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Abstract
This paper investigates the Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation by
using Hirota’s direct method and the Kadomtsev–Petviashvili (KP) hierarchy reduction
method. Soliton solutions in the Grammian determinant form for the BKP-II equation
are obtained and soliton collisions are shown graphically. Lump-soliton solutions for
the BKP-I equation are presented in terms of the Grammian determinants. Various
evolution processes of the lump-soliton solutions are demonstrated graphically
through the study of three kinds of lump-soliton solutions. The fusion of lumps and
kink solitons into kink solitons and the fission of kink solitons into lumps and kink
solitons are observed in the interactions of lumps and solitons.
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1 Introduction
Investigation of explicit solutions for nonlinear evolution equations (NLEEs) is very im-
portant to understand complex nonlinear phenomena in plasma physics, nonlinear optics,
fluid mechanics, and other scientific fields [1–4]. So far many techniques for constructing
explicit solutions for NLEEs, such as the inverse scattering transformation [5], the bilin-
ear method [6], Darboux transformation [7–10], Bäcklund transformation [11, 12], and
the Lie group method [13, 14], have been developed. Among them, the bilinear method
proposed by Hirota is an effective tool for solving NLEEs [6]. Based on the bilinear form,
the N-soliton solutions for the NLEE can be obtained through algebraic procedure, and
the N-soliton solutions are usually expressed in the Grammian or Wronskian determi-
nant form [6, 15–17]. One of the advantages of deriving solutions in determinant form is
that not only soliton solutions but also many other types of solutions, such as complexiton
solutions [18, 19], rogue waves [20–24], lumps [25], and semi-rational solutions [26–30],
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can be derived. Another advantage is that one can get solutions of any order based on de-
terminant solutions, and the expression of the solutions is very simple [6, 15–30]. There-
fore, it is of great significance to construct solutions in terms of determinant for NLEEs.
Recently, the interactions of various kind of nonlinear waves that are governed by many
NLEEs have been studied [3, 4, 15–17, 26–31]. The soliton interactions are usually con-
sidered to be elastic for many integrable NLEEs, but the soliton interactions for certain
NLEEs are found to be inelastic [15–17, 31]. Many novel interactions of fusion and fission
of solitons and other kinds of nonlinear waves have also been investigated [3, 4, 26–30].
In this paper, we investigate the Grammian determinant solutions and the interactions of
the obtained nonlinear waves for the following Bogoyavlenskii–Kadomtsev–Petviashvili
(BKP) equation [32, 33]:

(4uxt + uxxxy + 8uxuxy + 4uxxuy)x + δuyyy = 0, δ = ±1. (1.1)

BKP equation (1.1) is a modified version of the Calogero–Bogoyavlenskii–Schiff equation
[34, 35]

4uxt + uxxxy + 8uxuxy + 4uxxuy = 0. (1.2)

Eq. (1.1) can also be regarded as a modification of the KP equation, which has various
physical settings in nonlinear optics, Bose–Einstein condensate, and plasmas [36–38]. As
in the case of the KP equation, BKP equation (1.1) is classified as the BKP-I equation when
δ = –1 and the BKP-II equation when δ = 1 [32, 33]. The Lax pairs, Darboux transforma-
tions, and explicit solutions for the BKP-II and BKP-I equations are constructed by using
the singular manifold method respectively [32, 33]. In [39], soliton and periodic solutions
for the BKP-II equation are derived by applying an extended tanh method. With symbolic
computation, solitary wave and multi-front wave collisions for the BKP-II equation are
investigated [40]. Through the Bell polynomials, soliton solutions, Bäcklund transforma-
tion, Lax pair, and conservation laws for the BKP-II equation are derived [41]. The nonlo-
cal symmetry, Bäcklund transformation, and consistent Riccati expansion solvability for
the BKP equation are obtained in [42]. Several bilinear forms, bilinear Bäcklund trans-
formations, kink periodic solitary wave, and lump wave solutions for the BKP equation
are presented by employing the binary Bell polynomials [43]. However, to the best of our
knowledge, Grammian solutions for BKP equation (1.1) and their dynamics have not been
reported.

