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Abstract
In this paper, we investigate hybrid adaptive synchronization issue for a class of
perturbed fractional-order chaotic systems with nondeterministic nonlinear terms. On
the basis of fractional-order extended version of Lyapunov stability criterion, a novel
fuzzy adaptive synchronization control protocol coupled with backstepping-based
method is constructed, ensuring that the synchronization errors converge to a
sufficiently small region of the origin. In order to avert the occurrence of “explosion of
complexity”, we take advantage of a fuzzy logic system to estimate the unknown
systematic term approximately in every backstepping step. Finally, some numerical
simulations are given to exemplify the effectiveness of the proposed approach.

Keywords: Adaptive synchronization; Backstepping-based method; Explosion of
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1 Introduction
Fractional calculus [1], as a greatly ancient subject, is overwhelmingly superior than
integer-order calculus in various applications. This is ascribed to that fractional calculus
provides not only a powerful algorithmic tool to facilitate complex numerical computing,
but also a comprehensive mathematical model of enormous practical problems [2]. In view
of heredity and memristive feature, fractional-order calculus can be utilized to model most
of complex dynamic behaviors or specific materials (such as chaos, anomalous diffusions,
viscoelastic damping structures, neural networks, and so on, see [3–8]) more precisely,
beyond the integer-order calculus in general. Due to this, the topic of synchronization
protocol design for fractional-order nonlinear systems has dramatically stirred plenty of
excitement in many research fields. The synchronization issues can be dealt with by ap-
plying abundant control methods, including resilient control [9, 10], output-feedback con-
trol [11, 12], sliding mode control [13–17], fuzzy control [18–21], dynamic surface control
[22–25], etc.

Synchronization issue of nonlinear systems is widely considered due to its valuable sig-
nificance in both theoretical and practical aspects. The goal of synchronization is to de-
sign an active controller to synchronize the so-called slave dynamical system with another
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diverse one, namely the master. Various synchronization protocols have been proposed,
including lag synchronization [26], projective synchronization [27], fixed time synchro-
nization [28], and chaos synchronization [29, 30]. In essence, chaos synchronization gen-
eralizes chaos control [31], which enables the chaotic master–slave error dynamics trajec-
tories to be asymptotically stable.

In real life, especially in control procedure, we are frequently confronted with a slew of
information with ambiguity, randomness, incompatibility, incompleteness, and so forth.
This led to the invention of many mathematical approaches (e.g., Zadeh’s fuzzy set ap-
proach [32], backstepping approach [33–36]) to dispose of nondeterministic systematic
parameters. As a kind of recursive control strategy, backstepping control has engaged at-
tention because of its efficient performance in handling mismatched parametric uncer-
tainties of integer-order nonlinear systems. Unfortunately, this control method has an in-
herent drawback, namely “explosion of complexity”, which is triggered by iteratively dif-
ferentiating virtual control inputs (see [22]). Additionally, it requires complicated analysis
to compute a so-called “regression matrix” (see [37]). Dawson et al. [38] pointed out the
fact that the size of the regression matrix displayed too large when backstepping tech-
nique was applied to manipulate DC motors in a conventional manner. Such a complex-
ity might be augmented significantly for a fractional-order nonlinear system. An avail-
able remedy for relaxing the limitation of backstepping control is to incorporate fuzzy
inference approach [39] into backstepping proceedings. For instance, Tong et al. [40] put
forward an observer-based adaptive backstepping control protocol for nondeterministic
stochastic strict-feedback integer-order systems via fuzzy inference approach, and they
also developed a simplified control protocol. Liu et al. [41] introduced a robust fuzzy back-
stepping control method for fractional-order nonlinear systems with triangle structures.
Shukla et al. [42] exploited a backstepping technique to synchronize the tracking signals
of fractional-order chaotic systems with constant parameters. However, their works sel-
dom took into account fractional-order chaotic systems with functional uncertainties and
external perturbations.

Motivated by this, we aim to address the backstepping-based synchronization issue of a
class of fractional-order chaotic master–slave nonlinear systems. Compared with the pre-
vious works, our problem model involves nondeterministic external perturbations and
more complicated parametric uncertainties, which expands the scope of applications. In
order to achieve this goal, we propose a hybrid adaptive control method combined with
backstepping technique and fuzzy inference approach. The contributions of our synchro-
nization protocol are outlined to be twofold:

(1) An appropriate fuzzy logic system is adopted as an estimation function routinely for
the nondeterministic nonlinear term in each backstepping step;

(2) A reasonable fuzzy adaptive control strategy based on backstepping method is
established to attenuate all estimation errors and realize the synchronization
between master and slave systems. With the aid of the proposed protocol, the
occurrence of the drawback of “explosion of complexity” will be denied in every
backstepping step.

The arrangement of this paper is listed as below. In Sect. 2, some fundamental no-
tions and results involving with fractional calculus are recalled and a concrete descrip-
tion of model for the research issue is presented. In Sect. 3, we construct an adaptive
backstepping-based controller via fuzzy inference approach, and analyze the systematic
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synchronization on the basis of our proposed synchronization scheme. The validity of
this synchronization scheme is demonstrated by numerical simulation in Sect. 4. Finally,
we summarize the research in this paper and present an outlook for our further research
in Sect. 5.

