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Abstract
In this work, we introduce a generalized fixed point theorem using a complex C-class
function as a new tool in complex valued Gb-metric spaces. Moreover, we define
α – (F,ψ ,ϕ)-contractive type and α-admissible mapping. Then we prove a fixed point
theorem using these notions and the complex C-class function. The obtained results
generalize some facts in the literature.
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1 Introduction
Fixed point theory has great importance in science and mathematics. Since this area has
been developed very fast over the past two decades due to huge applications in various
fields such as nonlinear analysis, topology and engineering problems, it has attracted con-
siderable attention from researchers.

In 1989, Bakhtin [1] presented b-metric spaces. Since then, researchers have performed
significant studies such as [2–6] in this type metric space. After the complex valued metric
space was defined as a new concept, this idea has been used many times. For example, the
complex valued b-metric spaces are given in [7]. G-metric spaces [8] have been defined
and then researchers have obtained important results (see [9–15]).

After introducing Gb-metric spaces in [16], the Banach and Kannan fixed point theo-
rems [17] were proved for Gb-metric spaces. There are also other significant studies [18–
21] on Gb-metric spaces.

In recent times, Ansari [22] has investigated the notion of C-class function. He has pre-
sented new fixed point results using this function. For some of them, see [23–30].

This paper starts with Sect. 2 which consists of the required background. Then a com-
mon fixed point theorem has been proved and a corollary with an illustrating example is
presented. After introducing the α – (F ,ψ ,ϕ)-contractive type and α-admissible mapping
and complex C-class function, we give the proof of a new fixed point theorem.
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2 Preliminaries
In this part, some useful notions and facts will be given. A partial order � on C, which is
the set of complex numbers, can be defined as follows:

τ1 � τ2 : ⇔ �(τ1) ≤ �(τ2) and �(τ1) ≤ �(τ2).

We write τ1 � τ2 if one of the following holds:
(C1) �(τ1) = �(τ2) and �(τ1) = �(z2),
(C2) �(τ1) = �(τ2) and �(τ1) < �(z2),
(C3) �(τ1) < �(τ2) and �(τ1) = �(z2),
(C4) �(τ1) < �(τ2) and �(τ1) < �(z2).

We use τ1 � τ2 if τ1 �= τ2 and one of (C2), (C3) and (C4) holds and we denote τ1 ≺ τ2 if only
(C4) holds.

(1) If u, v ∈ R with u ≤ v, then uτ ≺ vτ for each τ ∈C.
(2) If 0 � τ1 � τ2, then |τ1| < |τ2|.
(3) If τ1 � τ2 and τ2 ≺ τ3, then τ1 ≺ τ3.

Definition 2.1 ([17]) For a nonempty set X and a real number s ≥ 1, if for a map G :
X × X × X →C holds the following:

(CGb1) G(ξ1, ξ2, ξ3) = 0 if ξ1 = ξ2 = ξ3,
(CGb2) 0 ≺ G(ξ1, ξ1, ξ2) for all ξ1, ξ2 ∈ X with ξ1 �= ξ2,
(CGb3) G(ξ1, ξ1, ξ2) � G(ξ1, ξ2, ξ3) for all ξ1, ξ2, ξ3 ∈ X with ξ2 �= ξ3,
(CGb4) G(ξ1, ξ2, ξ3) = G(ρ{ξ1, ξ2, ξ3}), where ρ is a permutation of ξ1, ξ2, ξ3,
(CGb5) G(ξ1, ξ2, ξ3) � s(G(ξ1,κ ,κ) + G(κ , ξ2, ξ3)) for all ξ1, ξ2, ξ3,κ ∈ X ,

we say that G is a complex valued Gb-metric and the pair (X, G) is a complex valued Gb-
metric space.

