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Abstract
A synthetic drug transmission model with psychological addicts and time delay is
proposed in this paper. By analyzing the corresponding characteristic equation and
choosing the time delay as the bifurcation parameter, a set of sufficient criteria
guaranteeing local stability of the synthetic drug addiction equilibrium and the
appearance of a Hopf bifurcation of the model is established. Further, the direction
and stability of the Hopf bifurcation are investigated with the aid of normal form
theory and center manifold theory. Finally, numerical simulations are performed to
support the analytical results.
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1 Introduction
It is well known that increased use of synthetic drugs such as crystal methamphetamine,
ketamine, ecstasy and others, which are a new type of mental drugs based on chemical
synthesis is an issue of concern in many parts of the world. Synthetic drugs are becom-
ing increasingly popular in drug markets as they mainly appear in entertainment venues.
Taking China for example, the number of reported synthetic drug abusers increased from
1.459 millon in the end of 2014 to 1.538 million in the end of 2017 by the report of China’s
Drug Situations Report in the past five years (2014–2018) [1]. The number of metham-
phetamine abusers was up to 1.35 millon which accounted for 56.1% among the 2.404
million drug-users by the end of 2018 according to China’s Drug Situations Report (2018)
[2]. What is more serious is that synthetic drugs are more addictive because they can di-
rectly affect the central nervous system and show the stronger psychological dependence
compared with traditional drugs including heroin, morphine and marijuana, etc. In ad-
dition, any drug abuse and dependence constitute one of the most important modes of
transmitting human immunodeficiency virus (HIV) and the Hepatitis C virus (HCV) [3–
5]. Obviously, it is urgent to take effective measures to control the spread of synthetic drugs
in order to eradicate the tremendous damages and panics brought by synthetic drugs abuse
to social and public health system.
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Since the heroin addiction was first defined as epidemic in 1981–1983 in Ireland, the
heroin-using can be modeled in a similar way to the epidemic models [6] and mathemati-
cal modeling has been used extensively to address issues of public health importance. For
example, Ma et al. developed different forms of heroin epidemic models [3, 6–10] to study
the transmission of heroin epidemics. Sharomi et al. formulated different smoking models
[11–17] for giving up smoking. There were also some drinking models [18–21] proposed
by Mushayabasa et al. to analyze the influence of binge drinking to public health. Simi-
larly, mathematical modeling can be also used to describe the spread of synthetic drugs.
In [22, 23], Nyabadza et al. analyzed the methamphetamine transmission in South Africa
by constructing a suitable mathematical model. In [24], Liu et al. formulated a synthetic
drugs transmission model with treatment and studied global stability and backward bi-
furcation of the model. Considering the effect of synthetic drugs transmission caused by
psychology, Ma et al. [25] proposed the following synthetic drugs transmission model with
psychological addicts:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – dS(t) – β(N)S(t)(P(t) + H(t)),

dP(t)
dt = β(N)S(t)(P(t) + H(t)) – πP(t) – (d + γ )P(t),

dH(t)
dt = πP(t) + θT(t) – σH(t) – dH(t),

dT(t)
dt = γ P(t) + σH(t) – θT(t) – dT(t),

(1)

in which the total population (N(t)) is divided into four classes at time t such as the sus-
ceptible (S(t)), the psychological addicts (P(t)), the physiological addicts (H(t)) and the
drug-users in treatment (T(t)). A is the recruitment rate of the susceptible; β(N) is the
contact rate; d is the natural death rate of the populations; π , γ , θ and σ are state transi-
tion rates. Ma et al. [25] studied stability of system (1).

As stated in [25], a susceptible one is more likely to initiated drug abuse when he con-
tacts with a physiological addict compared to a psychological addict. On the other hand,
there should be a period for a drug user in treatment before he relapses into the physi-
ological addicts due to the effect of treatment and his self-control. With an eye to such
considerations and motivated by the work of some other dynamical systems with time de-
lay [26–30], we investigate a more realistic synthetic drugs transmission model as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – dS(t) – β1S(t)P(t) – β2S(t)H(t),

dP(t)
dt = β1S(t)P(t) + β2S(t)H(t) – πP(t) – (d + γ )P(t),

dH(t)
dt = πP(t) + θT(t – τ ) – σH(t) – dH(t),

dT(t)
dt = γ P(t) + σH(t) – θT(t – τ ) – dT(t),

(2)

where β1 and β2 are the contact rates of the psychological addicts and the physiological
addicts, respectively. τ is the time delay due to the period that a drug user in treatment
uses before he relapses into the physiological addicts.