It is easy to see that BKP equation (1.1) can be rewritten in the following form by em-
ploying the scaling transformation t → 1

4 t:

(uxt + uxxxy + 8uxuxy + 4uxxuy)x + δuyyy = 0, δ = ±1. (1.3)

Through the dependent variable transformation

u = (ln f )x, (1.4)

Equation (1.3) can be transformed into the bilinear form

(
1
3

D4
x – αDxDs + δD2

y

)
f · f = 0, (1.5a)
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(
2
3

D3
xDy + DxDt + αDyDs

)
f · f = 0, (1.5b)

where α is an arbitrary constant, s is an auxiliary independent variable, Dx, Dy, Ds, and Dt

are the Hirota bilinear operators defined by [6]

Dn1
x Dn2

y Dn3
s Dn4

t (G · F) =
(

∂

∂x
–

∂

∂x′

)n1( ∂

∂y
–

∂

∂y′

)n2( ∂

∂s
–

∂

∂s′

)n3( ∂

∂t
–

∂

∂t′

)n4

G(x, y, s, t)F
(
x′, y′, s′, t′)∣∣∣∣

x′=x,y′=y,s′=s,t′=t
.

The aim of the paper is to derive Grammian determinant solutions for the BKP equation
by using the KP hierarchy reduction method which was first proposed by the Kyoto school
[44]. The plan of this paper is as follows. In Sect. 2, soliton solutions in the Grammian de-
terminant form for the BKP-II equation are constructed and soliton collisions are demon-
strated graphically. In Sect. 3, lump-soliton solutions in the Grammian form for the BKP-I
equation are obtained. In Sect. 4, the structures and the dynamics of the lump-soliton so-
lutions for the BKP-I equation are discussed through graphs. Finally, some conclusions
are given in Sect. 5.

2 Soliton solutions for the BKP-II equation in the Grammian determinant form
In this section, we derive Grammian determinant solutions for the BKP-II equation

(uxt + uxxxy + 8uxuxy + 4uxxuy)x + uyyy = 0. (2.1)

The main idea is to get solutions for Eq. (2.1) from the Grammian determinant solutions
of the KP hierarchy under the reduction of the KP hierarchy. For this purpose, we first
characterize the following result on the KP hierarchy [45].

Lemma 1 The bilinear equations

(
D4

x1 – 4Dx1 Dx3 + 3D2
x2

)
τn · τn = 0, (2.2a)

(
D3

x1 Dx2 + 2Dx2 Dx3 – 3Dx1 Dx4

)
τn · τn = 0, (2.2b)

in the KP hierarchy admit determinant solutions

τn = det
1≤i,j≤N

(
m(n)

ij
)
, (2.3)

where the matrix element m(n)
ij satisfies

∂x1 m(n)
i,j = ϕ

(n)
i ψ

(n)
j , ∂x2 m(n)

i,j =
(
∂x1ϕ

(n)
i

)
ψ

(n)
j – ϕ

(n)
i

(
∂x1ψ

(n)
j

)
,

∂x3 m(n)
i,j =

(
∂2

x1ϕ
(n)
i

)
ψ

(n)
j + ϕ

(n)
i

(
∂2

x1ψ
(n)
j

)
–

(
∂x1ϕ

(n)
i

)(
∂x1ψ

(n)
j

)
,

∂x4 m(n)
i,j =

(
∂3

x1ϕ
(n)
i

)
ψ

(n)
j –

(
∂2

x1ϕ
(n)
i

)(
∂x1ψ

(n)
j

)
+

(
∂x1ϕ

(n)
i

)(
∂2

x1ψ
(n)
j

)
– ϕ

(n)
i

(
∂3

x1ψ
(n)
j

)
,

m(n+1)
i,j = m(n)

i,j + ϕ
(n)
i ψ

(n+1)
j ,

(2.4)
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and ϕ
(n)
i ,ψ (n)

j are arbitrary functions satisfying

∂xk ϕ
(n)
i = ϕ

(n+k)
i , ∂xk ψ

(n)
j = –ψ

(n–k)
j , k = 1, 2, 3, 4. (2.5)