2 Preliminaries
2.1 Fractional calculus fundamental
In the full context, we denote the space of all real numbers (resp. complex numbers, n-
dimensional real vectors) by R (resp. C, Rn). For a vector x ∈R

n, xT denotes its transpose.
A fractional-order integral C

0 D–β
t f (t) (denoted by D–β f (t), briefly) of order β ∈ (0, 1) is

expressed by

C
0 D–β

t f (t) =
1

Γ (β)

∫ t

0
(t – u)β–1f (u) du,

where f (t) is a time-dependent function with t ≥ 0, Γ denotes the Gamma function, that
is,

Γ (β) =
∫ ∞

0
tβ–1e–t dt.

The Caputo derivative C
0 Dβ

t f (t) (denoted by Dβ f (t), briefly) of order β ∈ (0, 1) is defined
by

C
0 Dβ

t f (t) =
1

Γ (1 – β)

∫ t

0
(t – u)–β f ′(u) du. (2.1)

In [1], the Laplace transform of Eq. (2.1) is represented as

L
{

Dβ f (t); s
}

=
∫ ∞

0
e–stDβ f (t) dt = sβF(s) – sβ–1f (0),

where L denotes the Laplace transform operator, F(s) = L{f (t); s}.

Definition 2.1 ([43]) The two-parameter Mittag-Leffler function Eα,β , with α,β > 0, is
given by

Eα,β (z) =
∞∑
t=0

zt

Γ (αt + β)
, z ∈C.

It is immediately seen that E1,1(z) = ez .

Lemma 2.2 ([43]) Let s be a variable of the Laplace domain and ν ∈R. Then

L–1
{

sα–β

sα + ν
; t

}
= tβ–1Eα,β

(
–νtα

) (
Re(s) > |ν|1/α)

,

where L–1 denotes the inverse Laplace transform operator, Re(s) means the real part of s.
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Lemma 2.3 ([1]) The inverse Laplace transform of the product of functions Fi : [0, +∞) →
R (i = 1, 2) is

L–1{F1(s)F2(s); t
}

= f1(t) ∗ f2(t),

where fi(t) = L–1{Fi(s); t} (i = 1, 2), and f1(t) ∗ f2(t) denotes the convolution of fi, i = 1, 2, that
is,

f1(t) ∗ f2(t) =
∫ t

0
f1(t – u)f2(u) du.

Lemma 2.4 ([1]) Let α ∈ (0, 1), β ∈C. Suppose there is a p ∈R such that

πα

2
< p < min{π ,πα}. (2.2)

Then, for all positive integers n,

Eα,β (z) = –
n∑

t=1

z–t

Γ (–αt + β)
+ o

(
1

|z|n+1

)
,

where p ≤ | arg(z)| ≤ π as |z| tends to ∞.

Lemma 2.5 ([1]) Let α ∈ (0, 2) and β ∈ R. If Eq. (2.2) holds for some constant p > 0, then
there is M > 0 such that

∣∣Eα,β (z)
∣∣ ≤ M

1 + |z|

for all z ∈ C with |z| ≥ 0 and β ≤ | arg(z)| ≤ π .

Lemma 2.6 ([44]) For arbitrary w(t) ∈R
n and t ∈ [0, +∞), it holds that

1
2

Dα
(
wT (t)w(t)

) ≤ wT (t)Dαw(t).

2.2 Fuzzy logic systems
Let xxx(t) ∈ R

n at time instant t ∈ [0, +∞), and R(1), R(2), . . . ,R(m) be fuzzy rules, which can
be interpreted as [18–21, 39]:

R(k) : IF x1 is Ek
1 andx2 is Ek

2 and . . . and xn is Ek
n,

THEN f̂
(
xxx(t)

)
is Fk (k = 1, 2, . . . , m),

where xk is the kth component of xxx(t), Ek
j (j = 1, 2, . . . , n) and Fk are fuzzy sets. A fuzzy logic

system, with xxx(t) and f̂ (xxx(t)) being the input-variable and the output-variable, respectively,
is given by

f̂
(
xxx(t)

)
=

∑m
k=1 ηk(t)[

∏n
j=1 μEk

j
(xj(t))]∑m

k=1[
∏n

j=1 μEk
j
(xj(t))]

, (2.3)



Lin et al. Advances in Difference Equations        (2020) 2020:150 Page 5 of 19

where μEk
j

is the fuzzy membership function of Ek
j defined from R to the interval [0, 1],

and ηk(t) (called the centroid of the fuzzy rule R(k)) is a real number at which the fuzzy
membership degree μFk for Fk is maximized, i.e.,

ηk(t) = arg max
z∈R

μFk (z).

In general, we set μFk (ηk(t)) = 1 for simplicity.
A fuzzy basis function φk : Rn −→ R based on the fuzzy rule R(k) is defined by

φk
(
xxx(t)

)
=

∏n
j=1 μEk

j
(xj(t))∑m

k=1[
∏n

j=1 μEk
j
(xj(t))]

.

Denote φφφ(xxx(t)) = (φ1(xxx(t)),φ2(xxx(t)), . . . ,φm(xxx(t)))T , ηηη(t) = (η1(t),η2(t), . . . ,ηm(t))T . Then the
output-variable of the fuzzy logic system (2.3) can be simplified as

f̂
(
xxx(t)

)
= ηηηT (t)φφφ

(
xxx(t)

)
. (2.4)

Theorem 2.7 ([39]) Let h : Ψ → R be a continuous function, where Ψ is compact in R
n.

Given a constant ζ > 0, there is a fuzzy logic system (2.4) such that

sup
Ψ

∣∣h(
xxx(t)

)
– f̂

(
xxx(t)

)∣∣ ≤ ζ .

