R = {pi : 1 + pi(x) �= 0} for x ∈ Na.
The circle plus sum of p1, p2 ∈ R is given by p1 ⊕ p2 = p1 + p2 + p1p2 and �p1(x) = –p1(x)

1+p1(x)

for x ∈ Na. hμ(t, s) = (t–s)μ
Γ (μ+1) is the Taylor monomial with numerator as a falling function.

The definition of delta exponential function for regressive function can be found in [20].
We only refer to an example.

Example 2.2 ([20]) If p1(x) = c is a constant such that c ∈ R (that is, c �= –1), then a delta
exponential function for constant is given by ep1 (x, s) = ec(x, s) = [1 + c]x–s for x ∈ Na. In
particular, for the initial point of the domain of definition s = a, we have

ec(x, a) = [1 + c]x–a for x ∈ Na.

Lemma 2.3 ([20]) Assume p(x) ∈R. Then �xep(x)(x, y) = p(x)ep(x)(x, y).

Definition 2.4 ([20]) Suppose f : Na →R, μ > 0. Then �
–μ
a f (x) :=

∑x–μ
τ=a hμ–1(x,σ (τ ))f (τ )

for x ∈Na+μ.

Definition 2.5 ([17, 39]) Suppose f : Na →R, μ > 0. Then �
μ
a f (x) =

∑x+μ
τ=a h–μ–1(x,σ (τ )) ×

f (τ ), where x ∈Na+m–μ.

Lemma 2.6 ([20]) Suppose ν ≥ 0 and μ > 0. The power law �
–μ
a+ν(x – a)ν = Γ (ν+1)

Γ (μ+ν+1) ×
(x – a)μ+ν for x ∈ Na+μ+ν .

Lemma 2.7 ([22]) Assume f : Na →R, m – 1 < μ < m, where m and k are positive integers.
Then [�k(�–μ

a f )](x) = (�k–μ
a f )(x) for x ∈Na+μ.

Lemma 2.8 ([20] [Leibniz formula]) Assume f : Na+μ ×Na → R and μ > 0. Then, for x ∈
Na+μ, �

∑x–μ
τ=a f (x, τ ) =

∑x–μ
τ=a �xf (x, τ ) + f (x + 1, x – μ + 1).
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Lemma 2.9 ([20]) Assume two functions v, w : Na → R. Let b1, b2 ∈ Na such that b1 < b2.
Then we have the summation by parts formula

∑b2
b1

v(σ (t))�w(t)�t = v(t)w(t)|b2+1
b1

–∑b2
b1

w(t)�v(t)�t.

Lemma 2.10 ([20]) Assume that g : Nm
� →Rwith indefinite sum of g is equal to G onN

m+1
� .

Subsequently

m∑
t=�

g(t) =
m∑

t=�

�G(t) = G(m + 1) – G(�).

Lemma 2.11 ([20]) Assume c1, c1 ∈R and x ∈Na. Then ec1 (x, a)ec2 (x, a) = ec1⊕c2 (x, a).

Lemma 2.12 ([20]) Assume f , g : Nb
a →R. Then, for x ∈N

b–1
a ,

�
[
f (x)g(x)

]
= f

(
σ (x)

)
�g(x) +

[
�f (x)

]
g(x).

Lemma 2.13 ([20]) Assume that f : Na →R is of exponential order r > 1 and μ > 0.

Then, for |y + 1| > r, we have,La+μ

{
�–μ

a f
}

(y) =
(y + 1)μ

yμ
F̃a(y).

Lemma 2.14 ([20]) Assume that f : Na →R is of exponential order r ≥ 1 and m – 1 < μ <
m with positive integer m. Then, for |y + 1| > r,

La+m–μ

{
�μ

a f
}

(y) = yμ(y + 1)m–μF̃a(y) –
m–1∑
j=0

yj�μ–1–j
a f (a + m – μ).

The definitions of Ulam stability for F� equations were introduced in [31]. For positive
ε and x ∈ [a, T]Na ,

∣∣s�ν
av(x) + f

(
ρ(x) + ν, v

(
ρ(x) + ν

))∣∣ ≤ ε, (2)
∣∣s�ν

av(x) + f
(
ρ(x) + ν, v

(
ρ(x) + ν

))∣∣ ≤ εψ
(
ρ(x) + ν

)
, (3)

‖v – u‖ ≤ εdf , (4)

‖v – u‖ ≤ εψ(x)df ,ψ , (5)

where ψ : [a, T]Na → R
+. For some positive df ∈ R, if v satisfies (2) and (4), then u sat-

isfying (1) is stable in the Ulam–Hyers sense. For generalized Ulam–Hyers stability, we
replace εdf with φf (ε) ∈ C(R+, R+) such that φf (0) = 0. Further, for some positive df ,ψ ∈R,
if v satisfies (3) and (5), then u satisfying (1) is stable in the Ulam–Hyers–Rassias sense.
For generalized Ulam–Hyers–Rassias stability, we replace εψ(x) with Φ(x) in (3) and (5).

