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Abstract
Leslie–Gower predator prey model with Holling II type cannibalism term is proposed
and studied in this paper. Local and global stability properties of the system are
investigated. Our study indicates that cannibalism has no influence on the local
stability property of the equilibrium, which is quite different to the known results.
Numeric simulations are carried out to show the feasibility of the main results.
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1 Introduction
The aim of this paper is to investigate the dynamic behaviors of the following Leslie–
Gower predator prey model with prey cannibalism:

dH
dt

= (r1 + c1 – a1P – b1H)H –
fH2

d + H
,

dP
dt

=
(

r2 – a2
P
H

)
P,

(1.1)

where H and P are the density of prey species and the predator species at time t, respec-
tively. ri, i = 1, 2, are the intrinsic growth rate of the prey and predator species, respectively.
r1/b1 is the environment carrying capacity of the prey species, f is the cannibalism rate.
C(H) = f × H × H

H+d is the generic cannibalism term. c1H is the new offsprings due to
the cannibalism. Obviously, c1 < f , since it takes depredation of a number of prey by the
cannibal to produce one new offspring.

During the last decades, mathematics biology has become one of the important research
areas [1–40]. Specially, many scholars investigated the dynamic behaviors of the ecosystem
with cannibalism (see [28–34] and the references cited therein). Cannibalism often occurs
in plankton, fishes, spiders [28], and social insect populations [29]. It is a behavior that
consumes the same species and helps to provide food sources.
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Leslie [35] introduced the following predator-prey model where the “carrying capacity”
of the predator’s environment is proportional to the number of prey:

dH
dt

= (r1 – a1P – b1H)H ,

dP
dt

=
(

r2 – a2
P
H

)
P,

(1.2)

where H and P are the density of prey species and the predator species at time t, respec-
tively. Obviously, the above system admits a unique coexisting fixed point

H∗ =
r1a2

a1r2 + a2b1
, P∗ =

r1r2

a1r2 + a2b1
. (1.3)

By applying linear analysis, one could easily show that this fixed point is stable. By con-
structing some suitable Lyapunov function, Korobeinikov [36] showed that the fixed point
is globally stable.

Chen [37] extended model (1.2) by incorporating a refuge protecting mH of the prey,
where m ∈ [0, 1) is constant. This leaves (1 – m)H of the prey available to the predator, and
modifying system (1.2) to the following system:

dH
dt

= (r1 – b1H)H – a1(1 – m)HP,

dP
dt

=
(

r2 – a2
P

(1 – m)H

)
P,

(1.4)

where m ∈ [0, 1) and ri, ai, i = 1, 2, b1 are all positive constants. He showed that prey refuge
has no influence on the persistence property of the system.

Liang and Pan [38] proposed the following ratio-dependent Holling–Tanner model:

dx
dt

= rx
(

1 –
x
k

)
–

mx
Ay + x

y,

dy
dt

= y
[

s
(

1 – h
y
x

)]
,

(1.5)

where r, k, m, A, s, h are all positive constants. Sufficient conditions which ensure the global
stability of the positive equilibrium and the existence of a unique limit cycle have been
obtained, respectively.

In 2016, Basheer et al. [31] proposed the prey-predator model with prey cannibalism as
follows:

du
dt

= u(1 + c1 – u) –
uv

u + αv
– c

u2

u + d
,

dv
dt

= δv
(

β –
v
u

)
,

(1.6)

where c1 < c, u and v represent the densities of prey and predator at time t, respectively.
The parameters c1, α, c, d, δ, and β are all nonnegative constants. Here the generic canni-
balism term C(u) is added in the prey equation and is given by

C(u) = c × u × u
u + d

,



Lin et al. Advances in Difference Equations        (2020) 2020:153 Page 3 of 15

where c is the cannibalism rate. This term has a clear gain of energy to the cannibalis-
tic prey, and this leads to the increase in reproduction in the prey, modeled via adding a
c1u term to the prey equation. The authors showed that prey cannibalism cannot stabilize
the unstable interior equilibrium, in certain parameter regime, but can destabilize the sta-
ble interior equilibrium, leading to a stable limit cycle. It brings to our attention that the
authors only investigated the local stability property of the equilibrium and did not inves-
tigate the global stability property of the positive equilibrium, nor did they investigate the
uniqueness of the limit cycle.