3 Problem description
In this paper, we concentrate on chaos synchronization issue of a type of uncertain
fractional-order master system, which is represented as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dαx1(t) = f1( ¯̄x1(t)),
...

Dαxn–1(t) = fn–1( ¯̄xn–1(t)),

Dαxn(t) = fn( ¯̄xn(t)),

(3.1)

where ¯̄xi(t) = (x1(t), x2(t), . . . , xi(t))T ∈ R
i (i = 1, 2, . . . , n) describe variables of master

pseudo-states at time instant t ∈ [0, +∞), and fi denote nondeterministic smooth non-
linear functions.

The slave system coupled with system (3.1) is expressed by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαy1(t) = q1( ¯̄y1(t)) + y2(t) + d1(t),

Dαy2(t) = q2( ¯̄y2(t)) + y3(t) + d2(t),
...

Dαyn–1(t) = qn–1( ¯̄yn–1(t)) + yn(t) + dn–1(t),

Dαyn(t) = qn( ¯̄yn(t)) + u(t) + dn(t),

(3.2)

where ¯̄yi(t) = (y1(t), y2(t), . . . , yi(t))T ∈ R
i(1 ≤ i ≤ n) stand for variables of slave pseudo-

states, qi denote nondeterministic smooth nonlinear real-valued functions, di(t) ∈R rep-
resent external perturbations, and u(t) ∈ R is a synchronization controller which will be
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specified later. The relationship between systems (3.1) and (3.2) is that slave (3.2) subjected
to the dynamic behaviors of master (3.1) is asymptotically synchronized with master (3.1)
with the aid of controller u(t).

Assumption 3.1 For each i (1 ≤ i ≤ n), the external perturbation di(t) is bounded, that is,

∣∣di(t)
∣∣ ≤ di

for some known positive constant di.

4 Controller construction and stability analysis
The synchronization error ei(t) for the master variable xi(t) and its slave yi(t) is defined as

ei(t) = yi(t) – xi(t) (i = 1, 2, . . . , n).

Subtracting (3.1) from (3.2) leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαe1(t) = h1( ¯̄y1(t), ¯̄x2(t)) + e2(t) + d1(t),

Dαe2(t) = h2( ¯̄y2(t), ¯̄x3(t)) + e3(t) + d2(t),
...

Dαen–1(t) = hn–1( ¯̄yn–1(t), ¯̄xn(t)) + en(t) + dn–1(t),

Dαen(t) = hn( ¯̄yn(t), ¯̄xn(t)) + u(t) + dn(t),

(4.1)

where

hi
( ¯̄yi(t), ¯̄xi+1(t)

)
= qi

( ¯̄yi(t)
)

– fi
( ¯̄xi(t)

)
+ xi+1(t)

for i = 1, 2, . . . , n – 1, and

hn
( ¯̄yn(t), ¯̄xn(t)

)
= qn

( ¯̄yn(t)
)

– fn
( ¯̄xn(t)

)
.

Next, let us focus on the design of a fuzzy adaptive backstepping-based control protocol
step by step.

Step1. To approximate the nondeterministic continuous function h1, we construct the
following fuzzy logic system, whose output-variable is determined by an estimation func-
tion ĥ1 for h1:

ĥ1
(
η1(t), ¯̄y1(t)

)
= ηT

1 (t)φ1
( ¯̄y1(t)

)
, (4.2)

where η1(t) is an adjustable 1-dimensional parameter vector and φ1 is a fuzzy basis func-
tion. Moreover, with respect to η1(t), Theorem 2.7 guarantees the existence of the optimal
parameter η∗

1 , which is given by

η∗
1 = arg min

η1(t)

[
sup
¯̄y1(t)

∣∣h1
( ¯̄y1(t), ¯̄x2(t)

)
– ĥ1

(
η1(t), ¯̄y1(t)

)∣∣].
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Here, the employment of η∗
1 just only facilitates the analysis of the systematic stability, but

it is not mandatory in the control protocol.
Define the optimal parametric error η̃1 and the optimal estimation error ε1 by

η̃1(t) = η1(t) – η∗
1, (4.3)

ε1
( ¯̄y1(t), ¯̄x2(t)

)
= h1

( ¯̄y1(t), ¯̄x2(t)
)

– ĥ1
(
η∗

1, ¯̄y1(t)
)
, (4.4)

respectively. It can be easily seen that the boundedness of the estimation error ε1 is guar-
anteed by [45, 46] and Theorem 2.7, that is,

∣∣ε1
( ¯̄y1(t), ¯̄x2(t)

)∣∣ ≤ ε∗
1 ,

where ε∗
1 > 0 is a given constant.

Let �1(t) = e1(t). Based on Eqs. (4.2), (4.3), and (4.4), one gets

Dα�1(t) = h1
( ¯̄y1(t), ¯̄x2(t)

)
+ e2(t) +

[
ĥ1

(
η∗

1, ¯̄y1(t)
)

– ĥ1
(
η∗

1, ¯̄y1(t)
)]

+ (λ1 – λ1) + d1(t)

=
[
h1( ¯̄y1(t), ¯̄x2(t) – ĥ1

(
η∗

1, ¯̄y1(t)
)]

+ ĥ1
(
η∗

1, ¯̄y1(t)
)

+
(
e2(t) – λ1

)
+ λ1 + d1(t)

= ε1
( ¯̄y1(t), ¯̄x2(t)

)
– η̃T

1 (t)φ1
( ¯̄y1(t)

)
+ ηT

1 (t)φ1
( ¯̄y1(t)

)

+ �2(t) + λ1 + d1(t), (4.5)

where �2(t) = e2(t) – λ1, and λ1 is a virtual control input to be constructed later.
Define

λ1 = –ηT
1 (t)φ1

( ¯̄y1(t)
)

– k11�1(t) – k21sign
(
�1(t)

)
– k31sign

(
�1(t)

)
, (4.6)

where k11, k21 and k31 are designed parameters with k11 > 0, k21 ≥ ε∗
1 , and k31 ≥ d1.