3 Substantial fractional sum and difference
Lizama [29] considered abstract F� equations with the kernel of Poisson distribution.
To define fractional substantial sum, here we use the same kernel in the discrete setting,
specifically by using the delta exponential and Taylor monomial on a discrete time scale
similar to [27].
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Definition 3.1 Assume f : Na →R, 0 < μ ∈R, and a constant –p ∈R. Subsequently sub-
stantial sum of order μ is given as

s�–μ
a f (x) :=

x–μ∑
τ=a

hμ–1
(
x,σ (τ )

)
e–p(x – τ , 0)f (τ )

for x ∈Na+μ.

Definition 3.2 Assume f : Na →R, m – 1 < μ ≤ m with positive integer m and a constant
–p ∈ R. Then, for x ∈ Na+m–μ, the substantial F� of f of order μ is defined by s�μf (x) :=
s�m[s�

–(m–μ)
a+μ f (x)], where s�m = ( �x+p

1–p )m, and �x is delta partial difference with respect
to x.

Remark 1 Note that, for p = 0, substantial sum and difference operators reduce to RL sum
(Definition 2.4) and RL difference (Definition 2.5), respectively.

Remark 2 Substantial derivative vanishes if and only if all lower integer order substantial
derivative vanished (Remark 2.12 in [1]). Unlike in the continuous setting, integer order
substantial difference need not be zero for substantial F� to be zero. A simple example
in the delta discrete setting, where substantial F� vanishes, is f (x) = e–p(x, 0); however, by
using Definition 3.2, we have

s�0e–p(x, 0) =
(

�x + p
1 – p

)0

e–p(x, 0) = e–p(x, 0),

evaluation at x = 0 is nonzero.

Lemma 3.3 (Composition of fractional sums) Assume that f : Na →R and μ, ν are posi-
tive real numbers, then for x ∈ Na+μ+ν ,

[s�–μ
a+ν

(s�–ν
a f

)]
(x) =

(s�–(μ+ν)
a f

)
(x) =

[s�–ν
a+μ

(s�–μ
a f

)]
(x).

Proof For x ∈Na+μ+ν , consider the left-hand side

[s�–μ
a+ν

(s�–ν
a f

)]
(x) =

x–μ∑
τ=a+ν

hμ–1
(
x,σ (τ )

)
e–p(x – τ , 0)

(s�–ν
a f

)
(τ )

=
x–μ∑
τ=ν

hμ–1
(
x,σ (τ )

)
e–p(x – τ , 0)

τ–μ∑
w=0

hν–1
(
τ ,σ (w)

)

× e–p(τ – w, 0)f (w)

=
x–μ∑
τ=ν

τ–μ∑
w=0

e–p(x – w, 0)
(x – σ (τ ))μ–1

Γ (μ)
(τ – σ (w))ν–1

Γ (ν)
f (w)

=
1

Γ (μ)Γ (ν)

x–(μ+ν)∑
w=0

e–p(x – w, 0)
x–μ∑

τ=w+ν

(
x – σ (τ )

)μ–1

× (
τ – σ (w)

)ν–1f (w).
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Let τ – σ (w) = y,

[s�–μ
a+ν

(s�–ν
a f

)]
(x) =

1
Γ (μ)Γ (ν)

x–(μ+ν)∑
w=0

e–p(x – w, 0)

×
x–μ–w–1∑

y=ν–1

(x – y – w – 2)μ–1(y)ν–1f (w),

[s�–μ
a+ν

(s�–ν
a f

)]
(x) =

1
Γ (ν)

x–(μ+ν)∑
w=0

e–p(x – w, 0)

×
[

1
Γ (μ)

x–μ–w–1∑
y=ν–1

(
x – w – 1 – σ (y)

)μ–1(y)ν–1

]
f (w).

By using Definition 2.4, we get

[s�–μ
a+ν

(s�–ν
a f

)]
(x) =

1
Γ (ν)

x–(μ+ν)∑
w=0

e–p(x – w, 0)
[
�

–μ
ν–1xν–1]

x→x–w–1f (w).

By Lemma 2.6 we have �
–μ
ν–1xν = Γ (ν)

Γ (μ+ν) xμ+ν–1, which yields the following:

[s�–μ
a+ν

(s�–ν
a f

)]
(x) =

x–(μ+ν)∑
w=0

e–p(x – w, 0)
[

1
Γ (μ + ν)

(x – w – 1)μ+ν–1
]

f (w)

=
x–(μ+ν)∑

w=0

hμ+ν–1
(
x,σ (w)

)
e–p(x – w, 0)f (w)

=
(s�–(μ+ν)

a f
)
(x)

for x ∈Na+μ+ν . We may interchange μ and ν to get

[s�–ν
a+μ

(s�–μ
a f

)]
(x) =

(s�–(μ+ν)
a f

)
(x). �

Lemma 3.4 (Left inverse property) Assume f : Na → R and μ > 0 such that, for positive
integer m, m – 1 < μ < m. Then, for x ∈Na+μ,

[s�μ
(s�–μ

a f
)]

(x) = f (x).