Definition 2.2 ([17]) Let {xn} be a sequence in a complex valued Gb-metric space (X, G).
(1) {xn} is complex valued Gb-convergent to ξ if, for every κ ∈C with 0 ≺ κ , there is a

natural number ω such that G(ξ , xn, xm) ≺ κ for all n, m ≥ ω.
(2) {xn} is said to be complex valued Gb-Cauchy if, for every κ ∈C with 0 ≺ κ , there

exists ω ∈N such that G(xn, xm, xl) ≺ κ for all n, m, l ≥ ω.
(3) (X, G) is called complex valued Gb-complete if every complex valued Gb-Cauchy

sequence is complex valued Gb-convergent.

Ege [17] proves that a sequence {xn} in a complex valued Gb-metric space is complex
valued Gb-convergent to ξ iff |G(ξ , xn, xm)| → 0 as n, m → ∞.

Theorem 2.3 ([17]) For a sequence {xn} in a complex valued Gb-metric space (X, G), the
following statements are equivalent:

(1) {xn} is complex valued Gb-convergent to a point ξ .
(2) |G(xn, xn, ξ )| → 0 as n → ∞.
(3) |G(xn, ξ , ξ )| → 0 as n → ∞.
(4) |G(xm, xn, ξ )| → 0 as m, n → ∞.

Theorem 2.4 ([17]) A sequence {xn} is a complex valued Gb-Cauchy sequence if and only
if |G(xn, xm, xl)| → 0 as n, m, l → ∞.
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The notion of a C-class function was presented in [22]. For any μ, t ∈ [0,∞), for a con-
tinuous function F : [0,∞)2 →R holds the following:

(i) F(μ,χ ) ≤ μ;
(ii) F(μ,χ ) = μ implies that either μ = 0 or χ = 0.
Then F is said to be C-class function. C denotes the class of all C-functions.

Example 2.5 ([22]) The following are examples of C-class functions:
(i) F(μ,χ ) = μ – χ .

(ii) F(μ,χ ) = mμ, for some m ∈ (0, 1).
(iii) F(μ,χ ) = μ

(1+χ )r , for a positive real number r.
(iv) F(μ,χ ) = (μ + l)(1/(1+χ )r) – l, where l > 1 for r ∈ (0,∞).
(v) F(μ,χ ) = μ logχ+u u for u > 1.

Let Φu be the class of the continuous functions ϕ : [0,∞) → [0,∞) satisfying ϕ(χ ) > 0
for χ > 0 and ϕ(0) ≥ 0.

Definition 2.6 ([25]) For any μ, t ∈ S = {z ∈C : 0 � z}, if a continuous function F : S2 →C

satisfies the following:
(i) F(μ,χ ) � μ,

(ii) if F(μ,χ ) = μ, then either μ = 0 or χ = 0,
then it is called a complex C-class function. We denote the class of all complex C-class
functions by the same symbol C .

As an example, we can give the following: Let S = {z ∈C : 0 � z}.
(1) F(μ,χ ) = φ(μ) where φ : S → S is continuous, φ(0) = 0 and φ(χ ) � 0 if χ � 0.
(2) F(μ,χ ) = μβ(μ), where β : [0,∞) → [0, 1) is continuous and μ ∈ S.
Let Ψ denote the class of continuous functions ψ : S → S satisfying ψ(χ ) � 0 iff χ � 0

and ϕ(0) = 0.
Φu will denote the class of continuous functions ϕ : S → S satisfying ϕ(χ ) � 0 iff χ � 0

and ϕ(0) 
 0.
Our aim is to give some different generalizations of the following theorems from the

literature using C-class functions.

Theorem 2.7 ([18]) Let {Tn} be a sequence of self-mappings of a complete complex valued
Gb-metric space (X, G) such that

G
(
Ti(x), Tj(y), Tj(z)

)
� βi,j

[
G

(
x, Ti(x), Ti(x)

)
+ G

(
y, Tj(y), Tj(z)

)]
+ γi,jG(x, y, z)

for x, y, z ∈ X with x �= y, 0 ≤ βi,j,γi,j < 1, i, j = 1, 2, . . . .
If

∑∞
i=1( βi,i+1+γi,i+1

1–βi,i+1
) is an α-series, then {Tn} has a unique common fixed point in X.