In order to derive solutions for BKP-II equation (2.1), consider the functions ϕ
(n)
i ,ψ (n)

j ,
and m(n)

i,j defined by

ϕ
(n)
i = pn

i eξi , ψ
(n)
j = (–qj)–neηj ,

m(n)
i,j = δij +

∫ x1
ϕ

(n)
j ψ

(n)
i dx1 = δij +

1
pi + qj

(
–

pi

qj

)n

eξi+ηj ,

ξi = pix1 + p2
i x2 + p3

i x3 + p4
i x4, ηj = qjx1 – q2

j x2 + q3
j x3 – q4

j x4,

where pi, qj are arbitrary constants, δij is the Kronecker delta notation. It is easy to verify
that ϕ

(n)
i ,ψ (n)

j , and m(n)
i,j satisfy (2.4) and (2.5). By taking

x1 = x, x2 = y, x3 =
4

3α
s, x4 = –2t,

bilinear equations (2.2a)–(2.2b) are reduced to the bilinear form (1.5a)–(1.5b) of the BKP-
II equation with δ = 1. Therefore, we get the following theorem.

Theorem 1 BKP-II equation (2.1) admits N-soliton solutions (1.4) with

f = τ0 =
∣∣∣∣δij +

1
pi + qj

eξi+ηj

∣∣∣∣
N×N

(2.6)

and

ξi = pix + p2
i y – 2p4

i t, ηj = qjx – q2
j y + 2q4

j t. (2.7)

According to Theorem 1, the one-soliton solutions for BKP-II equation (2.1) are given
by taking N = 1. In this case,

f = 1 +
1

p1 + q1
eξ1+η1 ,

and the one-soliton solutions take the form

u =
eξ1+η1

1 + 1
p1+q1

eξ1+η1
.

When p1 + q1 > 0, we get the non-singular one-soliton solutions

u =
p1 + q1

2
+

p1 + q1

2
tanh

{
1
2

[
ξ1 + η1 + ln

(
1

p1 + q1

)]}
. (2.8)

From (2.8) we find that the one-soliton solution is a kink soliton. By taking N = 2, we derive

f =

∣∣∣∣∣
1 + 1

p1+q1
eξ1+η1 1

p1+q2
eξ1+η2

1
p2+q1

eξ2+η1 1 + 1
p2+q2

eξ2+η2

∣∣∣∣∣
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Figure 1 Interaction of three solitons for the BKP-II equation with parameters
p1 = 1,q1 = 1.2,p2 = 0.8,q2 = 0.5,p3 = 1.5,q3 = 2

= 1 +
1

p1 + q1
eξ1+η1 +

1
p2 + q2

eξ2+η2

+
(p1 – p2)(q1 – q2)

(p1 + q1)(p1 + q2)(p2 + q1)(p2 + q2)
eξ1+ξ2+η1+η2 .

The two-soliton solutions can be written down from (1.4) and the above f . Similarly,
the three-soliton solutions in the Grammian determinant form can be obtained. Figure 1
presents the interaction of the three solitons for BKP-II equation (2.1). As the figure shows,
all the solitons are kink-type and the velocity and amplitude remain unchanged before and
after the collision, and therefore the interaction of the three solitons is an elastic interac-
tion.

3 Lump-soliton solutions for the BKP-I equation in the Grammian determinant
form

Similar to Sect. 2, we can construct soliton solutions in the Grammian determinant form
for the BKP-I equation

(uxt + uxxxy + 8uxuxy + 4uxxuy)x – uyyy = 0. (3.1)

Recently, Rao and his collaborators have proposed an effective method to derive semi-
rational solutions for the third-type Davey–Stewartson equation, the multi-component
long-wave-short-wave resonance interaction system, and the Fokas system [26–28]. In
what follows, by using the method proposed by Rao, we present semi-rational solutions
for the BKP-I equation in the following theorem.