We organize this paper as follows: in the following section, we analyze the local sta-
bility and appearance of Hopf bifurcation of system (2). Section 3 is concerned with the
formulas determining the direction and stability of the Hopf bifurcation. Some numerical
simulations are executed to illustrate the analytical results in Sect. 4. Finally, conclusions
are presented in Sect. 5.
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2 Local stability and existence of Hopf bifurcation
The stability and existence of unique positive equilibrium of system (2) is related to basic
reproductive number �0 on free drug equilibrium point (FEP) D0, which is determined
with the help of next generation matrix method [31]. The free drug equilibrium point is

D0 =
(

A
d

, 0, 0, 0
)

.

Consider the following matrices for finding the basic reproductive number �0:

F =

(
β1S(t)P(t) + β2S(t)H(t)

0

)

,

V =

(
πP(t) + (d + γ )P(t)

–πP(t) – θT(t) + σH(t) + dH(t)

)

.

Now the Jacobians of F and V at D0 are

F =

(
β1

A
d β2

A
d

0 0

)

and

V =

(
b0 0
–π b1

)

.

Here b0 = π +d +γ , b1 = σ +d. The dominant eigenvalue of FV –1 represents �0 = ρ(FV –1),
which is

�0 =
A[β1(σ + d) + β2π ]
d(σ + d)(π + γ + d)

.

For �0 > 1, system (2) has a unique synthetic drug addiction equilibrium D∗(S∗, P∗,
H∗, T∗), where

S∗ =
(π + d + γ )P∗
β1P∗ + β2H∗

, P∗ =
(�0 – 1) + L̃1

[(β1 + β2L̃2)/d]
,

H∗ = L̃P∗, T∗ =
[

γ

θ + d
+

πσ

(θ + d)(σ + d)

]

P∗
/[

d(θ + σ + d)
(θ + d)(σ + d)

]

,

and

L̃1 =
Aβ2θ

σ + d

[
γ

θ + d
+

πσ

(θ + d)(σ + d)

]/[
d2(θ + σ + d)(π + d + γ )

(θ + d)(σ + d)

]

,

L̃2 =
π

σ + d
+

θ

σ + d

[
γ

θ + d
+

πσ

(θ + d)(σ + d)

]/[
d(θ + σ + d)

(θ + d)(σ + d)

]

.



Zhang et al. Advances in Difference Equations        (2020) 2020:144 Page 4 of 15

At the unique synthetic drug addiction equilibrium D∗(S∗, P∗, H∗, T∗), system (2) can be
linearized as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = u11S(t) + u12P(t) + u13H(t),

dP(t)
dt = u21S(t) + u22P(t) + u23H(t),

dH(t)
dt = u32P(t) + u33H(t) + v34T(t – τ ),

dT(t)
dt = u42P(t) + u43H(t) + u44T(t) + v44T(t – τ ),

(3)

whose characteristic equation is

λ4 + U3λ
3 + U2λ

2 + U1λ + U0 +
(
V3λ

3 + V2λ
2 + V1λ + V0

)
e–λτ = 0, (4)

with

U0 = u33u44(u11u22 – u12u21) + u32u44(u13u21 – u11u23),

U1 = (u12u21 – u11u22)(u33 + u44) – u13u21u32 – u33u44(u11 + u22)

+ u23u32(u11 + u44),

U2 = (u11 + u22)(u33 + u44) – u12u21 – u23u32 + u11u22 + u33u44,

U3 = –(u11 + u22 + u33 + u44),

V0 = u11u23(u42v34 – u32v44) + u21v34(u12u43 – u13u42)

+ u21v44(u13u32 – u12u33) + u11u22(u33v44 – u43v34),

V1 = u23(u32v44 – u42v34) – v44(u11u22 + u11u33 + u22u33)

+ u12u21v44 + (u11 + u22)u43v34,

V2 = v44(u11 + u22 + u33) – u43v34, V3 = –v44,

and

u11 = –(d + β1P∗ + β2H∗), u12 = –β1S∗, u13 = –β2S∗,

u21 = β1P∗ + β2H∗, u22 = β1S∗ – (π + d + γ ), u23 = β2S∗,

u32 = π , u33 = –(σ + d), u42 = γ , u43 = σ , u44 = –d,

v34 = θ , v44 = –θ .