Theorem 2.8 ([18]) Let (X, G) be a complete complex valued Gb-metric space and T : X →
X be an α – ψ contractive mapping of type A satisfying the following conditions:

(i) T is α-admissible,
(ii) There exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ 1,

(iii) If {xn} is a sequence in X such that α(xn, xn+1, xn+1) ≥ 1 for all n and xn → x ∈ X as
n → ∞, then α(xn, x, xn+1) ≥ 1 for all n.
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Consider an element z ∈ X such that α(x, z, z) ≥ 1 and α(y, z, z) ≥ 1 for all x, y ∈ X. Then T
has a unique fixed point.

3 Main results
Theorem 3.1 Let {Tn} be a sequence of self-mappings of a complete complex valued Gb-
metric space (X, G) such that

ψ
(
G

(
Ti(x), Tj(y), Tj(z)

))

� F
(

ψ

(
1

αi,j + βi,j + δi,j

[
αi,jG

(
x, Ti(x), Ti(x)

)
+ βi,jG

(
y, Tj(y), Tj(z)

)

+ δi,jG(x, y, z)
]
)

,

ϕ

(
1

αi,j + βi,j + δi,j

[
αi,jG

(
x, Ti(x), Ti(x)

)
+ βi,jG

(
y, Tj(y), Tj(z)

)

+ δi,jG(x, y, z)
]))

(3.1)

for x, y, z ∈ X with x �= y, 0 ≤ αi,j,βi,j, δi,j and αi,j + βi,j + δi,j > 0, i, j = 1, 2, . . . , where ψ ∈ Ψ ,
F ∈ C and ϕ ∈ Φu. {Tn} has a unique common fixed point in X.

Proof Consider a sequence as xn = Tn(xn–1) for an element x0 ∈ X where n = 1, 2, . . . . If we
use (3.1), we obtain

ψ
(
G(x1, x2, x2)

)

= ψ
(
G

(
T1(x0), T2(x1), T2(x1)

))

� F
(

ψ

(
1

α1,2 + β1,2 + δ1,2

[
α1,2G

(
x0, T1(x0), T1(x0)

)
+ β1,2G

(
x1, T2(x1), T2(x1)

)

+ δ1,2G(x0, x1, x1)
]
)

,

ϕ

(
1

α1,2 + β1,2 + δ1,2

[
α1,2G

(
x0, T1(x0), T1(x0)

)
+ β1,2G

(
x1, T2(x1), T2(x1)

)

+ δ1,2G(x0, x1, x1)
]))

= F
(

ψ

(
1

α1,2 + β1,2 + δ1,2

[
α1,2G(x0, x1, x1) + β1,2G(x1, x2, x2) + δ1,2G(x0, x1, x1)

])
,

ϕ

(
1

α1,2 + β1,2 + δ1,2

[
α1,2G(x0, x1, x1) + β1,2G(x1, x2, x2) + δ1,2G(x0, x1, x1)

]
))

� ψ

(
α1,2 + δ1,2

α1,2 + β1,2 + δ1,2
G(x0, x1, x1) +

β1,2

α1,2 + β1,2 + δ1,2
G(x1, x2, x2)

)
.