Proof First, by induction, we prove the identity for integer m

s�m{s�–m
a f (x)

}
= f (x). (6)

Consider the base case for m = 1

s�
{s�–1

a f (x)
}

=
(

�x + p
1 – p

)[ x–1∑
τ=a

h0
(
x,σ (τ )

)
e–p(x – τ , 0)f (τ )

]
.
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Since h0(x,σ (τ )) = 1, therefore

s�
{s�–1

a f (x)
}

=
�x

1 – p

[ x–1∑
τ=a

e–p(x – τ , 0)f (τ )

]
+

p
1 – p

[ x–1∑
τ=a

e–p(x – τ , 0)f (τ )

]
.

Now, applying the Leibniz formula (Lemma 2.8) on the first bracket, we obtain

s�
{s�–1

a f (x)
}

=
1

1 – p

[ x–1∑
τ=a

�xe–p(x – τ , 0)f (τ ) + e–p(x + 1 – x, 0)f (x)

]

+
p

1 – p

[ x–1∑
τ=a

e–p(x – τ , 0)f (τ )

]

=
1

1 – p

[ x–1∑
τ=a

–pe–p(x – τ , 0)f (τ ) + (1 – p)1–0f (x)

]

+
p

1 – p

[ x–1∑
τ=a

e–p(x – τ , 0)f (τ )

]
= f (x).

Assume that the statement in Equation (6) is true for m. For induction step, consider

s�m+1s�–(m+1)
a f (x) = s�m+1{s�–1

a+m
s�–m

a
}

f (x)

= s�m{s�s�–1
a+m

}s�–m
a f (x)

= s�ms�–m
a f (x) = f (x).

For positive integer m and m – 1 < μ ≤ m, we have

s�μ
[s�–μ

a f (x)
]

= s�m{s�–(m–μ)
a+μ

}[s�–μ
a f (x)

]
.

Finally, using Lemma 3.3, we arrive at

s�μ
[s�–μ

a f (x)
]

= s�m{s�–m
a f (x)

}
= f (x). �

Lemma 3.5 (Composition of sum with difference) Assume f : Na →R, μ > 0, and k ∈N0.
Then, for x ∈Na+μ,

[s�–μ
a

(s�kf
)]

(x) =
k∑

j=0

(
k
j

)
(–p)k–js�j–μf (x) – e–p(x – a + 1, 0)

×
k–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jhμ–j+1(x, a)s�k–i+1f (a). (7)
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Further let ν > 0 be such that m – 1 < ν ≤ m for positive integer m. Then, for x ∈Na+m–ν+μ,

[s�–μ
a+m–ν

(s�ν f
)]

(x) =
m∑

j=0

(
m
j

)
(–p)m–js�–(μ–ν+m–j)f (x)

– e–p(x – a + 1, 0)
m–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)j

× hμ–j+1(x, a)s�ν–i+1f (a + m – ν). (8)

Proof Case I: Suppose μ /∈ N
k–1
1 . First note by Lemma 2.12 that �τ [hμ–1(x, τ )e–p(x – τ + 1,

0)] = hμ–1(x,σ (τ ))[pe–p(x –τ , 0)] – hμ–2(x,σ (τ ))[e–p(x –τ + 1, 0)]. Now, using Definition 3.1
and applying summation by parts (Lemma 2.9), we have

s�–μ
a

[s�kf (x)
]

=
x–μ∑
τ=a

hμ–1
(
x,σ (τ )

)
e–p

(
x – σ (τ ), 0

)[s�kf (τ )
]

= hμ–1(x, τ )e–p(x – τ + 1, 0)s�k–1f (τ )|x–μ+1
τ=a

–
x–μ∑
τ=a

[
phμ–1

(
x,σ (τ )

)
e–p(x – τ , 0)

– hμ–2
(
x,σ (τ )

)
e–p(x – τ + 1, 0)

]s�k–1f (τ )

= 1.e–p(μ, 0)s�k–1f (x – μ + 1) – hμ–1(x, a)e–p(x – a + 1, 0)

× s�k–1f (a) – p
x–μ∑
τ=a

hμ–1
(
x,σ (τ )

)
e–p(x – τ , 0)s�k–1f (τ )

+
x–μ∑
τ=a

hμ–2
(
x,σ (τ )

)
e–p(x – τ + 1, 0)s�k–1f (τ ).