When τ = 0, the characteristic equation becomes

λ4 + U03λ
3 + U02λ

2 + U01λ + U00 = 0. (5)

We denote

U00 = U0 + V0, U01 = U1 + V1, U02 = U2 + V2, U03 = U3 + V3.
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and suppose that

(C1): U00 > 0, U03 > 0, U02U03 > U01, U01U02U03 > U00U2
03 + U2

01.

It follows from the Routh–Hurwitz theorem that if the condition (C1) holds, all roots of
Eq. (5) have negative real parts.

For τ > 0, assume that λ = iω with ω > 0 is the root of Eq. (4), then we obtain

{
(V1ω – V3ω

3) sin τω + (V0 – V2ω
2) cos τω = U2ω

2 – ω4 – U0,
(V1ω – V3ω

3) cos τω – (V0 – V2ω
2) sin τω = U3ω

3 – U1ω.
(6)

This leads to

ω8 + d3ω
6 + d2ω

4 + d1ω
2 + d0 = 0, (7)

with

d0 = U2
0 – V 2

0 , d1 = U2
1 – 2U0U2 – V 2

0 + 2V0V2,

d2 = U2
2 + 2U0 – 2U1U3 – V 2

2 + 2V1V3, d3 = U2
3 – 2U2 – V 2

3 .

Letting ω2 = χ , we can rewrite Eq. (7) as follows:

χ4 + d3χ
3 + d2χ

2 + d1χ + d0 = 0. (8)

Lemma 1 If d0 < 0 Eq. (8) has at least one positive root.

Suppose that d0 ≥ 0. Based on a similar discussion of the distribution of the roots of
Eq. (8) in [32], we define

h(χ ) = χ4 + d3χ
3 + d2χ

2 + d1χ + d0 = 0. (9)

Then

h′(χ ) = 4χ3 + 3d3χ
2 + 2d2χ + d1. (10)

Let

4χ3 + 3d3χ
2 + 2d2χ + d1 = 0, (11)

and z = χ + 3d3
4 . Then Eq. (11) becomes

z3 + α1z + β1 = 0, (12)

with

α1 =
d2

2
–

3
16

d2
3, β1 =

d3
3

32
–

d3d2

8
+ d1.
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Denote

D =
(

β1

2

)

+
(

α1

3

)

, ν =
–1 +

√
3i

2
,

z1 = 3

√

–
β1

2
+

√
D + 3

√

–
β1

2
–

√
D,

z2 = 3

√

–
β1

2
+

√
Dν + 3

√

–
β1

2
–

√
Dν2,

z3 = 3

√

–
β1

2
+

√
Dν2 + 3

√

–
β1

2
–

√
Dν,

χi = zi –
3d3

4
, i = 1, 2, 3.

(13)

Lemma 2 If D ≥ 0, then Eq. (8) has positive roots if and only if χ1 > 0 and h(χ1) < 0; if
D < 0, then Eq. (8) has positive roots if and only if there exists at least one χ∗ ∈ {χ1,χ2,χ3},
such that χ∗ > 0 and h(χ∗) ≤ 0.

Thus, if the condition (C2) holds: (i) d0 < 0 or (ii) d0 ≥ 0, D ≥ 0, χ1 > 0 and h(z1) ≤ 0 or
(iii) d0 ≥ 0, D < 0, and there exists a χ∗ ∈ {χ1,χ2,χ3}, such that χ∗ > 0 and h(χ∗) ≤ 0, then
Eq. (8) has at least one positive root.

Without loss of generality, we assume that Eq. (8) has four positive roots, denoted by χ1,
χ2, χ3 and χ4. Then Eq. (7) has a positive root ωi = √

χi, i = 1, 2, 3, 4. From Eq. (6), we have

τ
j
i =

⎧
⎪⎨

⎪⎩

1
ωi

× arccos{ l7ω6
i +l6ω4

i +l5ω2
i +l4

l3ω6
i +l2ω4

i +l1ω2
i +l0

} + 2jπ , sin(τiωi) ≥ 0,
1
ωi

× [2π – arccos{ l7ω6
i +l6ω4

i +l5ω2
i +l4

l3ω6
i +l2ω4

i +l1ω2
i +l0

}] + 2jπ , sin(τiωi) < 0.
(14)

with i = 1, 2, 3, 4, j = 0, 1, 2, . . . , and

l0 = V 2
0 , l1 = V 2

1 – 2V0V2, l2 = V 2
2 – 2V1V3, l3 = V 2

3 , l4 = –U0V0,

l5 = U0V2 + U2V0 – U1V1, l6 = U1V3 + U3V1 – U2V2 – V0, l7 = V2 – U3V3.