From the property of F , ψ and monotonocity increasing of ψ , we get

G(x1, x2, x2) � G(x0, x1, x1).
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Moreover, by the following inequalities:

ψ
(
G(x2, x3, x3)

)

= ψ
(
G

(
T2(x1), T3(x2), T3(x2)

))

� F
(

ψ

(
1

α2,3 + β2,3 + δ2,3

[
α2,3G

(
x1, T2(x1), T2(x1)

)
+ β2,3G

(
x2, T3(x2), T3(x2)

)

+ δ2,3G(x1, x2, x2)
])

,

ϕ

(
1

α2,3 + β2,3 + δ2,3

[
α2,3G

(
x1, T2(x1), T2(x1)

)
+ β2,3G

(
x2, T3(x2), T3(x2)

)

+ δ2,3G(x1, x2, x2)
]
))

= F
(

ψ

(
1

α2,3 + β2,3 + δ2,3

[
α2,3G(x1, x2, x2) + β2,3G(x2, x3, x3) + δ2,3G(x1, x2, x2)

]
)

,

ϕ

(
1

α2,3 + β2,3 + δ2,3

[
α2,3G(x1, x2, x2) + β2,3G(x2, x3, x3) + δ2,3G(x1, x2, x2)

]))

� ψ

(
α2,3 + δ2,3

α2,3 + β2,3 + δ2,3
G(x1, x2, x2) +

β2,3

α2,3 + β2,3 + δ2,3
G(x2, x3, x3)

)
,

we obtain

G(x2, x3, x3) � G(x1, x2, x2).

If the same procedure is applied repeatedly

ψ
(
G(xn, xn+1, xn+1)

)
= ψ

(
G

(
Tn(xn–1), Tn+1(xn), Tn+1(xn)

))

� F
(

ψ

(
1

αn,n+1 + βn,n+1 + δn,n+1

[
αn,n+1G

(
xn–1, Tn(xn–1), Tn(xn–1)

)

+ βn,n+1G
(
xn, Tn+1(xn), Tn+1(xn)

)
+ δn,n+1G(xn–1, xn, xn)

]
)

,

ϕ

(
1

αn,n+1 + βn,n+1 + δn,n+1

[
G

(
xn–1, Tn(xn–1), Tn(xn–1)

)

+ βn,n+1G
(
xn, Tn+1(xn), Tn+1(xn)

)
+ δn,n+1G(xn–1, xn, xn)

]))

= F
(

ψ

(
1

αn,n+1 + βn,n+1 + δn,n+1

[
αn,n+1G(xn–1, xn, xn)

+ βn,n+1G(xn, xn+1, xn+1) + δn,n+1G(xn–1, xn, xn)
]
)

,

ϕ

(
1

αn,n+1 + βn,n+1 + δn,n+1

[
αn,n+1G(xn–1, xn, xn)

+ βn,n+1G(xn, xn+1, xn+1) + δn,n+1G(xn–1, xn, xn)
]))

, (3.2)
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we get G(xn, xn+1, xn+1) � G(xn–1, xn, xn). Thus {G(xn, xn+1, xn+1)} is a decreasing sequence
in C. So we say that it is Gb-convergent to 0 � χ ∈ C. We assert that χ = 0. To show this,
assume that χ � 0. If we take the limit of (3.2), we get

ψ(χ ) � F
(

ψ

(
1

αn,n+1 + βn,n+1 + δn,n+1
[αn,n+1χ + βn,n+1χ + δn,n+1χ ]

)
,

ϕ

(
1

αn,n+1 + βn,n+1 + δn,n+1
[αn,n+1χ + βn,n+1χ + δn,n+1χ ]

))

= F
(
ψ(χ ),ϕ(χ )

)

which implies ψ(χ ) = 0 or ϕ(χ ) = 0, namely χ = 0. But this is a contradiction. So χ = 0.
i.e.,

lim
n→∞ G(xn, xn+1, xn+1) = 0. (3.3)

We will show that the sequence {xn} is a Gb-Cauchy by assuming the contrary. If we use
(3.1), we obtain

ψ
(
G(xn, xm, xm)

)
= ψ

(
G

(
Tn(xn–1), Tm(xm–1), Tm(xm–1)

))

� F
(

ψ

(
1

αn,m + βn,m + δn,m

[
αn,mG

(
xn–1, Tn(xn–1), Tn(xn–1)

)

+ βn,mG
(
xm–1, Tm(xm–1), Tm(xm–1)