Recently, stimulated by the works of Basheer et al. [31, 32], based on the traditional
Lotka–Volterra type predator prey system, Deng et al. [33] investigated the dynamic be-
haviors of the following predator-prey model with cannibalism for predator:

dx
dt

= x(b – αx – my),

dy
dt

= y(–β + c1 + nx) –
cy2

y + d
,

(1.7)

where c1 < c, x and y are the density of the prey and predator at time t, respectively. The
authors showed that cannibalism has both positive and negative effects on the stability of
the system, it depends on the dynamic behaviors of the original system. If the predator
species in the system without cannibalism is extinct, then suitable cannibalism may lead
to the coexistence of both species; in this case, cannibalism stabilizes the system. If the
two species coexist in the stable state in the original system, then predator cannibalism
may lead to the extinction of the prey species. In this case, cannibalism has an unstable ef-
fect. Also, unlike Basheer et al. [31, 32], by constructing some suitable Lyapunov function,
Deng et al. [33] showed that if system (1.7) has a positive equilibrium, it then is globally
asymptotically stable.

Stimulated by the works of Basheer et al. [31, 32] and Deng et al. [33], based on model
(1.2), we propose the Leslie–Gower predator prey model with prey cannibalism, i.e., sys-
tem (1.1). As far as system (1.1) is concerned, two interesting issues are proposed: Can
we obtain sufficient conditions to ensure the existence of a unique globally stable positive
equilibrium? Can we give some positive answer on the influence of the cannibalism on the
dynamic behaviors of the system?

The rest of the paper is arranged as follows. In the next section, we investigate the exis-
tence and local stability of the equilibrium of system (1.1). In Sect. 3, we discuss the global
stability of the equilibrium by using the iterative method. Numeric simulations are pre-
sented in Sect. 4 to show the feasibility of the main results. We end this paper with a brief
discussion.

2 The existence and local stability of the equilibria of system (1.1)
Concerned with the existence of the equilibria of system (1.1), we have the following result.

Theorem 2.1 System (1.1) admits the boundary equilibrium A(H0, 0) and the unique pos-
itive equilibrium B(H∗, P∗), where

H0 =
–A2 +

√
A2

2 – 4A1A3

2A1
,
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H∗ =
–B2 +

√
B2

2 – 4B1B3

2B1
, P∗ =

r2H∗

a2
,

A1 = b1 > 0,

A2 = b1d – c1 + f – r1,

A3 = –c1d – dr1 < 0,
(2.1)

B1 = a1r2 + a2b1 > 0,

B2 = a1dr2 + a2b1d – a2c1 + a2f – a2r1,

B3 = –a2c1d – a2dr1 < 0.

Proof The equilibria of system (1.1) satisfy the equation

(r1 + c1 – a1P – b1H)H –
fH2

d + H
= 0,

(
r2 – a2

P
H

)
P = 0.

(2.2)

From the second equation of (2.2), one has P = 0 or P = r2H
a2

. Substituting P = 0 to the first
equation of (2.2) leads to

(r1 + c1 – b1H) –
fH

d + H
= 0. (2.3)

Equation (2.3) is equivalent to

A1H2 + A2H + A3 = 0, (2.4)

where A1, A2, A3 are defined by (2.1). (2.4) has a unique positive solution H0, hence, system
(1.1) has the boundary equilibrium A(H0, 0).

Substituting P = r2H
a2

to the first equation of (2.2) leads to

H
(

–Hb1 –
Ha1r2

a2
+ c1 + r1

)
–

fH2

d + H
= 0. (2.5)

Equation (2.5) is equivalent to

B1H2 + B2H + B3 = 0, (2.6)

where B1, B2, B3 are defined by (2.1). (2.6) has a unique positive solution H∗, hence, system
(1.1) has the boundary equilibrium B(H∗, P∗).

This ends the proof of Theorem 2.1. �

Theorem 2.2 A(H0, 0) is unstable equilibrium, and B(H∗, P∗) is locally asymptotically sta-
ble.

Proof The Jacobian matrix of system (1.1) is calculated as follows:

J(H , P) =

(
A11 –a1H
P2a2
H2 r2 – 2 a2P

H

)
, (2.7)
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where

A11 = –2Hb1 – Pa1 + c1 + r1 – 2
Hf

d + H
+

fH2

(d + H)2 .

Then the Jacobian matrix of system (1.1) about the equilibrium A(H0, 0) is

J
(
A(H0, 0)

)

=

(
–2H0b1 + c1 + r1 – 2 H0f

d+H0
+ f H02

(d+H0)2 –a1H0

0 r2

)

=

(
–H0b1 – df H0

(d+H0)2 –a1H0

0 r2

)
. (2.8)

The eigenvalues of J(A) are λ1 = r2 > 0, λ2 = –H0b1 – df H0
(d+H0)2 < 0. Thus, A(H0, 0) is a saddle.