Define

τ0 = min
{
τ 0

i |i = 1, 2, 3, 4
}

, (15)

such that Eq. (4) has a pair of purely imaginary roots ω0 when τ = τ0.
Next, we examine the transversality condition. Differentiating Eq. (4) with regard to τ ,

we obtain the derivative of τ as follows:
[

dλ

dτ

]–1

= –
4λ4 + 3U3λ

2 + 2U2λ + U1

λ(λ4 + U3λ3 + U2λ2 + U1λ + U0)
+

3V3λ
2 + 2V2λ + V1

λ(V3λ3 + V2λ2 + V1λ + V0)
–

λ

τ
. (16)

Replacing λ by iω0, we obtain

[
dλ

dτ

]–1

λ=iω0

=
h′(χ0)

l3ω
6
0 + l2ω

4
0 + l1ω

2
0 + l0

, (17)

where h(χ ) = χ4 + d3χ
3 + d2χ

2 + d1χ + d0 and χ0 = ω2
0.
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Therefore, if the condition (C3): h′(χ0) 	= 0 holds, then the transversality condition is
satisfied. Based on the discussion above and the fundamental Hopf bifurcation theorem
in [33], we are able to formulate the following theorem.

Theorem 1 For system (2), if the conditions (C1)–(C3) hold, then the synthetic drug addic-
tion equilibrium D∗(S∗, P∗, H∗, T∗) is locally asymptotically stable when τ∈[0, τ0); system (2)
undergoes a Hopf bifurcation at the synthetic drug addiction equilibrium D∗(S∗, P∗, H∗, T∗)
when τ = τ0 and a family of periodic solutions bifurcate from the synthetic drug addiction
equilibrium D∗(S∗, P∗, H∗, T∗).

3 Direction and stability of Hopf bifurcation
In this section, direction and stability of Hopf bifurcation will be studied by using center
manifold theorem and normal form theory introduced by Hassard et al. [33]. Let τ = τ0 +
μ, μ ∈ R, u1(t) = S(τ t), u2(t) = P(τ t), u3(t) = H(τ t) and u4(t) = T(τ t). System (2) can be
written in a functional differential equation in C = C([–1, 0], R4) as follows:

u̇(t) = Lμ(ut) + F(μ, ut), (18)

where u(t + θ ) = ut(θ ), Lμ : C → R4 and F : R × C → R4 ,

Lμφ = (τ0 + μ)
(
Uφ(0) + Vφ(–1)

)
, (19)

F(μ,φ) =

⎛

⎜
⎜
⎜
⎝

–β1φ1(0)φ2(0) – β2φ1(0)φ3(0)
β1φ1(0)φ2(0) + β2φ1(0)φ3(0)

0
0

⎞

⎟
⎟
⎟
⎠

, (20)

Utrix =

⎛

⎜
⎜
⎜
⎝

u11 u12 u13 0
u21 u22 u23 0
0 u32 u33 0
0 u42 u43 u44

⎞

⎟
⎟
⎟
⎠

, Vtrix =

⎛

⎜
⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 v34

0 0 0 v44

⎞

⎟
⎟
⎟
⎠

.

By using the Riesz representation theorem, let η(θ ,μ) : [–1, 0] → R4×4 be a function of
bounded variation. For φ ∈ C[–1, 0], let

Lμφ =
∫ 0

–1
dη(θ ,μ)φ(θ ). (21)

Moreover, we can choose

η(θ ,μ) = (τ0 + μ)
(
Utrixδ(θ ) + Vtrixδ(θ + 1)

)
, (22)

where δ(θ ) is the Dirac delta function.
Define

A(μ)φ =

{ dφ(θ )
dθ

, –1 ≤ θ < 0,
∫ 0

–1 dη(θ ,�)φ(θ ), θ = 0,
(23)
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and

R(μ)φ =

{
0, –1 ≤ θ < 0,
F(μ,φ), θ = 0,

(24)

where φ ∈ C([–1, 0], R4). Then system (18) is equivalent to

u̇(t) = A(μ)ut + R(μ)ut . (25)

For ϕ ∈ C1([0, 1], (R4)∗), define the adjoint operator of A(0) as follows:

A∗(ϕ) =

{
– dϕ(s)

ds , 0 < s ≤ 1,
∫ 0

–1 dηT (s, 0)ϕ(–s), s = 0,
(26)

and the inner product form

〈
ϕ(s),φ(θ )