)
+ δn,mG(xn–1, xm–1, xm–1)

]
)

,

ϕ

(
1

αn,m + βn,m + δn,m

[
αn,mG

(
xn–1, Tn(xn–1), Tn(xn–1)

)

+ βn,mG
(
xm–1, Tm(xm–1), Tm(xm–1)

)
+ G(xn–1, xm–1, xm–1)

]))

= F
(

ψ

(
1

αn,m + βn,m + δn,m

[
αn,mG(xn–1, xn, xn)

+ βn,mG(xm–1, xm, xm) + δn,mG(xn–1, xm–1, xm–1)
]
)

,

ϕ

(
1

αn,m + βn,m + δn,m

[
αn,mG(xn–1, xn, xn)

+ βn,mG(xm–1, xm, xm) + G(xn–1, xm–1, xm–1)
]))

.

Using the same procedure, we get

ψ(ε) � F
(

ψ

(
1

αn,m + βn,m + δn,m
[αn,mε + βn,mε + δn,mε]

)
,

ϕ

(
1

αn,m + βn,m + δn,m
[αn,mε + βn,mε + δn,mε]

))

= F
(
ψ(ε),ϕ(ε)

)
,

which implies ψ(ε) = 0 or ϕ(ε) = 0. Namely, ε = 0 but this is a contradiction. So {xn} is a
complex valued Gb-Cauchy sequence. By the Gb-completeness of X, {xn} converges to an
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element v in X. From (3.1), we have

ψ
(
G

(
xn, Tm(v), Tm(v)

))
= ψ

(
G

(
Tn(xn–1), Tm(v), Tm(v)

))

� F
(

ψ

(
1

αn,m + βn,m + δn,m

[
αn,mG

(
xn–1, Tn(xn–1), Tn(xn–1)

)

+ βn,mG
(
v, Tm(v), Tm(v)

)
+ δn,mG(xn–1, v, v)

]
)

,

ϕ

(
1

αn,m + βn,m + δn,m

[
αn,mG

(
xn–1, Tn(xn–1), Tn(xn–1)

)

+ βn,mG
(
v, Tm(v), Tm(v)

)
+ δn,mG(xn–1, v, v)

]))

= F
(

ψ

(
1

αn,m + βn,m + δn,m

[
αn,mG(xn–1, xn, xn)

+ βn,mG
(
v, Tm(v), Tm(v)

)
+ δn,mG(xn–1, v, v)

]
)

,

ϕ

(
1

αn,m + βn,m + δn,m

[
αn,mG(xn–1, xn, xn)

+ βn,mG
(
v, Tm(v), Tm(v)

)
+ δn,mG(xn–1, v, v)

]))

for every positive integer m. If we take the limit as n → ∞ and use (CGb1), we have

ψ
(
G

(
v, Tm(v), Tm(v)

))
� F

(
ψ

(
1

αn,m + βn,m + δn,m

[
αn,mG(v, v, v)

+ βn,mG
(
v, Tm(v), Tm(v)

)
+ δn,mG(v, v, v)

])
,

ϕ

(
1

αn,m + βn,m + δn,m

[
αn,mG(v, v, v)

+ βn,mG
(
v, Tm(v), Tm(v)

)
+ δn,mG(v, v, v)

]
))

= F
(

ψ

(
βn,m

αn,m + βn,m + δn,m
G

(
v, Tm(v), Tm(v)

)
)

,

ϕ

(
βn,m

αn,m + βn,m + δn,m
G

(
v, Tm(v), Tm(v)

)))
,

which implies

ψ

(
βn,m

αn,m + βn,m + δn,m
G

(
v, Tm(v), Tm(v)

)
)

= 0 or

ϕ

(
βn,m

αn,m + βn,m + δn,m
G

(
v, Tm(v), Tm(v)

)
)

= 0.