Combining the first term with last sum, we have

s�–μ
a

[s�kf (x)
]

= s�–(μ–1)
a

[s�k–1f (x)
]

– ps�–μ
a

[s�k–1f (x)
]

– hμ–1(x, a)e–p(x – a + 1, 0)s�k–1f (a)

=
(
–ps�–μ

a + s�–(μ–1)
a

)[s�k–1f (x)
]

– e–p(x – a + 1, 0)hμ–1(x, a)s�k–1f (a).

Another application of summation by parts gives

s�–μ
a

[s�kf (x)
]

=
(
p2s�–μ

a – 2ps�–(μ–1)
a + s�–(μ–2)

a
)[s�k–2f (x)

]
– e–p(x – a + 1, 0)hμ–1(x, a)s�k–1f (a)

– e–p(x – a + 1, 0)
{

–phμ–1(x, a) + hμ–2(x, a)
}s�k–2f (a).
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Again using summation by parts, we get

s�–μ
a

[s�kf (x)
]

=
(
–p3s�–μ

a + 3p2s�–(μ–1)
a – 3ps�–(μ–2)

a + s�–(μ–3)
a

)
× [s�k–3f (x)

]
– e–p(x – a + 1, 0)hμ–1(x, a)s�k–1f (a)

– e–p(x – a + 1, 0)
{

–phμ–1(x, a) + hμ–2(x, a)
}s�k–2f (a)

– e–p(x – a + 1, 0)
{

p2hμ–1(x, a) – 2phμ–2(x, a) + hμ–3(x, a)
}

× s�k–3f (a).

Further (k – 3) times application of summation by parts gives

[s�–μ
a

(s�kf
)]

(x) =
k∑

j=0

(
k
j

)
(–p)k–js�j–μf (x) – e–p(x – a + 1, 0)

×
k–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jhμ–j+1(x, a)s�k–i+1f (a),

where by assumption hμ–j+1(x, a) is well defined for μ /∈N
k–1
1 .

Case II: Now suppose μ ∈ N
k–1
1 . Then k – μ ∈ N1, we have for x ∈Na+μ

[s�–μ
a

(s�kf
)]

(x) =
{s�k–μs�–(k–μ)

a+μ

}s�–μ
a

s�kf (x)

= s�k–μ
{s�–(k–μ)

a+μ
s�–μ

a
}s�kf (x)

= s�k–μ
[s�–k

a
s�kf (x)

]
.

By Case I and Equation (7) we arrive at

[s�–μ
a

(s�kf
)]

(x) = s�k–μ

[ k∑
j=0

(
k
j

)
(–p)k–js�j–kf (x) – e–p(x – a + 1, 0)

×
k–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jhk–j+1(x, a)s�k–i+1f (a)

]
.

Using Lemma 3.3 and Lemma 2.6, we get

[s�–μ
a

(s�kf
)]

(x) =
k∑

j=0

(
k
j

)
(–p)k–js�j–μf (x) – e–p(x – a + 1, 0)

×
k–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jhμ–j+1(x, a)s�k–i+1f (a).

Now consider Equation (8) for x ∈Na+m–ν+μ, where m is a positive integer such that m–1 <
ν ≤ m and define g(x) := s�

–(m–ν)
a f (x) on Na+m–ν , then by Lemma 3.4 we have

s�–μ
a+m–ν

(s�ν f
)
(x) = s�–μ

a+m–ν
s�mg(x).
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By using Equation (7), we obtain

s�–μ
a+m–ν

(s�ν f
)
(x) =

m∑
j=0

(
m
j

)
(–p)m–js�j–μg(x) – e–p(x – a + 1, 0)

×
m–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jhμ–j+1(x, a)s�m–i+1g(a + m – ν)

=
m∑

j=0

(
m
j

)
(–p)m–js�j–μs�–(m–ν)

a f (x)

– e–p(x – a + 1, 0)
m–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jhμ–j+1(x, a)

× s�m–i+1s�–(m–ν)
a f (a + m – ν)

=
m∑

j=0

(
m
j

)
(–p)m–js�–(μ–ν+m–j)f (x) – e–p(x – a + 1, 0)

×
m–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jhμ–j+1(x, a)s�ν–i+1f (a + m – ν).

�

Lemma 3.6 (Relation between RL and substantial fractional operators) Assume f : Na →
R, m – 1 < μ < m with positive integer m and a constant –p ∈R. Then

(i) s�
–μ
a f (x) = e–p(x, 0)�–μ

a [e–p(–x, 0)f (x)] for x ∈Na+μ, where s�
–μ
a is a substantial

fractional sum operator and �
–μ
a is an RL fractional sum operator;

(ii) s�μf (x) = e–p(x, 0)�μ
a+μ[e–p(–x, 0)f (x)] for x ∈Na+m–μ, where s�μ is a substantial

F� operator and �
μ
a+μ is an RL F� operator.