Theorem 2 BKP-I equation (3.1) has semi-rational solutions (1.4) with

f = τ0, τ0 = det
1≤i,j≤N

(
m(0)

ij
)
, (3.2)

where the matrix element is given by

m(0)
i,j = eξi+ξ∗

j

ni∑
k=0

cik

(
pi

∂

∂pi
+ ξ ′

i

)ni–k nj∑
l=0

c∗
jl

(
p∗

j
∂

∂pi
+ ξ ′∗

j

)nj–l 1
pi + p∗

j
+ γijcini c

∗
jnj

, (3.3)

pi, pj, cik , cjl are arbitrary complex constants, γij are arbitrary real constants, and

ξi = pix + ip2
i y – 2ip4

i t, ξ ′
i = pix + 2ip2

i y – 8ip4
i t. (3.4)
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Proof Consider the functions ϕ
(n)
i ,ψ (n)

j , and m(n)
i,j defined by

ϕ
(n)
i = Aipn

i eξi , ψ
(n)
i = Bj(–qi)–neηj ,

m(n)
i,j = AiBj

[
γij +

1
pi + qj

(
–

pi

qj

)n

eξi+ηj

]
, (3.5)

ξi = pix1 + p2
i x2 + p3

i x3 + p4
i x4, ηj = qjx1 – q2

j x2 + q3
j x3 – q4

j x4,

where Ai and Bj are differential operators given by

Ai =
ni∑

k=0

cik

(
pi

∂

∂pi

)ni–k

, Bj =
nj∑

l=0

djl

(
qi

∂

∂qi

)nj–l

,

pi, qj, cik , and djl are all arbitrary complex constants, γij are arbitrary real constants. Obvi-
ously, ϕ

(n)
i ,ψ (n)

j , and m(n)
i,j satisfy (2.4) and (2.5). Therefore, τn = det1≤i,j≤N (m(n)

ij ) with (3.5)
are solutions of bilinear equations (2.2a)–(2.2b). Noting that

(
pi

∂

∂pi

)
pn

i eξi = pn
i eξi

(
pi

∂

∂pi
+ ξ ′

i + n
)

,

(
qi

∂

∂qi

)
(–qj)–neηj = (–qj)–neηj

(
qj

∂

∂qj
+ η′

j – n
)

,

where

ξ ′
i = pix1 + 2p2

i x2 + 3p3
i x3 + 4p4

i x4, η′
j = qjx1 – 2q2

j x2 + 3q3
j x3 – 4q4

j x4,

the matrix element m(n)
ij can be rewritten as

m(n)
i,j =

(
–

pi

qj

)n

eξi+ηj

ni∑
k=0

cik

(
pi

∂

∂pi
+ ξ ′

i + n
)ni–k

×
nj∑

l=0

djl

(
qi

∂

∂qi
+ η′

j – n
)nj–l 1

pi + qj
+ γijcini djnj .

By applying the variable transformation

x1 = x, x2 = iy, x3 =
4

3α
s, x4 = –2it,

and taking

qi = p∗
j , djl = c∗

jl, (3.6)

we have ξ ′∗
j = η′

j and Eqs. (2.2a)–(2.2b) are reduced to the bilinear form (1.5a)–(1.5b) of the
BKP-I equation with δ = –1. Setting f = τ0, we get the semi-rational solutions for BKP-I
equation (3.1) as given in Theorem 2.

The semi-rational solutions for the BKP-I equation consist of lumps and kink solitons
to the equation. Therefore, we call them lump-soliton solutions. Taking γij = 0 and by
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the gauge invariance of τn function, we can get lump solutions for BKP-I equation (3.1).
Moreover, in (3.3) we can normalize ci0 = 1 by a scaling of f , so we take ci0 = 1 here-
after. �

4 Discussion on the interactions between lumps and kink solitons
In this section, we investigate the dynamics of lump-soliton solutions for the BKP-I equa-
tion. It is shown that the fascinating phenomena of fusion and fission can be observed in
the study of lump-soliton solutions for the equation.

