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Abstract
We shall consider a class of second-order nonlinear neutral differential equations.
Some new oscillation criteria are established by using the Riccati transformation
technique. One example is given to show the applicability of the main results.
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1 Introduction
In this paper, we study the oscillation of a class of second-order nonlinear differential equa-
tions,

(
r(t)

(
z′(t)

)α)′ + f
(
t, x

(
σ (t)

))
= 0, t ≥ t0 > 0, (1)

where z(t) = x(t) – p(t)x(τ (t)), α > 0, and α is the ratio of two odd integers. The following
assumptions are satisfied:

(H1) r, p ∈ C([t0,∞), R), r(t) > 0, 0 ≤ p(t) ≤ p0 < 1.
(H2) τ ∈ C([t0,∞), R), τ (t) ≤ t, limt→∞ τ (t) = ∞.
(H3) σ ∈ C1([t0,∞), R),σ (t) ≤ t,σ ′(t) > 0, limt→∞ σ (t) = ∞.
(H4) f ∈ C(R, R), uf (t, u) > 0 for all u �= 0, and there exists a function q(t) ∈ C([t0,∞],

[0,∞)) such that |f (t, u)| ≥ q(t)|uα|.
Second-order and third-order differential equations are widely used in population dy-

namics, physics, technology and other fields. Many scholars have studied the oscillation
of second-order differential equations [1–10]. Similarly, many scholars have studied the
oscillation of third-order differential equations [11–14]. On this basis, this paper studies
the second-order neutral differential Eq. (1), Some new oscillation criteria are established
by using the Riccati transformation technique.

2 Lemmas
In order to establish the oscillation criterion of Eq. (1), we will give three lemmas.
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Lemma 2.1 Assume that

∫ ∞

t0

r– 1
α (t) dt = ∞ (2)

and x(t) is an eventually positive solution of Eq. (1). Then z(t) has the following two possible
cases:

(i) z(t) > 0, z′(t) > 0, (r(t)(z′(t))α)′ ≤ 0;
(ii) z(t) < 0, z′(t) > 0, (r(t)(z′(t))α)′ ≤ 0.

Proof Since x(t) is an eventually positive solution of (1), there exists a t1 ≥ t0 such that
x(t) > 0, for t ≥ t1. From (1), we have

(
r(t)

(
z′(t)

)α)′ ≤ 0

hence r(t)(z′(t))α is decreasing function and of one sign, therefore z′(t) is also of one sign,
that is, there exists a t2 ≥ t1 such that, for t ≥ t2, z′(t) > 0 or z′(t) < 0.

If z′(t) > 0, we have (i) or (ii). Now, we prove that z′(t) < 0 will not happen.
If z′(t) < 0, we have

r(t)
(
–z′(t)

)α ≥ r(t2)
(
–z′(t2)

)α = K ≥ 0,

where K = r(t2)(–z′(t2))α ≥ 0, that is,

z′(t) ≤ –k
1
α r– 1

α (t).

Integrating this inequality from t2 to t, we have

z(t) ≤ z(t2) – k
1
α

∫ t

t2

r– 1
α (s) ds

by condition (2), limt→∞ z(t) = –∞. We will consider the following two cases.
Case 1. If x(t) is unbounded, then there exists a sequence {tm}, such that limm→∞ tm = ∞

and limm→∞ x(tm) = ∞, here x(tm) = max{x(s) : t0 ≤ s ≤ tm}. Hence, we have

x
(
τ (tm)

)
= max

{
x(s) : t0 ≤ s ≤ τ (tm)

}

≤ max
{

x(s) : t0 ≤ s ≤ tm
}

= x(tm).

We get

z(tm) = x(tm) – p(tm)x
(
τ (tm)

) ≥ [
1 – p(tm)

]
x(tm) > 0.

This contradicts limt→∞ z(t) = –∞.
Case 2. If x(t) is bounded, then z(t) is bounded, this contradicts limt→∞ z(t) = –∞.
Hence, z(t) satisfies one of the cases (i) and (ii). �
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Lemma 2.2 Assume that x(t) is a positive solution of Eq. (1) and z(t) satisfies case (i) of
Lemma 2.1, then

z(t) ≥ R(t)r
1
α (t)z′(t),

(
z(t)
R(t)

)′
≤ 0,

where R(t) =
∫ t

T r– 1
α (s) ds, T ≥ t0.

Proof For t > T ≥ t0, we have

z(t) = z(T) +
∫ t

T

r 1
α (s)z′(s)
r 1

α (s)
ds ≥ r

1
α (t)z′(t)

∫ t

T
r– 1

α (s) ds = R(t)r
1
α (t)z′(t).

Thus, we conclude that

(
z(t)
R(t)

)′
=

z′(t)R(t) – z(t)R′(t)
R2(t)

≤ z′(t)R(t) – R(t)r 1
α (t)z′(t)r– 1

α (t)
R2(t)

= 0. �

Lemma 2.3 Assume that x(t) is an eventually positive solution of (1) and

lim sup
t→∞

∫ t

τ–1(σ (t))

(
1

r(s)

∫ t

s
q(u) du

) 1
α

ds > p0. (3)

Then the impossibility for z(t) satisfies case (ii) of Lemma 2.1.