Substituting (4.6) into (4.5) yields

Dα�1(t) = ε1
( ¯̄y1(t), ¯̄x2(t)

)
– η̃T

1 (t)φ1
( ¯̄y1(t)

)
+ �2(t) + d1(t)

– k11�1(t) – (k21 + k31)sign
(
�1(t)

)
. (4.7)

Multiplying both sides of (4.7) by �1(t) yields

�1(t)Dα�1(t) = �1(t)ε1
( ¯̄y1(t), ¯̄x2(t)

)
– �1(t)η̃T

1 (t)φ1
( ¯̄y1(t)

)
+ �1(t)�2(t)

+ �1(t)d1(t) – k11�
2
1(t) – k21

∣∣�1(t)
∣∣ – k31

∣∣�1(t)
∣∣

≤ ∣∣�1(t)
∣∣ε∗

1 – �1(t)η̃T
1 (t)φ1

( ¯̄y1(t)
)

+ �1(t)�2(t) +
∣∣�1(t)

∣∣d1

– k11�
2
1(t) – k21

∣∣�1(t)
∣∣ – k31

∣∣�1(t)
∣∣

≤ –�1(t)η̃T
1 (t)φ1

( ¯̄y1(t)
)

+ �1(t)�2(t) – k11�
2
1(t). (4.8)
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Now, construct a Lyapunov function as follows:

V1(t) =
1
2
�2

1(t) +
1

2ξ1
η̃T

1 (t)η̃1(t). (4.9)

The associated adaptation law can be designed as

Dαη1(t) = ξ1�1(t)φ1
( ¯̄y1(t)

)
– ξ̂1η1(t), (4.10)

where ξ1 and ξ̂1 are positive designed parameters.
Note that Dαη̃1(t) = Dαη1(t). Taking fractional-order derivative on both sides of (4.9)

and substituting (4.8) and (4.10) into it, by Lemma 2.6, we deduce that

DαV1(t) ≤ �1(t)Dα�1(t) +
1
ξ1

η̃T
1 (t)Dαη̃1(t)

≤ –�1(t)η̃T
1 (t)φ1

( ¯̄y1(t)
)

+ �1(t)�2(t) – k11�
2
1(t) +

1
ξ1

η̃T
1 (t)Dαη̃1(t)

= –k11�
2
1(t) + �1(t)�2(t) +

1
ξ1

η̃T
1 (t)

[
Dαη̃1(t) – ξ1�1(t)φ1

( ¯̄y1(t)
)]

≤ –k11�
2
1(t) –

ξ̂1

ξ1
η̃T

1 (t)η̃1(t) + �1(t)�2(t) +
ξ̂1

2ξ1

(
η∗

1
)T

η∗
1

≤ –a11V1(t) + a21 + �1(t)�2(t),

where a11 = min{2k11, 2ξ̂1} and a21 = ξ̂1
2ξ1

(η∗
1)Tη∗

1 .
Step2. Let �3(t) = e3(t) –λ2, where λ2 is a virtual control input which will be defined later.

Observe that

Dα�2(t) = Dα
(
e2(t) – λ1

)
= Dαe2(t) – Dαλ1. (4.11)

Substituting (4.1) into (4.11) gives

Dα�2(t) = h2
( ¯̄y2(t), ¯̄x3(t)

)
+ e3(t) – λ2 + λ2 + d2(t) – Dαλ1

= H2
( ¯̄y2(t), ¯̄x3(t)

)
+ �3(t) + λ2 + d2(t), (4.12)

where H2 is a nondeterministic continuous function given by H2( ¯̄y2(t), ¯̄x3(t)) = h2( ¯̄y2(t),
¯̄x3(t))–Dαλ1. In analogy to Step 1, to approximate unknown H2, we adopt the employment
of fuzzy logic system as follows:

Ĥ2
(
η2(t), ¯̄y2(t)

)
= ηT

2 (t)φ2
( ¯̄y2(t)

)
. (4.13)

Establish the adaptation law and the virtual control input λ2 respectively by

Dαη2(t) = ξ2�2(t)φ2
( ¯̄y2(t)

)
– ξ̂2η2(t), (4.14)

λ2 = –ηT
2 (t)φ2

( ¯̄y2(t)
)

– k12�2(t) – (k22 + k32)sign
(
�2(t)

)
– �1(t), (4.15)
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where ξ2 and ξ̂2 are positive designed parameters; η2(t) is an adjustable 2-dimensional
parameter vector, φ2 is a fuzzy basis function, while k12 > 0, k22 ≥ ε∗

2 , and k32 ≥ d2.
Here, ε∗

2 > 0 is a certain constant satisfying |ε2( ¯̄y2(t), ¯̄x3(t))| ≤ ε∗
2 with ε2( ¯̄y2(t), ¯̄x3(t)) =

H2( ¯̄y2(t), ¯̄x3(t)) – Ĥ2(η∗
2, ¯̄y2(t)).