The Jacobian matrix of system (1.1) about the equilibrium B(H∗, P∗) is

J
(
B
(
H∗, P∗)) =

(
–H∗b1 – df H∗

(d+H∗)2 –a1H∗

r2
P∗
H∗ –r2

)
. (2.9)

Then we have

Det J(B
(
H∗, P∗) = r2

(
H∗b1 +

df H∗

(d + H∗)2

)
+ a1H∗r2

P∗

H∗ > 0

and

Tr J(B
(
H∗, P∗) = –H∗b1 –

df H∗

(d + H∗)2 – r2 < 0.

So that both eigenvalues of J(B(H∗, P∗)) have negative real parts [38], and B(H∗, P∗) is lo-
cally asymptotically stable.

This ends the proof of Theorem 2.2. �

3 Global attractivity
The aim of this section is to investigate the global attractivity of the positive equilibrium
of system (1.1). To do so, we need the following lemma.

Lemma 3.1 If a > 0, b > 0 and ẋ ≥ x(b – ax), when t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞ x(t) ≥ b

a
.

If a > 0, b > 0 and ẋ ≤ x(b – ax), when t ≥ 0 and x(0) > 0, we have

lim sup
t→+∞

x(t) ≤ b
a

.

The above lemma is a direct corollary of Lemma 2.2 of Chen [40], so we omit the detailed
proof here.
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Concerned with the global attractivity of the positive equilibrium, we have the following
result.

Theorem 3.1 The positive equilibrium B(H∗, P∗) is globally attractive provided that

a1r2 < a2b1 (3.1)

holds.

Proof From (3.1), we could choose ε > 0 small enough such that

r1 + c1 – a1
r2

a2

(
r1 + c1

b1
+ ε

)
–

(
2 +

a2

r2

)
ε > 0. (3.2)

Indeed, inequality (3.1) is equivalent to

r1 + c1 > a1
r2

a2

(r1 + c1)
b1

,

hence, for ε > 0, which satisfies

ε <
r1 + c1 – a1

r2
a2

(r1+c1)
b1

a1
r2
a2

+ 2 + a2
r2

,

inequality (3.2) holds.
Let (H(t), P(t)) be any positive solution of system (1.1). From the first equation of (1.1),

we have

dH
dt

= (r1 + c1 – a1P – b1H)H –
fH2

d + H

≤ (r1 + c1 – b1H)H . (3.3)

Applying Lemma 3.1 to (3.3) leads to

lim sup
t→+∞

H(t) ≤ r1 + c1

b1
. (3.4)

For ε > 0 small enough, which satisfies (3.2), it follows from (3.4) that there exists T11 > 0
such that

H(t) <
r1 + c1

b1
+ ε

def= M(1)
1 . (3.5)

From the second equation of (1.1), for t > T11, we have

dP
dt

=
(

r2 – a2
P
H

)
P

≤
(

r2 – a2
P

M(1)
1

)
P. (3.6)
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Applying Lemma 3.1 to (3.6) leads to

lim sup
t→+∞

P(t) ≤ r2M(1)
1

a2
. (3.7)

For ε > 0 small enough, which satisfies (3.2), it follows from (3.7) that there exists T12 > 0
such that

P(t) <
r2M(1)

1
a2

+ ε
def= M(1)

2 . (3.8)

From the first equation of (1.1) and (3.8), for t ≥ T12, we also have

dH
dt

= (r1 + c1 – a1P – b1H)H –
fH2

d + H

≥
(

r1 + c1 – a1M(1)
2 –

(
b1 +

f
d

)
H

)
H . (3.9)

From (3.2) we could see that inequality (3.1) implies that

r1 + c1 – a1M(1)
2 > 0. (3.10)

Hence, applying Lemma 3.1 to (3.9) leads to

lim inf
t→+∞ H(t) ≥ r1 + c1 – a1M(1)

2

b1 + f
d

. (3.11)

For ε > 0, which satisfies (3.2), it follows from (3.11) that there exists T13 > T12 such that

H(t) >
r1 + c1 – a1M(1)

2

b1 + f
d

– ε
def= m(1)

1 . (3.12)

From (3.12) and the second equation of (1.1), for t ≥ T13, we have

dP
dt

=
(

r2 – a2
P
H

)
P

≥
(

r2 – a2
P

m(1)
1

)
P. (3.13)

Applying Lemma 3.1 to (3.13) leads to

lim inf
t→+∞ P(t) ≥ r2m(1)

1
a2

. (3.14)

For ε > 0, which satisfies (3.2), it follows from (3.14) that there exists T14 > T13 such that