Proof Assume that z(t) satisfies case (ii) of Lemma 2.1, we have

–z(t) = –x(t) + p(t)x
(
τ (t)

)
< p(t)x

(
τ (t)

) ≤ p0x
(
τ (t)

)
.

That is,

x
(
τ (t)

) ≥ –
1
p0

z(t).

We deduce that

x(t) ≥ –
1
p0

z
(
τ–1(t)

)
, x

(
σ (t)

) ≥ –
1
p0

z
(
τ–1(σ (t)

))
.

From (1) and (H4), we have

(
r(t)

(
z′(t)

)α)′ + q(t)
(
x
(
σ (t)

))α ≤ 0.

We get

(
r(t)

(
z′(t)

)α)′ + q(t)
(

–
1
p0

)α

zα
(
τ–1(σ (t)

)) ≤ 0.

Integrating this inequality from s to t, we conclude that

r(t)
(
z′(t)

)α – r(s)
(
z′(s)

)α –
1

pα
0

∫ t

s
q(u)zα

(
τ–1(σ (u)

))
du ≤ 0.
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That is,

–z′(s) ≤ 1
p0

(
1

r(s)

∫ t

s
q(u)zα

(
τ–1(σ (u)

))
du

) 1
α

.

Integrating this inequality from τ–1(σ (t)) to t, we get

z
(
τ–1(σ (t)

))
– z(t) ≤ 1

p0
z
(
τ–1(σ (t)

))∫ t

τ–1(σ (t))

(
1

r(s)

∫ t

s
q(u) du

) 1
α

ds.

Since z(t) < 0, we have

∫ t

τ–1(σ (t))

(
1

r(s)

∫ t

s
q(u) du

) 1
α

ds ≤ p0.

This contradicts (3). Thus the impossibility for z(t) satisfies case (ii) of Lemma 2.1. �

3 Oscillation results
Theorem 3.1 Assume that (2) and (3) be satisfied. If there exists a positive function ρ ∈
C1([t0,∞), (0,∞)), such that, for all sufficiently large T ≥ t0,

∫ ∞

t0

[
ρ(t)Q̄(t) –

r(t)(ρ ′(t))α+1

(α + 1)α+1ρα(t)

]
dt = ∞, (4)

where Q̄(t) = Q(t) Rα (σ (t))
Rα (t) ), Q(t) = q(t)[1 + p̄(σ (t))]α , p̄(t) = p(t) R(τ (t))

R(t) , then Eq. (1) is oscilla-
tory.

Proof Assume that x(t) > 0. From Lemma 2.1, z(t) satisfies one of the cases (i) and (ii).
Case (i). Suppose that case (i) holds, from Lemma 2.2, we have

z(t)
R(t)

≤ z(τ (t))
R(τ (t))

.

That is,

z
(
τ (t)

) ≥ R
(
τ (t)

) z(t)
R(t)

.

We get

z(t) = x(t) – p(t)x
(
τ (t)

) ≤ x(t) – p(t)z
(
τ (t)

) ≤ x(t) – p(t)R
(
τ (t)

) z(t)
R(t)

.

That is,

x(t) ≥
[

1 + p(t)
R(τ (t))

R(t)

]
z(t) =

[
1 + p̄(t)

]
z(t),

where p̄(t) = p(t) R(τ (t))
R(t) .
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From (1), we conclude that

(
r(t)

(
z′(t)

)α)′ + q(t)xα
(
σ (t)

) ≤ 0.

Then we have

(
r(t)

(
z′(t)

)α)′ + q(t)
[
1 + p̄

(
σ (t)

)]αzα
(
σ (t)

) ≤ 0.

That is,

(
r(t)

(
z′(t)

)α)′ ≤ –Q(t)zα
(
σ (t)

)
, (5)

where Q(t) = q(t)[1 + p̄(σ (t))]α .
We define a function w(t) of the generalized Riccati transformation by

w(t) =
ρ(t)r(t)(z′(t))α

zα(t)
.

Then w(t) > 0, from Lemma 2.2, we have z(σ (t))
R(σ (t)) ≥ z(t)

R(t) , that is, z(σ (t))
z(t) ≥ R(σ (t))

R(t) .
Using the inequality [2]

Bu – Au
θ+1
θ ≤ θθ

(θ + 1)θ+1
Bθ+1

Aθ
, θ > 0, A > 0, B ∈ R,

we have

w′(t) = ρ ′(t)
r(t)(z′(t))α

zα(t)
+ ρ(t)

(r(t)(z′(t))α)′

zα(t)
– ρ(t)

αr(t)(z′(t))α+1

zα+1(t)

≤ ρ ′(t)
ρ(t)

w(t) – ρ(t)Q(t)
zα(σ (t))

zα(t)
–

α

(ρ(t)r(t))1/α w
α+1
α (t)

≤ ρ ′(t)
ρ(t)

w(t) – ρ(t)Q(t)
Rα(σ (t))

Rα(t)
–

α

(ρ(t)r(t))1/α w
α+1
α (t)

≤ –ρ(t)Q̄(t) +
ρ ′(t)
ρ(t)

w(t) –
α

(ρ(t)r(t))1/α w
α+1
α (t)

= –ρ(t)Q̄(t) +
r(t)(ρ ′(t))α+1

(α + 1)α+1ρα(t)
, (6)

where Q̄(t) = Q(t) Rα (σ (t))
Rα (t) ).