Multiply both sides of (4.12) by �2(t). Then, according to (4.13), (4.14), and (4.15),

�2(t)Dα�2(t) = �2(t)ε2
( ¯̄y2(t), ¯̄x3(t)

)
+ �2(t)�3(t) – �2(t)η̃T

2 (t)φ2
( ¯̄y2(t)

)

+ �2(t)d2(t) – k12�
2
2(t) – k22

∣∣�2(t)
∣∣ – k32

∣∣�2(t)
∣∣ – �1(t)�2(t)

≤ ∣∣�2(t)
∣∣ε∗

2 – �2(t)η̃T
2 (t)φ2

( ¯̄y2(t)
)

+ �2(t)�3(t) +
∣∣�2(t)

∣∣d2

– k12�
2
2(t) – k22

∣∣�2(t)
∣∣ – k32

∣∣�2(t)
∣∣ – �1(t)�2(t)

≤ –�2(t)η̃T
2 (t)φ2

( ¯̄y2(t)
)

+ �2(t)�3(t) – k12�
2
2(t) – �1(t)�2(t). (4.16)

Consider the Lyapunov candidate

V2(t) = V1(t) +
1
2
�2

2(t) +
1

2ξ2
η̃T

2 (t)η̃2(t). (4.17)

Apply Dα on both sides of (4.17). An application of Eqs. (4.14), (4.16), and Lemma 2.6
gives

DαV2(t) ≤ DαV1(t) + �2(t)Dα�2(t) +
1
ξ2

η̃T
2 (t)Dαη̃2(t)

≤ DαV1(t) – �2(t)η̃T
2 (t)φ2

( ¯̄y2(t)
)

+ �2(t)�3(t) – k12�
2
2(t)

– �1(t)�2(t) +
1
ξ2

η̃T
2 (t)Dαη̃2(t)

≤ – a11V1(t) + a21 + �2(t)�3(t) – k12�
2
2(t)

+
1
ξ2

η̃T
2 (t)

[
Dαη̃2(t) – ξ2�2(t)φ2

( ¯̄y2(t)
)]

≤ – a11V1(t) + a21 + �2(t)�3(t) – k12�
2
2(t)

–
ξ̂2

ξ2
η̃T

2 (t)η̃2(t) +
ξ̂2

2ξ2

(
η∗

2
)T

η∗
2

≤ – a12V2(t) + a22 + �2(t)�3(t),

where a12 = min{a11, 2k12, 2ξ̂2} and a22 = a21 + ξ̂2
2ξ2

(η∗
2)Tη∗

2 .
Step i (i = 3, 4, . . . , n – 1). Let �i(t) = ei(t) – λi–1. Then

Dα�i(t) = hi
( ¯̄yi(t), ¯̄xi+1(t)

)
+ ei+1(t) + di(t) – Dαλi–1

= Hi
( ¯̄yi(t), ¯̄xi+1(t)

)
+ �i+1(t) + λi + di(t), (4.18)

where Hi( ¯̄yi(t), ¯̄xi+1(t)) = hi( ¯̄yi(t), ¯̄xi+1(t)) – Dαλi–1 is an unknown function, λi is a virtual
control input which is pending design. In analogy to Step 2, the functional uncertainty
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can be approximated by the fuzzy logic system

Ĥi
(
ηi(t), ¯̄yi(t)

)
= ηT

i (t)φi
( ¯̄yi(t)

)
, (4.19)

where ηi(t) is an adjustable parameter vector and φi is a fuzzy basis function.
Put

λi = –ηT
i (t)φi

(
yi(t)

)
– k1i�i(t) – (k2i + k3i)sign

(
�i(t)

)
– �i–1(t), (4.20)

and, in addition, select the adaptation law as

Dαηi(t) = ξi�i(t)φi
( ¯̄yi(t)

)
– ξ̂iηi(t), (4.21)

where ξi and ξ̂i are positive designed parameters, k1i > 0, k2i ≥ ε∗
i with ε∗

i being a known
positive constant such that |εi( ¯̄yi(t), ¯̄xi+1(t))| ≤ ε∗

i for εi( ¯̄yi(t), ¯̄xi+1(t)) = Hi( ¯̄yi(t), ¯̄xi+1(t)) –
Ĥi(η∗

i , ¯̄yi(t)), k3i ≥ di.
Multiply both sides of (4.18) by �i(t). Using Eqs. (4.19), (4.20), and (4.21), this gener-

ates

�i(t)Dα�i(t) = �i(t)εi
( ¯̄yi(t), ¯̄xi+1(t)

)
– �i(t)η̃T

i (t)φi
( ¯̄yi(t)

)
+ �i(t)�i+1(t)

+ �i(t)di(t) – k1i�
2
i (t) – k2i

∣∣�i(t)
∣∣ – k3i

∣∣�i(t)
∣∣ – �i–1(t)�i(t)

≤ ∣∣�i(t)
∣∣ε∗

i – �i(t)η̃T
i (t)φi

( ¯̄yi(t)
)

+ �i(t)�i+1(t) +
∣∣�i(t)

∣∣di

– k1i�
2
i (t) – k2i

∣∣�i(t)
∣∣ – k3i

∣∣�i(t)
∣∣ – �i–1(t)�i(t)

≤ –�i(t)η̃T
i (t)φi

( ¯̄yi(t)
)

+ �i(t)�i+1(t) – k1i�
2
i (t) – �i–1(t)�i(t). (4.22)

Select the Lyapunov candidate of the form

Vi(t) = Vi–1(t) +
1
2
�2

i (t) +
1

2ξi
η̃T

i (t)η̃i(t). (4.23)