4.1 Dynamics of one lump and one soliton
Taking N = 1 and n1 = 1 in (3.2), we can get the fundamental lump-soliton solutions for
the BKP-I equation as

u = (ln f )x, (4.1)

where

f = eξ1+ξ∗
1

1∑
k=0

c1k

(
p1

∂

∂p1
+ ξ ′

1

)1–k 1∑
l=0

c∗
1l

(
p∗

1
∂

∂p∗
1

+ ξ ′∗
1

)1–l 1
p1 + p∗

1
+ γ11c11c∗

11

=
eξ1+ξ∗

1

p1 + p∗
1

[(
ξ ′

1 + c11 –
p1

p1 + p∗
1

)(
ξ ′∗

1 + c∗
11 –

p∗
1

p1 + p∗
1

)
+

p1p∗
1

(p1 + p∗
1)2

]

+ γ11c11c∗
11, (4.2)

ξ1 = p1x + ip2
1y – 2ip4

1t, ξ ′
1 = p1x + 2ip2

1y – 8ip4
1t, c11 is an arbitrary complex constant. When

γ11 = 0, the fundamental lump-soliton solutions reduce to lump solutions, therefore we
take γ11 = 1. For the nonsingularity of u, p1 is not purely imaginary.

We observe the time evolution of the fundamental lump-soliton solutions (4.1) on the x–
y plane. From Fig. 2(a) and Fig. 2(b), we can see that when t � 0 this solution contains only
one kink soliton and a lump appears from the kink soliton gradually. In Fig. 2(c), the lump
separates from the kink soliton and then spreads along the opposite direction to the kink
soliton. When t � 0, this solution contains one kink soliton and one lump. In this case,
the fundamental lump-soliton solution shows the fission phenomenon of a lump from a
kink soliton. From Fig. 3(a) and Fig. 3(b), we can observe that this solution comprises one
kink soliton and one lump when t � 0. As time goes on, the lump moves towards the kink
soliton and then collides with the kink soliton. After the collision, the lump merges with
the kink soliton in Fig. 3(c). When t � 0, the fundamental lump-soliton solution comprises
only one kink soliton. In this case, solution (4.1) shows the fusion phenomenon of a lump
into a kink soliton.

4.2 Dynamics of multiple lump-soliton solutions
Taking N > 1, ni = 1,γii = 1 in (3.2), the multiple lump-soliton solutions for the BKP-I equa-
tion can be constructed. Considering the case of N = 2, the function f is given by

f =

∣∣∣∣∣
m(0)

11 m(0)
12

m(0)
21 m(0)

22

∣∣∣∣∣ ,
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Figure 2 Plot of a lump and a kink soliton fission with parameters p1 = 0.3 – 0.4i, c11 = 1,γ11 = 1

Figure 3 Plot of a lump and a kink soliton fusion with parameters p1 = 0.4 + 0.5i, c11 = 1,γ11 = 1

where

m(0)
ij =

eξi+ξ∗
j

pi + p∗
j

[(
ξ ′

i + ci1 –
pi

pi + p∗
j

)(
ξ ′∗

j + c∗
j1 –

p∗
j

pi + p∗
j

)
+

pip∗
j

(pi + p∗
j )2

]
+ γijci1c∗

j1, (4.3)

ξi and ξ ′
i are given by (3.4), p1, p2, c11, c21 are arbitrary complex constants.

Now we observe the dynamical behaviors of the multiple lump-soliton solutions. From
Fig. 4, we observe that two lumps emerge from two kink solitons gradually and then sep-
arate completely. This multiple lump-soliton solution comprises only two kink solitons
when t � 0 and evolves into two lumps and two kink solitons when t � 0. From Fig. 5,
we observe that two lumps move towards two kink solitons and then merge with the two
kink solitons after the interaction. This solution comprises two lumps and two kink soli-
tons when t � 0 and reduces to two kink solitons when t � 0. Therefore, Fig. 4 and Fig. 5
show the fission process of two lumps from two kink solitons and the fusion process of
two lumps and two kink solitons respectively. However, from Fig. 6, we observe multiple
lump-soliton solution which has different dynamics from those in Fig. 4 and Fig. 5. Obvi-
ously, the multiple lump-soliton solution is composed of one lump and two kink solitons
all the time and there is no fission or fusion of the lump and the two kink solitons, but the
amplitude and the propagation direction of the lump change after the collision. Therefore,
the collision is an inelastic collision.