That is, βn,m
αn,m+βn,m+δn,m

G(v, Tm(v), Tm(v)) = 0, we deduce that Tm(v) = v. Therefore, v is a
common fixed point of {Tm}.
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We now prove the uniqueness. Assume that u is a different common fixed point of {Tm}
where u �= v. Then (3.1) gives the following result:

ψ
(
G(v, u, u)

)
= ψ

(
G

(
Tm(v), Tm(u), Tm(u)

))

� F
(

ψ

(
1

αm,m + βm,m + δm,m

× [
αm,mG

(
v, Tm(v), Tm(v)

)
+ βm,mG

(
u, Tm(u), Tm(u)

)

+ δm,mG(v, u, u)
])

,

ϕ

(
1

αm,m + βm,m + δm,m

× [
αm,mG

(
v, Tm(v), Tm(v)

)
+ βm,mG

(
u, Tm(u), Tm(u)

)

+ δm,mG(v, u, u)
]
))

.

By the limit as m → ∞, we obtain

ψ
(
G(v, u, u)

)

� F
(

ψ

(
1

αm,m + βm,m + δm,m

[
αm,mG(v, v, v) + βm,mG(u, u, u) + δm,mG(v, u, u)

]
)

,

ϕ

(
1

αm,m + βm,m + δm,m

[
αm,mG(v, v, v) + βm,mG(u, u, u) + δm,mG(v, u, u)

]))

= F
(

ψ

(
βm,m

αm,m + βm,m + δm,m
G(v, u, u)

)
,ϕ

(
βm,m

αm,m + βm,m + δm,m
G(v, u, u)

))
,

which implies ψ( βm,m
αm,m+βm,m+δm,m

G(v, u, u)) = 0 or ϕ( βm,m
αm,m+βm,m+δm,m

G(v, u, u)) = 0. As a result,
we have v = u. This completes the proof. �

Taking F(μ,χ ) = μη(μ), where η : [0,∞) → [0, 1) is continuous function and μ ∈ S =
{z ∈C : 0 � z} in Theorem 3.1, we have the following.

Corollary 3.2 Let {Tn} be a sequence of self-mappings of complex valued Gb-complete met-
ric space (X, G) such that

ψ
(
G

(
Ti(x), Tj(y), Tj(z)

))

� ψ

(
1

αi,j + βi,j + δi,j

[
αi,jG

(
x, Ti(x), Ti(x)

)
+ βi,jG

(
y, Tj(y), Tj(z)

)

+ δi,jG(x, y, z)
])

η

(
ψ

(
1

αi,j + βi,j + δi,j

[
αi,jG

(
x, Ti(x), Ti(x)

)

+ βi,jG
(
y, Tj(y), Tj(z)

)
+ δi,jG(x, y, z)

]
))

(3.4)

for x, y, z ∈ X with x �= y, 0 ≤ αi,j,βi,j, δi,j and αi,j + βi,j + δi,j > 0, i, j = 1, 2, . . . , where η :
[0,∞) → [0, 1) is continuous and ψ ∈ Ψ . Then {Tn} has a unique common fixed point
in X.
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Example 3.3 Consider the set X = [–1, 1]. (X, G) is a complex valued Gb-metric space [17]
where G : X × X × X →C is defined for all u, v, w ∈ X as follows:

G(u, v, w) =
(|u – v| + |v – w| + |w – u|)2.

Let S = {z ∈C : 0 � z}. Define the following maps:
• F : X × X → X with F(μ,χ ) = μ

2 i, where μ ∈ S.
• Tn(u) = u for all n ∈N and u ∈ X .
• ψ : S → S with ψ(μ) = μ.

Then {Tn} satisfies (3.1) for u, v, w ∈ X with u �= v, 0 ≤ αi,j,βi,j, δi,j and αi,j + βi,j + δi,j > 0,
where i, j = 1, 2, . . . . 0 is the unique common fixed point of {Tn}.