Apply the derivative operator Dα on both sides of (4.23) and substitute Eqs. (4.21) and
(4.22) into it. By Lemma 2.6, one obtains

DαVi(t) ≤ DαVi–1(t) + �i(t)Dα�i(t) +
1
ξi

η̃T
i (t)Dαη̃i(t)

≤ DαVi–1(t) – �i(t)η̃T
i (t)φi

( ¯̄yi(t)
)

+ �i(t)�i+1(t)

– k1i�
2
i (t) – �i–1(t)�i(t) +

1
ξi

η̃T
i (t)Dαη̃i(t)

≤ –a1,i–1Vi–1(t) + a2,i–1 + �i(t)�i+1(t)

– k1i�
2
i (t) +

1
ξi

η̃T
i (t)

[
Dαη̃i(t) – ξi�i(t)φi

( ¯̄yi(t)
)]

≤ –a1,i–1Vi–1(t) + a2,i–1 + �i(t)�i+1(t) – k1i�
2
i (t)

–
ξ̂i

ξi
η̃T

i (t)η̃i(t) +
ξ̂i

2ξi

(
η∗

i
)T

η∗
i



Lin et al. Advances in Difference Equations        (2020) 2020:150 Page 11 of 19

≤ –a1iVi(t) + a2i + �i(t)�i+1(t),

where a1i = min{a1,i–1, 2k1i, 2ξ̂i} and a2i = a2,i–1 + ξ̂i
2ξi

(η∗
i )Tη∗

i .
Step n. From �n(t) = en(t) – λn–1, we derive

Dα�n(t) = hn
( ¯̄yn(t), ¯̄xn(t)

)
+ u(t) + dn(t) – Dαλn–1

= Hn
( ¯̄yn(t), ¯̄xn(t)

)
+ u(t) + dn(t), (4.24)

where Hn( ¯̄yn(t), ¯̄xn(t)) = hn( ¯̄yn(t), ¯̄xn(t)) – Dαλn–1 is an uncertain function. Similar to Step
n – 1, one may utilize an approximator and an adaptation law as

Ĥn
(
ηn(t), ¯̄yn(t)

)
= ηT

n (t)φn
( ¯̄yn(t)

)
, (4.25)

Dαηn(t) = ξn�n(t)φn
( ¯̄yn(t)

)
– ξ̂nηn(t), (4.26)

respectively, where ξn and ξ̂n are positive designed parameters, εn( ¯̄yn(t), xn(t)) = Hn( ¯̄yn(t),
xn(t)) – Ĥn(η∗

n, ¯̄yn(t)) satisfies |εn( ¯̄yn(t), xn(t))| ≤ ε∗
n with ε∗

n > 0 being a known constant.
To accomplish the remaining protocol design procedure, the active controller may be

constructed as in the following expression:

u(t) = –ηT
n (t)φn

( ¯̄yn(t)
)

– k1n�n(t) – k2nsign
(
�n(t)

)
– k3nsign

(
�n(t)

)
– �n–1(t), (4.27)

where k1n > 0, k2n ≥ ε∗
n and k3n ≥ dn.

Multiply both sides of (4.24) with �n(t). By (4.25), (4.26), and (4.27), we get

�n(t)Dα�n(t) = �n(t)εn
( ¯̄yn(t), ¯̄xn(t)

)
+ �n(t)dn(t) – �n(t)η̃T

n (t)φn
( ¯̄yn(t)

)

– �n–1(t)�n(t) – k1n�
2
n(t) – k2n

∣∣�n(t)
∣∣ – k3n

∣∣�n(t)
∣∣

≤ ∣∣�n(t)
∣∣ε∗

n +
∣∣�n(t)

∣∣dn – �n(t)η̃T
n (t)φn

( ¯̄yn(t)
)

– �n–1(t)�n(t) – k1n�
2
n(t) – k2n

∣∣�n(t)
∣∣ – k3n

∣∣�n(t)
∣∣

≤ –�n(t)η̃T
n (t)φn

( ¯̄yn(t)
)

– �n–1(t)�n(t) – k1n�
2
n(t). (4.28)

Consider the following Lyapunov candidate:

Vn(t) = Vn–1(t) +
1
2
�2

n(t) +
1

2ξn
η̃T

n (t)η̃n(t). (4.29)

Compute fractional-order derivative of both sides of (4.29), then substitute (4.26) and
(4.28) into it. By Lemma 2.6, this yields

DαVn(t) ≤ DαVn–1(t) + �n(t)Dα�n(t) +
1
ξn

η̃T
n (t)Dαη̃n(t)

≤ DαVn–1(t) – �n–1(t)�n(t) – k1n�
2
n(t)

– �n(t)η̃T
n (t)φn

( ¯̄yn(t)
)

+
1
ξn

η̃T
n (t)Dαη̃n(t)

≤ –a1,n–1Vn–1(t) + a2,n–1 – k1n�
2
n(t)
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+
1
ξn

η̃T
n (t)

[
Dαη̃n(t) – ξn�n(t)φn

( ¯̄yn(t)
)]

≤ –a1,n–1Vn–1(t) + a2,n–1 – k1n�
2
n(t)

≤ –
ξ̂n

ξn
η̃T

n (t)η̃n(t) +
ξ̂n

2ξn

(
η∗

n
)T

η∗
n

≤ –a1nVn(t) + a2n, (4.30)

where a1n = min{a1,n–1, 2k1n, 2ξ̂n} and a2n = a2,n–1 + ξ̂n
2ξn

(η∗
n)Tη∗

n.