Proof (i) Note that e–p(x – τ , 0) = e–p(x, 0)e–p(–τ , 0). For x ∈Na+μ, consider

s�–μ
a f (x) =

x–μ∑
τ=a

hμ–1
(
x,σ (τ )

)
e–p(x – τ , 0)f (τ )

= e–p(x, 0)
x–μ∑
τ=a

hμ–1
(
x,σ (τ )

)
e–p(–τ , 0)f (τ ).

By Definition 2.4

s�–μ
a f (x) = e–p(x, 0)�–μ

a
[
e–p(–x, 0)f (x)

]
.

(ii) For x ∈Na+m–μ, consider

s�μf (x) = s�m[s�–(m–μ)
a+μ f (x)

]

=
(

�x + p
1 – p

)m x+μ–m∑
τ=a+ν

hm–μ–1
(
x,σ (τ )

)
e–p(x – τ , 0)f (τ )

=
(

�x + p
1 – p

)m–1
[(

�x + p
1 – p

) x+μ–m∑
τ=a+ν

hm–μ–1
(
x,σ (τ )

)
e–p(x – τ , 0)f (τ )

]
,
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s�μf (x) =
(

�x + p
1 – p

)m–1
[

�x

1 – p

{
e–p(x, 0)

x+μ–m∑
τ=a+ν

hm–μ–1
(
x,σ (τ )

)
e–p(–τ , 0)f (τ )

}

+
p

1 – p
s�–(m–μ)

a+μ f (x)

]
.

By using Lemma 2.12 and Lemma 2.3, we have

s�μf (x) =
(

�x + p
1 – p

)m–1
[

1
1 – p

{
e–p

(
σ (x), 0

)
�1

x

x+μ–m∑
τ=a+ν

hm–μ–1
(
x,σ (τ )

)

× e–p(–τ , 0)f (τ ) – ps�–(m–μ)
a+μ f (x)

}
+

p
1 – p

s�–(m–μ)
a+μ f (x)

]
,

using the fact e–p(σ (x),0)
1–p = e–p(x, 0) and Definition 2.4, we are left with

=
(

�x + p
1 – p

)m–1[
e–p(x, 0)�1

x�
–(m–μ)
a+μ

{
e–p(–τ , 0)f (τ )

}]
.

By Lemma 2.7, we get

s�μf (x) =
(

�x + p
1 – p

)m–1[
e–p(x, 0)�–(m–μ–1)

a+μ

{
e–p(–τ , 0)f (τ )

}]

= s�m–1[s�–(m–μ–1)
a+μ f (x)

]
.

Repeated application of the above process m – 1 times implies

s�μf (x) = e–p(x, 0)�μ
a+μ

[
e–p(–x, 0)f (x)

]
. �

Remark 3 One can find the relation between substantial and Caputo difference by mak-
ing use of the relation between substantial and RL difference Lemma 3.6, along with the
relation given in Theorem 14 [40] for Caputo and RL difference.

Lemma 3.7 Assume L{f (x)}(y) = F̃(y), then for c ∈R:
(i) L{ec(x, a)f (x)}(y) = 1

1+c F̃(y � c), where y � c = y–c
1+c ;

(ii) L{ec(–x, 0)f (x)}(y) = (1 + c)F̃(y ⊕ c).

Proof (i) By Definition 2.1 of delta Laplace transform on a,

La
{

ec(x, a)f (x)
}

(y) =
∫ ∞

a
e�y

(
σ (x), a

)
ec(x, a)f (x)�x.

By Example 2.2 and by additive inverse property,

La
{

ec(x, a)f (x)
}

(y) =
1

1 + c

∫ ∞

a
e�y

(
σ (x), a

)
e�[�c]

(
σ (x), a

)
f (x)�x.

By using Lemma 2.11,

La
{

ec(x, a)f (x)
}

(y) =
1

1 + c

∫ ∞

a
e�[y�c]

(
σ (x), a

)
f (x)�x.
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Again by Definition 2.1 of delta Laplace transform,

La
{

ec(x, a)f (x)
}

(y) =
1

1 + c
F̃(y � c).

(ii) By using the fact that ec(–x, 0) = e�c(x, 0) = (1 + c)e�c(σ (x), 0), one can prove it on the
similar line as in part (i). �

Theorem 3.8 Assume that f : Na → R is of exponential order r > 1 with La{f (x)}(y) =
F̃a(y) and μ > 0. Then, for |y + 1| > r, we have La+μ{s�

–μ
a f }(y) = ( y+1

y+p )μF̃a(y).