Integrating this inequality from T to t, we have

w(t) ≤ w(T) –
∫ t

T

(
ρ(s)Q̄(s) –

r(s)(ρ ′(s))α+1

(α + 1)α+1ρα(s)

)
ds.

From (4), we get lim w(t)t→∞ = –∞, this contradicts w(t) > 0.
Case (ii). If z(t) satisfies (ii), then due to Lemma 2.3, Eq. (1) is oscillatory. �
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Theorem 3.2 Assume that (2) and (3) are satisfied. If there exists a positive function ϕ ∈
C1([t0,∞), (0,∞)) such that, for all sufficiently large T ≥ t0,

∫ ∞

t0

[
Q̄(t) –

ϕα+1(t)
r1/α(t)

]
exp

[
(α + 1)

∫ t

T

ϕ(s)
r1/α(s)

ds
]

= ∞, (7)

then Eq. (1) is oscillatory.

Proof We use the counter-evidence method, suppose we have a non-oscillatory solution
x(t) of Eq. (1), as above, suppose that x(t) is a positive solution of (1), by using Lemma 2.1,
z(t) satisfies one of (i) and (ii), we discuss each of the two cases separately.

Case (i). Assume that z(t) has property (i), we obtain (5). We define a function V (t) of a
generalized Riccati transformation by

V (t) =
r(t)(z′(t))α

zα(t)
.

Then V (t) > 0, using the Yang inequality 1
p ap + 1

q bq ≥ ab, 1
p + 1

q = 1, similar to (6), we
have

V ′(t) =
(r(t)(z′(t))α)′

zα(t)
–

αr(t)(z′(t))α+1

zα+1(t)

≤ –Q̄(t) –
α

r1/α(t)
V

α+1
α (t)

= –
[
Q̄(t) – r– 1

α (t)ϕα+1(t)
]

– (α + 1)r– 1
α (t)

[
1

α + 1
ϕα+1(t) +

α

α + 1
V

α+1
α (t)

]

= –
[
Q̄(t) – r– 1

α (t)ϕα+1(t)
]

– (α + 1)r– 1
α (t)ϕ(t)V (t).

That is,

V ′(t) + (α + 1)r– 1
α (t)ϕ(t)V (t) ≤ –

[
Q̄(t) – r– 1

α (t)ϕα+1(t)
]
.

We get

[
V ′(t) + (α + 1)r– 1

α (t)ϕ(t)V (t)
]

exp[(α + 1)
∫ t

T

ϕ(s)
r1/α(s)

ds

≤ –
[
Q̄(t) – r– 1

α (t)ϕα+1(t)
]

exp[(α + 1)
∫ t

T

ϕ(s)
r1/α(s)

ds.

That is,

(
V (t) · exp

[
(α + 1)

∫ t

T
r– 1

α (s)ϕ(s) ds
])′

≤ –
[
Q̄(t) – r– 1

α (t)ϕα+1(t)
]

exp[(α + 1)
∫ t

T

ϕ(s)
r1/α(s)

ds.

Integrating this inequality from T to t, we get

0 ≤ V (t) · exp

[
(α + 1)

∫ t

T
r– 1

α (s)ϕ(s) ds
]
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≤ V (T) –
∫ t

T

(
[
Q̄(t) – r– 1

α (t)ϕα+1(t)
]

exp[(α + 1)
∫ t

T

ϕ(s)
r1/α(s)

ds
)

dt.

This contradicts (7).
Case (ii). If z(t) satisfies (ii), then due to Lemma 2.3, Eq. (1) is oscillatory. �

Example Consider the following equation:

((
x(t) – px(t – 1)′

) 1
3
)′ + q0x

1
3 (t – 2) = 0. (8)

Comparing Eq. (8) with Eq. (1), let r(t) = 1, α = 1
3 , τ (t) = t – 1, σ (t) = t – 2, q(t) = q0 > 0,

p(t) = p < 1 is a positive constant. Choose ρ(t) = t, ϕ(t) = 1, we now verify (3):

lim sup
t→∞

∫ t

τ–1(σ (t))

(
1

r(s)

∫ t

s
q(u) du

)1/α

ds = lim sup
t→∞

∫ t

t–1
q0(t – s)3 ds =

q0

4
> p0.

Therefore, if q0
4 > p0, obviously, the conditions of Theorem 3.1 and Theorem 3.2 are

satisfied, then Eq. (8) is oscillatory.
Then the conditions of Theorem 3.1 and Theorem 3.2 are satisfied.
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