Theorem 4.1 Let Assumption 3.1 be fulfilled. If the controller u(t) is chosen as in (4.27), the
virtual control inputs satisfy Eqs. (4.6), (4.15), and (4.20), and, moreover, the adaptation
laws are determined by (4.10), (4.14), (4.21), and (4.26), then every synchronization error
ei(t) (i = 1, 2, . . . , n) for systems (3.1) and (3.2) converges to a sufficiently small region of the
origin as t → +∞.

Proof By virtue of Eq. (4.30), we derive

DαVn(t) + k(t) = –a1nVn(t) + a2n, (4.31)

for some function k(t) ≥ 0. Applying the Laplace transform L to (4.31), we obtain

Wn(s) =
sα–1

sα + a1n
Vn(0) +

s–1a2n

sα + a1n
–

K(s)
sα + a1n

, (4.32)

where Wn(s) = L{Vn(t); s} and K(s) = L{k(t); s}.
Take the inverse Laplace transform L–1 of Eq. (4.32). Based on Lemmas 2.2 and 2.3, this

yields

Vn(t) = Vn(0)Eα,1
(
–a1ntα

)
+ a2ntαEα,α+1

(
–a1ntα

)
– k(t) ∗ tα–1Eα,α

(
–a1ntα

)
.

Trivially, k(t) ∗ tα–1Eα,α(–a1ntα) ≥ 0, since k(t) and Eα,α(–a1ntα) are nonnegative. Thereby,

∣∣Vn(t)
∣∣ ≤ ∣∣Vn(0)

∣∣Eα,1
(
–a1ntα

)
+ a2ntαEα,α+1

(
–a1ntα

)
.

Noting that arg(–a1ntα) = –π and |–a1ntα| ≥ 0 for all t ≥ 0 with 0 < α < 2, by Lemma 2.5,
we conclude that there is an M > 0 with

∣∣Eα,1
(
–a1ntα

)∣∣ ≤ M
1 + a1ntα

.

Hence,

lim
t→∞

∣∣Vn(0)
∣∣Eα,1

(
–a1ntα

)
= 0.

Therefore, for each ε > 0, there is a constant T1 > 0 satisfying

∣∣Vn(0)
∣∣Eα,1

(
–a1ntα

) ≤ ε

3

for any t ≥ T1.
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On the other hand, it follows from Lemma 2.4 that

Eα,α+1
(
–a1ntα

)
=

1
Γ (1)a1ntα

+ o
(

1
|a1ntα|2

)
.

As a consequence, for each ε > 0, there is a constant T2 > 0 satisfying

a2ntαEα,α+1
(
–a1ntα

) ≤ a2n

a1n
+

ε

3

for all t ≥ T2.
Select a1n and a2n such that a2n

a1n
≤ ε

3 . Based on the preceding argument, we have

∣∣Vn(t)
∣∣ ≤ ε, ∀t ≥ max{T1, T2}. (4.33)

From (4.33), it can be inferred that all state variables and estimation errors are bounded
in the closed-loop system according to (4.29). Hence, by the arbitrariness of ε, every syn-
chronization error ei(t) tends towards a sufficiently small region of the origin ultimately. �

Remark 4.2 In order to realize the systematic synchronization, we should adjust a2n/a1n

to be as small as possible by means of parameterizing the fuzzy logic system properly. For
instance, we can enlarge ξi and reduce ξ̂i simultaneously.

Remark 4.3 Note that the proposed method is also valid if system (3.2) is described as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαy1(t) = q1( ¯̄y1(t)) + b1y2(t) + d1(t),

Dαy2(t) = q2( ¯̄y2(t)) + b2y3(t) + d2(t),
...

Dαyn–1(t) = qn–1( ¯̄yn–1(t)) + bnyn(t) + dn–1(t),

Dαyn(t) = qn( ¯̄yn(t)) + u(t) + dn(t),

where b1, b2, . . . , bn are known constants.

Remark 4.4 It should be mentioned that Theorem 4.1 can be extended to analyze the sta-
bility of many other fractional-order nonlinear systems. Based on fractional Lyapunov sta-
bility criterion, it is not difficult to show that if there exist positive constants τ1, τ2 with
DαV (t) ≤ –τ1V (t) + τ2, where V (t) = 1

2 eT (t)e(t) is a quadratic Lyapunov function, then
e(t) ∈R

n is globally bounded and e(t) ≤ τ2
τ1

holds whenever the time instant t is sufficiently
large.

Remark 4.5 Under the proposed fuzzy adaptive backstepping control protocol, it can be
apparently seen that the superfluous terms which might appear by recurring fractional
derivations on virtual control inputs are fully averted, which is also suitable for many other
fractional-order nonlinear systems. For the details, the readers may refer to Appendix B
of [35].
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Figure 1 The master system in Example 1

Figure 2 The slave system in Example 1

5 Numerical simulations
5.1 Example 1
Suppose that a master system is formed by

⎧⎨
⎩

Dαx1(t) = –0.5x2
1(t) + x2(t) + 0.8x1(t),

Dαx2(t) = x1(t)–x3
1(t)

1+x4
1(t) .

(5.1)

The relevant slave system is formulated by

⎧⎨
⎩

Dαy1(t) = y2(t) + d1(t),

Dαy2(t) = y1(t) – y3
1(t) – 0.15y2(t) + d2(t) + u(t).

(5.2)

Let α = 0.98, di(t) = u(t) ≡ 0. Figures 1 and 2 exhibit the uncontrolled phenomena of
system (5.1) with the initial value (x1(0), x2(0)) = (0.3, –0.4) and system (5.2) with the initial
value (y1(0), y2(0)) = (–2.9, 2), respectively.