Proof Considering the left-hand side for –p ∈R and using Lemma 3.6(i),

La+μ

{s�–μ
a f

}
(y) = La+μ

[
e–p(x, 0)�–μ

a
{

e–p(–x, 0)f (x)
}]

(y)

=
1

1 – p
[
La+μ�–μ

a
{

e–p(–x, 0)f (x)
}

(y)
]

y→ y+p
1–p

=
1

1 – p

[
(y + 1)μ

yμ
La

{
e–p(–x, 0)f (x)

}
(y)

]
y→ y+p

1–p

.

In the preceding steps, we used Lemma 3.7(i) and then Lemma 2.13. In the following step
we apply Lemma 3.7(ii):

La+μ

{s�–μ
a f

}
(y) =

1
1 – p

[
(y + 1)μ

yμ

{
(1 – p)F̃a

(
y ⊕ (–p)

)}]
y→ y+p

1–p

=
[

(y + 1)μ

yμ

{
F̃a(y – p – yp)

}]
y→ y+p

1–p

=
(

y + 1
y + p

)μ

F̃a(y). �

Theorem 3.9 Assume that f : Na → R is of exponential order r ≥ 1 with La{f (x)}(y) =
F̃a(y) and m – 1 < μ < m with positive integer m. Then, for |y + 1| > r,

La+m–μ

{s�μ
a f

}
(y) =

(y + p)μ

(1 – p)m (y + 1)m–μ
{

F̃a(y)
}

–
1

1 – p

m–1∑
j=0

(
y + p
1 – p

)j

×
a+m–1–j∑

τ=a
h–μ–1

(
a + m – μ,σ (τ )

)
e–p(–τ , 0)f (τ ).

Proof Consider the left-hand side for –p ∈R and use Lemma 3.6 (ii) to get

La+m–μ

{s�μ
a f

}
(y) = La+m–μ

[
e–p(x, 0)�μ

a+μ

{
e–p(–x, 0)f (x)

}]
(y)

=
1

1 – p
[
La+m–μ�μ

a+μ

{
e–p(–x, 0)f (x)

}
(y)

]
y→ y+p

1–p

=
1

1 – p

[
yμ(y + 1)m–μLa

{
e–p(–x, 0)f (x)

}
(y)

–
m–1∑
j=0

yj{�μ–1–j
a e–p(–x, 0)f (x)

}
x→a+m–μ

]
y→ y+p

1–p

.
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In the preceding steps, we used Lemma 3.7(i) and then Lemma 2.14. In the following step
we apply Lemma 3.7(ii) and Definition 2.5:

La+m–μ

{s�μ
a f

}
(y) =

1
1 – p

[
yμ(y + 1)m–μ

{
(1 – p)F̃a

(
y ⊕ (–p)

)}
–

m–1∑
j=0

yj

×
{x+μ–1–j∑

τ=a
h–μ–1

(
x,σ (τ )

)
e–p(–τ , 0)f (τ )

}
x→a+m–μ

]
y→ y+p

1–p

,

La+m–μ

{s�μ
a f

}
(y) =

1
1 – p

[
yμ(y + 1)m–μ

{
(1 – p)F̃a(y – p – yp)

}
–

m–1∑
j=0

yj

×
a+m–1–j∑

τ=a
h–μ–1

(
a + m – μ,σ (τ )

)
e–p(–τ , 0)f (τ )

]
y→ y+p

1–p

=
(y + p)μ

(1 – p)m (y + 1)m–μ
{

F̃a(y)
}

–
1

1 – p

m–1∑
j=0

(
y + p
1 – p

)j

×
a+m–1–j∑

τ=a
h–μ–1

(
a + m – μ,σ (τ )

)
e–p(–τ , 0)f (τ ). �

4 Existence uniqueness and stability for Cauchy problem
In order to apply fixed point theory and to set up existence results for a substantial F�

problem of Cauchy type, to obtain suitable fixed point operators, first we convert the dif-
ference equation to the corresponding summation form.

Lemma 4.1 Assume function f : [a, T]Na ×R → R and m – 1 < ν ≤ m for positive integer
m. Subsequently, u is the solution of (1) if and only if

u(x) =
e–p(x – a + 1, 0)hν–m+1(x, a)∑m

�=0
(m

�

)
(–p)m–�

m–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jui

–
1∑m

�=0
(m

�

)
(–p)m–�

s�–(ν–m+j)
a+m–ν f

(
x + ν – 1, u(x + ν – 1)

)
.

The previous lemma can be proved by using Equation (8) of Lemma 3.5. In what fol-
lows, we apply Brouwer’s theorem [31] to set up sufficient condition for the existence
of solutions. The space Z equipped with metric ‖u‖ = supx∈NT

a
|u(x)| forms a complete

norm space, where Z is a collection of all real sequences u = {u(x)}T
x=a. Define the operator

A : Z → Z by

Au(x) =
e–p(x – a + 1, 0)hν–m+1(x, a)∑m

�=0
(m

�

)
(–p)m–�

m–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jui –

1∑m
�=0

(m
�

)
(–p)m–�

×
x–ν+m–j∑
τ=a+m–ν

hν–m+j–1
(
x,σ (τ )

)
e–p(x – τ , 0)f

(
τ + ν – 1, u(τ + ν – 1)

)
.