Let us define the α – (F ,ψ ,ϕ)-contractive self-mapping as a new concept in complex
valued Gb-metric space.

Definition 3.4 Let (X, G) be a complex valued Gb-metric space. A mapping T : X → X is
called α – (F ,ψ ,ϕ)-contractive mapping of type A if there exist functions α : X ×X ×X →
[0,∞), F ∈ C, ψ ∈ Ψ (which has a property such that limn→∞ ψn(t) = 0 for t ∈ C) and
ϕ ∈ Φu such that

α(x, y, Tx)ψ
(
G

(
Tx, Ty, T2x

))

� F
(
ψ

(
G(x, y, Tx)

)
,ϕ

(
G(x, y, Tx)

))
for all x, y, z ∈ X. (3.5)

Definition 3.5 ([18]) Let (X, G) be a complex valued Gb-metric space and α : X ×X ×X →
[0,∞) be a given mapping. A mapping T : X → X is said to be α-admissible if x, y ∈ X,
α(x, y, z) ≥ 1 implies α(Tx, Ty, Tz) ≥ 1.

Theorem 3.6 Suppose that (X, G) is a complex valued Gb-complete metric space. Let T :
X → X be an α – (F ,ψ ,ϕ)-contractive mapping of type A and satisfy the following:

(i) T is α-admissible,
(ii) there is an element x0 in X such that α(x0, Tx0, Tx0) ≥ 1,

(iii) if a sequence {xn} in X satisfies α(xn, xn+1, xn+1) ≥ 1 for all n and xn → x ∈ X as
n → ∞, then α(xn, x, xn+1) ≥ 1 for all n.

T has a unique fixed point if there is an element z ∈ X such that α(x, z, z) ≥ 1 and
α(y, z, z) ≥ 1 for all x, y ∈ X.

Proof Assume that there is an element x0 ∈ X such that α(x0, Tx0, Tx0) ≥ 1. Consider a
sequence {xn} in X defined as xn+1 = Txn. If xn = xn+1 for some n ∈ N, since xn is a fixed
point for T , we assume that xn �= xn+1 for all n ∈N.

Using (i), we obtain α(x0, x1, x1) = α(x0, Tx0, Tx0) ≥ 1 implies that α(Tx0, Tx1, Tx1) =
α(x1, x2, x2) ≥ 1. From induction

α(xn, xn+1, xn+1) ≥ 1 for all n ∈N. (3.6)

Since

G(xn, xn+1, xn+1) = G(Txn–1, Txn, Txn) = G
(
Txn–1, Txn, T2xn–1

)
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and by Definition 3.4, we get

ψ
(
G(xn, xn+1, xn+1)

)
� α(xn–1, xn, xn)ψ

(
G(xn, xn+1, xn+1)

)

= α(xn–1, xn, xn)ψ
(
G

(
Txn–1, Txn, T2xn–1

))

� F
(
ψ

(
G(xn–1, xn, xn)

)
,ϕ

(
G(xn–1, xn, xn)

))

� ψ
(
G(xn–1, xn, xn)

)
.

Therefore we get ψ(G(xn, xn+1, xn+1)) � ψ(G(xn–1, xn, xn)) as α(xn–1, xn, xn) ≥ 1. Since ψ is
non-decreasing, we conclude

G(xn, xn+1, xn+1) � G(xn–1, xn, xn) for all n ≥ 1. (3.7)

Hence {G(xn, xn+1, xn+1)} is the decreasing sequence in C and so it is Gb-convergent to
0 � χ ∈C.

We will show that χ = 0. Suppose, to the contrary, that χ � 0. The limit case in (3.2)
shows that

ψ(χ ) � F
(
ψ(χ ),ϕ(χ )

)
,

which implies ψ(χ ) = 0 or ϕ(χ ) = 0. Namely, χ = 0. But it is a contradiction. Thus, χ = 0.
i.e.,

lim
n→∞ G(xn, xn+1, xn+1) = 0. (3.8)

By (CGb5) and (3.7), we get

G(xn, xp, xp) � s
[
G(xn, xn+1, xn+1)

]
+ s2[G(xn+1, xn+2, xn+2)

]
+ · · · + sp–n[G(xp–1, xp, xp)

]

�
p–1∑

k=n

sk–n+1G(xk , xk+1, xk+1)

...