Take two fuzzy logic systems into consideration in this simulation. Assume that y1(t) is
the input of the first fuzzy logic system with the Gaussian membership functions, which
are expressed by exp(–(x – ci)2/(2σ 2

i )) for i = 1, 2, 3, 4. Suppose they are uniformly dis-
tributed on [–3, 3], and consider the initial value η1(0) = (1, 1, 1, 1)T . The secondary one
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Figure 3 The simulation results. (a) The 1st signal trajectories, x1(t) (solid line) and y1(t) (dotted line). (b) The
2nd signal trajectories, x2(t) (solid line) and y2(t) (dotted line). (c) The synchronization error trajectories, e1(t)
(dotted line) and e2(t) (dashed line). (d) The control input trajectory, u(t)

treats y1(t) and y2(t) as its inputs. In terms of y2(t), there are five Gaussian functions
treated as fuzzy membership functions uniformly distributed on [–4, 4] with the initial
value η2(0) = (1, . . . , 1)T ∈R

20.
Let k11 = k12 = 1.2, k13 = 1, k21 = k22 = 1.6, k23 = 2, k31 = k32 = 2, k33 = 5, ξ1 = ξ2 = ξ3 = 100,

and ξ̂1 = ξ̂2 = ξ̂3 = 0.1, which are the parameters of the synchronization controller. Choose
d1(t) = 1 and d2(t) = 0.1 + cos(t) as the external disturbances. The simulation results are
revealed in Fig. 3.

In view of the above-mentioned results, we observe that the synchronization errors re-
duce very rapidly and thereafter converge to a sufficiently small region as time elapses,
which shows the outstanding performance of the fuzzy logic system in practical applica-
tions. Such results meet our expectation.

5.2 Example 2
Consider the master system as defined in [47]:

⎧⎪⎪⎨
⎪⎪⎩

Dαx1(t) = x2(t) + 10
7 (x1(t) – x3

1(t)),

Dαx2(t) = x3(t) + 10x1(t) – x2(t),

Dαx3(t) = – 100
7 x2(t).

(5.3)

Let the initial value be (x1(0), x2(0), x3(0)) = (–2, –1, 1). According to [47], when α = 0.98,
chaos emerges in system (5.3), which is shown in Fig. 4.
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Figure 4 The fractional-order master system in Example 2

Figure 5 The fractional-order slave system in Example 2

The slave system defined in [48] is

⎧⎪⎪⎨
⎪⎪⎩

Dαy1(t) = y2(t) + d1(t),

Dαy2(t) = y3(t) + d2(t),

Dαy3(t) = –β1y1(t) – β2y2(t) – β3y3(t) + β4y3
3(t) + d3(t) + u(t).

(5.4)

Without loss of generality, assume β1 = 100
9 , β2 = 1.5, β3 = 1, and β4 = –1. When α =

0.98, di(t) = u(t) ≡ 0, and the initial value is (y1(0), y2(0), y3(0)) = (–3, –0.5, 0.1), system (5.4)
is in chaos, which is displayed in Fig. 5.

The simulation involves three fuzzy systems. The first is based on the four fuzzy mem-
bership functions as defined in Example 1, viewing y1(t) as its input. Let the initial value be
η1(0) = (1, 1, 1, 1)T . The second takes y1(t) and y2(t) as its inputs. For every input, the mem-
bership functions are defined similarly to that of the first fuzzy system with the initial value
η2(0) = (1, . . . , 1)T ∈ R

16. The last system regards y1(t), y2(t), and y3(t) as its inputs. With
respect to y3(t), one defines five Gaussian membership functions uniformly distributed on
[–4, 4]. The initial value is chosen as η3(0) = (1, . . . , 1)T ∈R

80.
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Figure 6 The state stabilization. (a) The 1st tracking trajectory, x1(t) (solid line) and y1(t) (dotted line). (b) The
2nd tracking trajectory, x2(t) (solid line) and y2(t) (dotted line). (c) The 3rd tracking trajectory, x3(t) (solid line)
and y3(t) (dotted line). (d) The control input, u(t)

Figure 7 The convergency trajectory: e1(t) (green line), e2(t) (blue line), and e3(t) (red line)

Choose k11 = k12 = 1.2, k13 = 1, k21 = k22 = 0.5, k23 = 0.8, k31 = k32 = k33 = 2, ξ1 = ξ2 = ξ3 =
10, and ξ̂1 = ξ̂2 = ξ̂3 = 0.05 as the parameters of the controller. Set the external disturbances
d1(t) = sin(10t), d2(t) = 0.1 + cos(t), and d3(t) = 0.1 + sin(5t), respectively. Figures 6 and 7
depict the state stabilization and the state synchronization under simulation, respectively.
This indicates that the simulation results coincide with those of the preceding theoretical
analysis.
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6 Conclusion
This work provides a framework to study stabilization control of perturbed fractional-
order chaotic systems with nondeterministic terms based on extended Lyapunov stability
criterion. It is demonstrated by numerical simulations that the proposed adaptive fuzzy
backstepping-based control strategy not only overcomes the inherent drawback of “ex-
plosion of complexity”, but also reflects the robust attribute for fractional-order chaotic
systems consisting of parameter uncertainties and external perturbations. In the future,
it is worth considering the synchronization issue of fractional-order systems with more
sophisticated structures (for example, we can assume that the linear term coefficient is
nondeterministic).
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