4.3 Dynamics of higher-order lump-soliton solutions
Taking N = 1 and n1 > 1 in (3.1), the higher-order lump-soliton solutions for the BKP-I
equation can be derived. To demonstrate the interactions of the higher-order lump-soliton
solutions, we set n1 = 3 to derive third-order lump-soliton solutions as

f = eξ1+ξ∗
1

[(
p1

∂

∂p1
+ ξ ′

1

)3

+ c11

(
p1

∂

∂p1
+ ξ ′

1

)2

+ c12

(
p1

∂

∂p1
+ ξ ′

1

)
+ c13

]
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Figure 4 Plot of two lumps and two kink solitons fission with parameters
p1 = 0.3 – 0.4i,p2 = 0.5 – 0.6i, c11 = c21 = 1,γ11 = γ22 = 1,γ12 = γ21 = 0

Figure 5 Plot of two lumps and two kink solitons fusion with parameters
p1 = 0.3 + 0.4i,p2 = 0.5 + 0.6i, c11 = c21 = 1,γ11 = γ22 = 1,γ12 = γ21 = 0

Figure 6 Plot of one lump and two kink solitons interaction with parameters
p1 = 0.3 – 0.4i,p2 = 0.5 + 0.6i, c11 = c21 = 1,γ11 = γ22 = 1,γ12 = γ21 = 0

×
[(

p∗
1

∂

∂p∗
1

+ ξ ′∗
1

)3

+ c∗
11

(
p∗

1
∂

∂p∗
1

+ ξ ′∗
1

)2

+ c∗
12

(
p∗

1
∂

∂p∗
1

+ ξ ′∗
1

)
+ c∗

13

]
1

p1 + p∗
1

+ γ11c13c∗
13, (4.4)

where ξi and ξ ′
i are given by (3.4), γ11 is nonzero real constant, c11, c12, c13 are arbitrary

complex constants.
To illustrate the dynamics of the third-order lump-soliton solutions, the time evolution

of the solution is plotted in Fig. 7 and Fig. 8. As Fig. 7 shows, three lumps arise from a kink
soliton and then separate from the soliton gradually. As shown in Fig. 8, three lumps come
to interact with a kink soliton and then fuse into the kink soliton completely. Therefore,
the dynamics of these higher-order lump-soliton solutions is broadly analogous to that of
fundamental lump-soliton solutions, which is shown in Fig. 2 and Fig. 3, but more lumps
interact with a kink soliton.
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Figure 7 Plot of three lumps and a kink soliton fission with parameters
p1 = 0.5 – 0.4i, c11 = c12 = c13 = 1,γ11 = 1

Figure 8 Plot of three lumps and a kink soliton fusion with parameters
p1 = 0.5 + 0.4i, c11 = c12 = c13 = 1,γ11 = 1

5 Conclusions
In this paper, we investigate the BKP equation by employing Hirota’s direct method and the
KP hierarchy reduction method. N-soliton solutions in the Grammian determinant form
for the BKP-II equation are derived and soliton collisions are illustrated through graphs.
Lump-soliton solutions in the Grammian determinant form for the BKP-I equation are
obtained and the dynamics of three subclasses of the solutions are shown graphically. The
fundamental lump-soliton solutions describe the fission of a lump from a kink soliton and
the fusion of a lump into a kink soliton. The dynamical behaviors of higher-order lump-
soliton solutions are very similar to fundamental lump-soliton solutions, except that the
higher-order lump-soliton solutions comprise more lumps interacting with a kink soliton.
However, the multiple lump-soliton solutions possess more complex structures and dy-
namical behaviors than the fundamental lump-soliton solutions and higher-order lump-
soliton solutions. When N = 2, the multiple lump-soliton solutions not only exhibit the
fission of two lumps from two kink solitons and the fusion of two lumps into two kink
solitons, but also the inelastic collision of one lump and two kink solitons. It should be
noted that the interaction scenarios of nonlinear waves for NLEEs are diverse [3, 4, 15–
17, 26–31]. In practice, the fusion and fission phenomena have been explored in some
physical fields such as hydrodynamics, nuclear physics, and plasma physics [46, 47]. It is
hoped that the obtained results will enrich the applications of NLEEs in nonlinear scien-
tific fields.
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