〉
= ϕ̄(0)φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (27)

with η(θ ) = η(θ , 0).
Let g(θ ) = (1, g2, g3, g4)T eiτ0ω0θ denote a eigenvector of A(0) and +iτ0ω0 is the associated

eigenvalue; g̃∗(θ ) = G̃(1, g∗
2 , g∗

3 , g∗
4 )T eiτ0ω0θ denotes a eigenvector of A∗ and –iτ0ω0 is the

associated eigenvalue. Then we obtain

g2 =
u23(iω0 – u11) + u13u21

u12u23 + u13(iω0 – u22)
,

g3 =
(iω0 – u22)g2 – u21

u23
,

g4 =
u42g2 + u43g3

iω0 – u44 – v44e–iτ0ω0
,

g∗
2 = –

iω0 + u11

u21
,

g∗
3 =

[u43(iω0 + u22) – u23u42]g̃∗
2 + u12u43 – u13u42

u42(iω0 + u33) – u32u43
,

g∗
4 = –

v34eiτ0ω0 g̃∗
3

iω0 + u44 + v44eiτ0ω0
.

From Eq. (27), we can obtain

〈
g∗, g

〉
= Ḡ

[
1 + g2ḡ∗

2 + g3ḡ∗
3 + g4ḡ∗

4 + τ0e–iτ0ω0 g4
(
v34g∗

3 + v44g4
)]

. (28)

Let 〈g∗, g〉 = 1, then

Ḡ =
[
1 + g2ḡ∗

2 + g3ḡ∗
3 + g4ḡ∗

4 + τ0e–iτ0ω0 g4
(
v34g∗

3 + v44g4
)]–1. (29)

In the following part of this section, we use the similar computation process as that in
[34–38] and then obtain the expressions of g20, g11, g02 and g21:

g20 = 2Ḡτ0
(
ḡ∗

2 – 1
)
(β1g2 + β2g3),
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Figure 1 The bifurcation diagram with respect to τ

g11 = Ḡτ0
(
ḡ∗

2 – 1
)[

β1(g2 + ḡ2) + β2(g3 + ḡ3)
]
,

g02 = 2Ḡτ0
(
ḡ∗

2 – 1
)
(β1ḡ2 + β2ḡ3),

g21 = 2Ḡτ0
(
ḡ∗

2 – 1
)
[

β1

(

W (1)
11 (0)g2 +

1
2

W (1)
20 (0)ḡ2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)

+ β2

(

W (1)
11 (0)g3 +

1
2

W (1)
20 (0)ḡ3 + W (3)

11 (0) +
1
2

W (3)
20 (0)

)]

,

with

W20(θ ) =
ig20g(0)
τ0ω0

eiτ0ω0θ +
iḡ02ḡ(0)
3τ0ω0

e–iτ0ω0θ + E1e2iτ0ω0θ , (30)

W11(θ ) = –
ig11g(0)
τ0ω0

eiτ0ω0θ +
iḡ11ḡ(0)
τ0ω0

e–iτ0ω0θ + E2. (31)

E1 and E2 can be obtained by the following two equations:

E1 = 2

⎛

⎜
⎜
⎜
⎝

2iω0 – u11 –u12 –u13 0
–u21 2iω0 – u22 –u23 0

0 –u32 2iω0 – u33 –v34e–2iτ0ω0

0 –u42 –u43 2iω0 – u44 – v44e–2iτ0ω0

⎞

⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎝

–β1g2 – β2g3

β1g2 + β2g3

0
0

⎞

⎟
⎟
⎟
⎠

,
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Figure 2 Time plots of S, P, H and T for different θ at τ = 5.835. The remaining parameters are taken as given
in the text

E2 =

⎛

⎜
⎜
⎜
⎝

u11 u12 u13 0
u21 u22 u23 0
0 u32 u33 v34

0 u42 u43 u44 + v44

⎞

⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎝

–β1(g2 + ḡ2) – β2(g3 + ḡ3)
β1(g2 + ḡ2) + β2(g3 + ḡ3)

0
0

⎞

⎟
⎟
⎟
⎠

.

Then we obtain

C1(0) =
i

2τ0ω0

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re{C1(0)}
Re{λ′(τ0)} ,

β2 = 2Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2Im{λ′(τ0)}

τ0ω0
.

(32)

From the above formulas, we can conclude as follows.