P(t) >
r2m(1)

1
a2

– ε
def= m(1)

2 . (3.15)
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From the first equation of (1.1), for t > T14, we have

dH
dt

= (r1 + c1 – a1P – b1H)H –
fH2

d + H

≤
(

r1 + c1 – a1m(1)
2 –

(
b1 +

f
d + M(1)

1

)
H

)
H . (3.16)

Applying Lemma 3.1 to (3.16) leads to

lim sup
t→+∞

H(t) ≤ r1 + c1 – a1m(1)
2

b1 + f
d+M(1)

1

. (3.17)

For ε > 0 small enough, which satisfies (3.2), it follows from (3.17) that there exists T21 > 0
such that

H(t) <
r1 + c1 – a1m(1)

2

b1 + f
d+M(1)

1

+
ε

2
def= M(2)

1 . (3.18)

Obviously,

M(2)
1 =

r1 + c1 – a1m(1)
2

b1 + f
d+M(1)

1

+
ε

2
<

r1 + c1

b1
+ ε = M(1)

1 . (3.19)

From the second equation of (1.1), for t > T21, we have

dP
dt

=
(

r2 – a2
P
H

)
P

≤
(

r2 – a2
P

M(2)
1

)
P. (3.20)

Applying Lemma 3.1 to (3.20) leads to

lim sup
t→+∞

P(t) ≤ r2M(2)
1

a2
. (3.21)

For ε > 0 small enough, which satisfies (3.2), it follows from (3.21) that there exists T22 > 0
such that

P(t) <
r2M(2)

1
a2

+ ε
def= M(2)

2 . (3.22)

From (3.8), (3.19), and (3.22), one has

M(2)
2 < M(1)

2 . (3.23)

From the first equation of (1.1) and (3.8), for t ≥ T12, we also have

dH
dt

= (r1 + c1 – a1P – b1H)H –
fH2

d + H
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≥
(

r1 + c1 – a1M(2)
2 –

(
b1 +

f
d + m(1)

1

)
H

)
H . (3.24)

From (3.2) and (3.23) we could see that

r1 + c1 – a1M(2)
2 > 0. (3.25)

Hence, applying Lemma 3.1 to (3.24) leads to

lim inf
t→+∞ H(t) ≥ r1 + c1 – a1M(2)

2

b1 + f
d+m(1)

1

. (3.26)

For ε > 0, which satisfies (3.2), it follows from (3.26) that there exists T23 > T22 such that

H(t) >
r1 + c1 – a1M(2)

2

b1 + f
d+m(1)

1

–
ε

2
def= m(2)

1 . (3.27)

From (3.12), (3.23), and (3.27) one has

m(2)
1 > m(1)

1 . (3.28)

From (3.28) and the second equation of (1.1), for t ≥ T23, we have

dP
dt

=
(

r2 – a2
P
H

)
P

≥
(

r2 – a2
P

m(2)
1

)
P. (3.29)

Applying Lemma 3.1 to (3.29) leads to

lim inf
t→+∞ P(t) ≥ r2m(2)

1
a2

. (3.30)

For ε > 0, which satisfies (3.2), it follows from (3.30) that there exists T24 > T23 such that

P(t) >
r2m(2)

1
a2

– ε
def= m(2)

2 . (3.31)

From (3.15), (3.28), and (3.31) one has

m(2)
2 > m(1)

2 . (3.32)

It follows from (3.18), (3.22), (3.27), and (3.31) that, for all t ≥ T24,

0 < m(1)
1 < m(2)

1 < x(t) < M(2)
1 < M(1)

1 ,

0 < m(1)
2 < m(2)

2 < y(t) < M(2)
2 < M(1)

2 .
(3.33)
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Repeating the above procedure, we get four sequences M(n)
i , m(n)

i , i = 1, 2, n = 1, 2, . . . , such
that

M(n)
1 =

r1 + c1 – a1m(n–1)
2

b1 + f
d+M(n–1)

1

+
ε

n
, (3.34)

m(n)
1 =

r1 + c1 – a1M(n)
2

b1 + f
d+m(n–1)

1

–
ε

n
, (3.35)

M(n)
2 =

r2M(n)
1

a2
+

ε

n
, (3.36)

m(n)
2 =

r2m(n)
1

a2
–

ε

n
. (3.37)

Now, we will show that the sequences M(n)
i are strictly decreasing, and the sequences m(n)

i
are strictly increasing for i = 1, 2 by induction. Firstly, from (3.33), we have

m(1)
i < m(2)

i , M(2)
i < M(1)

i , i = 1, 2. (3.38)