�
p–1∑

k=n

sk–n+1G(x0, x1, x1)

and consequently from (3.8)

lim
n,p→∞

∣
∣G(xn, xp, xp)

∣
∣ = 0.

The sequence {xn} is a complex valued Gb-Cauchy. Since (X, G) is a complex valued Gb-
complete, there is an element υ∗ ∈ X such that xn → υ∗ as n → ∞. Considering (3.6) and
(iii), then we obtain

α
(
xn,υ∗,υ∗) ≥ 1 for all n ≥ 0. (3.9)
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By (3.5) and (3.9), we find

G
(
xn+1, Tυ∗, xn+2

)
= G

(
Txn, Tυ∗, T2xn

)

� α
(
xn,υ∗, xn+1

)
G

(
Txn, Tυ∗, T2xn

)

� F
(
ψ

(
G

(
xn,υ∗, xn+1

))
,ϕ

(
G

(
xn,υ∗, xn+1

)))

� ψ
(
G

(
xn,υ∗, xn+1

))
.

Taking the limit,

G
(
υ∗, Tυ∗,υ∗) � ψ

(
G

(
υ∗,υ∗,υ∗)).

From Theorem 2.3 and (CGb1), we have

lim
n→∞

∣∣G
(
υ∗, Tυ∗,υ∗)∣∣ = 0

as ψ is continuous at χ = 0. As a result, υ∗ = Tυ∗.
To complete the proof, we show the uniqueness. Suppose that ϑ∗ �= υ∗ is another fixed

point of T . Then there is a point z ∈ X such that α(υ∗,υ∗, z) ≥ 1 and α(ϑ∗,ϑ∗, z) ≥ 1. By
induction and (i), we have

α
(
υ∗,υ∗, Tnz

) ≥ 1 and α
(
ϑ∗,ϑ∗, Tnz

) ≥ 1 (3.10)

for all n = 1, 2, . . . . Equations (3.5) and (3.10) give the following result:

G
(
υ∗, Tnz,υ∗) = G

(
Tυ∗, T

(
Tn–1z

)
, T2υ∗)

� α
(
υ∗, Tn–1z, Tυ∗)G

(
Tυ∗, T

(
Tn–1z

)
, T2υ∗)

� F
(
ψ

(
G

(
υ∗, Tn–1z, Tυ∗)),ϕ

(
G

(
υ∗, Tn–1z, Tυ∗)))

� ψ
(
G

(
υ∗, Tn–1z, Tυ∗))

= ψ
(
G

(
υ∗, Tn–1z,υ∗)).

Using induction, we get

G
(
υ∗, Tnz,υ∗) � ψn(G

(
υ∗, z,υ∗))

for all natural numbers n. From (CGb4), we obtain G(υ∗,υ∗, Tnz) � ψn(G(υ∗,υ∗, z)). Tak-
ing the limit, we observe

∣
∣G

(
υ∗,υ∗, Tnz

)∣∣ = 0.

So {Tnz} is Gb-convergent to υ∗. It can be observed that {Tnz} is Gb-convergent to ϑ∗.
The uniqueness of the limit gives υ∗ = ϑ∗. As a result, T has a unique fixed point. �
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4 Conclusions
We have introduced a generalized fixed point theorem using the complex C-class func-
tion as a new tool in complex valued Gb-metric spaces. Moreover, we have defined an
α – (F ,ψ ,ϕ)-contractive type and α-admissible mapping. Then we have proved a fixed
point theorem using these notions and the complex C-class function. The obtained re-
sults generalize some facts in the literature.
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