Theorem 2 For system (2), the following results hold. If μ2 > 0 (μ2 < 0), then the Hopf bifur-
cation is supercritical (subcritical); if β2 < 0 (β2 > 0), then the bifurcating periodic solutions
are stable (unstable); if T2 > 0 (T2 < 0), then the period of the bifurcating periodic solutions
increase (decrease).
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Figure 3 The phase plots of system (33) for different θ at τ = 5.7850. The remaining parameters are taken as
given in the text

4 Numerical simulations
In this section, we carry out computer simulations using the Matlab software package to
illustrate the obtained theoretical results. Taking A = 2, d = 0.02, β1 = 0.016, β2 = 0.028,
π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.421, we obtain the following specific case of sys-
tem (2):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = 2 – 0.02S(t) – 0.016S(t)P(t) – 0.028S(t)H(t),

dP(t)
dt = 0.016S(t)P(t) + 0.028S(t)H(t) – 0.145P(t),

dH(t)
dt = 0.03P(t) + 0.5T(t – τ ) – 0.441H(t),

dT(t)
dt = 0.095P(t) + 0.421H(t) – 0.5T(t – τ ) – 0.02T(t).

(33)

Then one can obtain �0 = 12.3481 > 1 and the unique synthetic drug addiction equi-
librium D∗(1.3196, 13.6111, 45.6355, 39.4338) of system (33). Through some calculations,
Eq. (8) becomes

χ4 + 0.0095χ3 + 1.0218χ2 – 0.2006χ – 3.21 = 0. (34)

Thus, it is easy to see that Eq. (34) has one positive root χ0 = 1.1885. Then we obtain
ω0 = 1.0902 and τ0 = 9.7367, h′(χ0) = 7.7692 > 0. According to Theorem 1, we can con-
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Figure 4 Time plots of S, P, H and T for different σ at τ = 4.738. The remaining parameters are taken as given
in the text

clude that the synthetic drug addiction equilibrium D∗(1.3196, 13.6111, 45.6355, 39.4338)
of system (33) is locally asymptotically stable when τ ∈ [0, 9.7367), and a Hopf bifurcation
appears when the value of τ passes through the critical value 9.7367, which can be indi-
cated by bifurcation diagrams in Fig. 1. Furthermore, based on Eq. (32), μ2 = 1.5613 > 0,
β2 = –2.07 < 0 and T2 = 0.3611 > 0 can be obtained. Accordingly, through Theorem 2, it
can be concluded that the Hopf bifurcation at τ0 is supercritical; the bifurcating periodic
solutions are stable and increasing.

In addition, Fig. 2 manifests that the numbers of susceptibles and drug-users in treat-
ment decrease, whereas the numbers of the psychological and physiological addicts in-
crease as we increase θ from 0.5 to 0.6. Also, due to the increase in θ from 0.5 to 0.6,
system (33) loses its stability and shows limit cycle behavior, which is illustrated in Fig. 3.
It is interesting to note that Fig. 4 reveals the reverse effect of increasing σ in a particular
range on the four populations in system (33). Figure 5 shows that system (33) changes its
behavior from limit cycle to stable focus as we increase the value of σ .

5 Conclusions
The prevention and control of synthetic drugs have received great attention due to their
increasingly serious consequences on population. Quite a few mathematical models de-
scribing synthetic drugs transmission have been put up by scholars at home and abroad in
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Figure 5 The phase plots of system (33) for different σ at τ = 4.6805. The remaining parameters are taken as
given in the text

recent years. However, these models neglect the time delay during the process of synthetic
drugs transmission. In the present article, synthetic drugs transmission model with time
delay is established based on the work in [25]. A series of sufficient criteria guarantee-
ing the stability and appearance of Hopf bifurcation for the established model are derived
by analyzing the corresponding characteristic equation. Moreover, the properties of the
Hopf bifurcation are investigated by using the center manifold theorem and normal form
theory.

The study shows that the time delay has an important impact on the stability and Hopf
bifurcation of the model. When the value of the time delay is below the critical value τ0,
synthetic drugs transmission can be predicted and controlled. Contrarily, synthetic drugs
transmission will be out of control once the value of the time delay passes through the
critical value. Also, we observed that the change of the parameters of θ and σ in a particular
range can affect the dynamics of the system based on numerical simulations. Since the
numbers of the psychological and physiological addicts increase with the increase of θ but
with the decrease of σ , it is strongly suggested that drug-users should have strong will once
they decide to give up drugs. On the other hand, any person who has been contaminated
with drugs should go to the regular detoxification center in time for treatment.
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