Obviously, the solutions of (1) correspond to the fixed points of A and vice versa.
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Theorem 4.2 Assume g : [a, T]Na →R such that |f (x, u)| ≤ g(x)|u| for a bounded function
g and all u ∈ Z. Consequently problem (1) has a solution on Z under the condition

L∗ ≤ (1 – p)m, (9)

where L∗ = supx∈NT
a

∑x–ν+m–j
τ=a+m–ν hν–m+j–1(x,σ (τ ))e–p(x – τ , 0)g(τ + ν – 1).

Proof For M > 0, define the set

B =

{
u(x) :

∥∥∥∥∥u –
e–p(x – a + 1, 0)hν–m+1(x, a)∑m

�=0
(m

�

)
(–p)m–�

m–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jui

∥∥∥∥∥ ≤ M

}
.

We start by proving that the operator A is a self-map on B. For u ∈ B, we have

∣∣∣∣∣Au(x) –
e–p(x – a + 1, 0)hν–m+1(x, a)∑m

�=0
(m

�

)
(–p)m–�

m–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jui

∣∣∣∣∣

≤
∑x–ν+m–j

τ=a+m–ν hν–m+j–1(x,σ (τ ))e–p(x – τ , 0)g(τ + ν – 1)∑m
�=0

(m
�

)
(–p)m–�

|u – 0|.

Since
∑m

�=0
(m

�

)
(–p)m–� = (1 – p)m. Taking supremum on both sides, we have

sup
x∈NT

a

∣∣∣∣∣Au(x) –
e–p(x – a + 1, 0)hν–m+1(x, a)∑m

�=0
(m

�

)
(–p)m–�

m–1∑
i=0

i–1∑
j=0

(
i
j

)
(–p)jui

∣∣∣∣∣ ≤ L∗M
(1 – p)m .

By using inequality (9), we get ‖Au‖ ≤ M. From this we deduce that A maps B into B, and
therefore Brouwer’s fixed point theorem implies that a fixed point must exist for A. �

Theorem 4.3 Under assumption (H1): |f (x, u) – f (x, v)| ≤ K |u – v| for K > 0 and for all
u, v ∈ Z and x ∈ [a, T]Na , problem (1) has a unique solution on Z provided

K <
|1 – p|2m–ν–j

|hν–m+j(T , a – ν + m)| . (10)

Proof For u, v ∈ Z and x ∈ [a, T]Na , we have the estimates

∣∣Au(x) – Av(x)
∣∣ ≤

∣∣∣∣
∑x–ν+m–j

τ=a+m–ν hν–m+j–1(x,σ (τ ))e–p(x – τ , 0)∑m
�=0

(m
�

)
(–p)m–�

∣∣∣∣
× ∣∣f (τ + ν – 1, u(τ + ν – 1)

)
– f

(
τ + ν – 1, v(τ + ν – 1)

)∣∣
≤ |hν–m+j(x, a – ν + m)|

|1 – p|2m–ν–j K
∣∣u(τ + ν – 1) – v(τ + ν – 1)

∣∣.

In the preceding calculation, we have used condition (H1),
∑m

�=0
(m

�

)
(–p)m–� = (1 – p)m,

Lemma 2.10,
∑

τ hν–1(x,σ (τ )) = –hν(x, τ ), and the inequality

∣∣∣∣∣
x–ν+m–j∑
τ=a+m–ν

hν–m+j–1
(
x,σ (τ )

)
e–p(x – τ , 0)

∣∣∣∣∣ <
|∑x–ν+m–j

τ=a+m–ν hν–m+j–1(x,σ (τ ))|
|1 – p|m–ν–j .
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Apply supremum on each part of the inequality

sup
x∈NT

a

∣∣Au(x) – Av(x)
∣∣ ≤ |hν–m+j(T , a – ν + m)|

|1 – p|2m–ν–j K‖u – v‖.

By taking (10) into account, we obtain ‖Au –Av‖ ≤ ‖u – v‖, which proves that A is a con-
traction. This implies that the fixed point is unique by the Banach fixed point theorem. �

We next present stability criteria for the Cauchy problem under consideration. Au-
thors also discussed Ulam type stabilities of fractional difference equation with multipoint
boundary value problem and for nonlinear Hilfer F� Cauchy problem in [30, 41].

Theorem 4.4 Under assumption (H1), suppose that u ∈ Z satisfies problem (1) and v ∈ Z
satisfies inequality (2). Cauchy problem (1) is Ulam–Hyers stable and, therefore, general-
ized Ulam–Hyers stable for a given value of K satisfying inequality (10).

Proof By Lemma 4.1, for simplicity we can rewrite the solution of IVP (1) as

u(x) = w(x) –
x–ν+m–j∑
τ=a+m–ν

hν–m+j–1(x,σ (τ ))e–p(x – τ , 0)
(1 – p)m f

(
τ + ν – 1, u(τ + ν – 1)

)
, (11)

where w(x) = e–p(x–a+1,0)hν–m+1(x,a)∑m
�=0 (

m
� )(–p)m–�

∑m–1
i=0

∑i–1
j=0

(i
j
)
(–p)jui. From inequality (2), for [a, T]Na , it

follows that
∣∣∣∣∣v(x) –

(
w(x) –

x–ν+m–j∑
τ=a+m–ν

hν–m+j–1(x,σ (τ ))e–p(x – τ , 0)
(1 – p)m

× f
(
τ + ν – 1, v(τ + ν – 1)

))∣∣∣∣∣ ≤ ε. (12)

Using (11) with(12) for [a, T]Na , we obtain

∣∣v(x) – u(x)
∣∣ =

∣∣∣∣∣v(x) –

(
w(x) –

x–ν+m–j∑
τ=a+m–ν

hν–m+j–1(x,σ (τ ))e–p(x – τ , 0)
(1 – p)m

× f
(
τ + ν – 1, u(τ + ν – 1)

))∣∣∣∣∣

≤
∣∣∣∣∣v(x) –

(
w(x) –

x–ν+m–j∑
τ=a+m–ν

hν–m+j–1(x,σ (τ ))e–p(x – τ , 0)
(1 – p)m

× f
(
τ + ν – 1, v(τ + ν – 1)

))∣∣∣∣∣

+

∣∣∣∣∣
x–ν+m–j∑
τ=a+m–ν

hν–m+j–1(x,σ (τ ))e–p(x – τ , 0)
(1 – p)m

∣∣∣∣∣
× ∣∣f (τ + ν – 1, v(τ + ν – 1)

)
– f

(
τ + ν – 1, u(τ + ν – 1)

)∣∣
≤ ε +

|hν–m+j(x, a – ν + m)|
|1 – p|2m–ν–j K

∣∣v(τ + ν – 1) – u(τ + ν – 1)
∣∣.
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In the previous calculation, we utilized (H1) and a similar reasoning applied in Theo-
rem 4.3. Now applying supremum and simplification yields the following:

‖v – u‖ ≤ ε

1 – |hν–m+j(T ,a–ν+m)|
|1–p|2m–ν–j K

= εdf , with df =
1

1 – |hν–m+j(T ,a–ν+m)|
|1–p|2m–ν–j K

.

Taking (10) into account, (1) is Ulam–Hyers stable. Making use of φf (ε) = εdf and φf (0) = 0
suggests that (1) is generalized Ulam–Hyers stable. �

Theorem 4.5 Under assumption (H1), suppose that u ∈ Z satisfies problem (1) and v ∈ Z
satisfies inequality (3). Cauchy problem (1) is Ulam–Hyers–Rassias stable and, therefore,
generalized Ulam–Hyers–Rassias stable for a given value of K in inequality (10) and an
arbitrary choice of ψ : [a, T]Na →R

+.

The next example is an application of Theorem 4.4.

Example 4.6 Consider the substantial F� equation with difference condition:

⎧⎨
⎩

–s�0.8
0 u(x) = (x – 0.2)u(x – 0.2), x ∈ [0, 10]N0

s�1.8
0 u(0.2) = u0.

Since a = 0, ν = 0.8, and T = 10, therefore m = 1, i = 0, and j = 0. Then, for any p �= 1, we
have K < |1–p|1.2

335,179.01 . For instance, if we choose p = 1001, then for K < 1
84.2 , the solution to

the given problem with inequalities

∣∣s�0.8
0 v(x) + (x – 0.2)v(x – 0.2)

∣∣ ≤ ε, x ∈ [0, 10]N0 ,∣∣s�0.8
0 v(x) + (x – 0.2)v(x – 0.2)

∣∣ ≤ εψ(x – 0.2), x ∈ [0, 10]N0

is Ulam–Hyers stable and Ulam–Hyers–Rassias stable for an arbitrary choice of ψ :
[0, 10]N0 →R

+.

5 Conclusion
• Substantial F� on a discrete time scale has been presented.
• In its continuous counterpart, this type of derivatives can describe the anomalous

diffusion model in a discrete setting.
• The most important delta exponential shift property for delta Laplace transform has

been presented and applied.
• Also a relation between Riemann–Liouville and substantial F� operator has been

constructed and utilized.
• A new class of substantial F� equations with initial conditions involving F� is

investigated.
• The solution existence and stability of Ulam type are studied.
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