Let us suppose that

m(n–1)
i < m(n)

i , M(n)
i < M(n–1)

i , i = 1, 2. (3.39)

It then follows from (3.34) and (3.39) that

M(n)
1 > M(n+1)

1 . (3.40)

By using (3.40), it follows from (3.36) that

M(n)
2 > M(n+1)

2 . (3.41)

It then follows from (3.35), (3.39), and (3.41) that

m(n+1)
1 > m(n)

1 . (3.42)

From (3.37) and (3.42), we have

m(n+1)
2 > m(n)

2 . (3.43)

Therefore, we have

0 < m(1)
1 < m(2)

1 < · · · < m(n)
1 < x(t) < M(n)

1 < · · · < M(2)
1 < M(1)

1 ,

0 < m(1)
2 < m(2)

2 < · · · < m(n)
2 < y(t) < M(n)

2 < · · · < M(2)
2 < M(1)

2 .
(3.44)

Hence, the limits of M(n)
i and m(n)

i , i = 1, 2, n = 1, 2, . . . , exist. Denote that

lim
n→+∞ M(n)

1 = H , lim
n→+∞ m(n)

1 = H , lim
n→+∞ M(n)

2 = P, lim
n→+∞ m(n)

2 = P. (3.45)
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Then H ≥ H , P ≥ P. Letting n → +∞ in (3.34)–(3.37), we obtain

H =
r1 + c1 – a1P

b1 + f
d+H

, (3.46)

H =
r1 + c1 – a1P

b1 + f
d+H

, (3.47)

P =
r2H
a2

, (3.48)

P =
r2H
a2

. (3.49)

Substituting (3.48) and (3.49) to (3.46) and (3.47), it then follows

b1H +
f H

d + H
= r1 + c1 – a1

r2H
a2

, (3.50)

b1H +
f H

d + H
= r1 + c1 – a1

r2H
a2

. (3.51)

Subtracting the above two equalities leads to

b1(H – H) +
f H

d + H
–

f H
d + H

= a1
r2

a2
(H – H), (3.52)

which is equivalent to
(

b1 – a1
r2

a2

)
(H – H) +

df (H – H)
(d + H)(d + H)

= 0. (3.53)

Since condition (3.1) implies that

b1 – a1
r2

a2
> 0. (3.54)

Also

df > 0. (3.55)

Hence, it follows from (3.53) that

H = H . (3.56)

From (3.48), (3.49), and (3.56), we have

P = P.

Under the assumption of Theorem 3.1, system (1.1) admits a unique positive solution
(H∗, P∗), hence H = H = H∗, P = P = P∗. That is to say,

lim
t→+∞ H(t) = H∗, lim

t→+∞ P(t) = P∗. (3.57)

This ends the proof of Theorem 3.1. �
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Figure 1 Dynamic behaviors of the first species in
system (4.1), the initial conditions (H(0),P(0)) = (1.5,
1.5), (1.5, 0.3), (0.2, 0.1), and (0.4, 1.5), respectively

Figure 2 Dynamic behaviors of the second species
in system (4.1), the initial conditions (H(0),
P(0))=(1.5,1.5), (1.5, 0.3), (0.2, 0.1), and (0.4, 1.5),
respectively

4 Numeric simulations
Example 4.1 Now let us consider the following model:

dH
dt

= (r1 + c1 – a1P – b1H)H –
fH2

d + H
,

dP
dt

=
(

r2 – a2
P
H

)
P.

(4.1)

Here, corresponding to system (1.1), we take r1 = b1 = f = d = r2 = a2 = 1, c1 = 0.5, a1 = 0.2,
then one could see that

a1r2 = 0.2 < a2b1 = 1.

Hence, it follows from Theorem 3.1 that system (4.1) admits a unique positive equilib-
rium, which is globally attractive. Numeric simulations (Figs. 1 and 2) also support this
assertion.
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Figure 3 Dynamic behaviors of the second species
in system (4.2), the initial conditions (H(0),P(0)) = (1,
0.1), (1, 0.), (1, 0.4), and (1, 0.5), respectively

Example 4.2 Now let us consider the following model:

dH
dt

= (r1 + c1 – a1P – b1H)H –
fH2

d + H
,

dP
dt

=
(

r2 – a2
P
H

)
P.

(4.2)

Here, corresponding to system (1.1), we take r1 = b1 = f = d = a2 = 1, c1 = 0.5, a1 = 2, r2 = 2.
Then one could see that

a1r2 = 4 > a2b1 = 1.

Hence, inequality (3.1) does not hold, one could make a conclusion from Theorem 2.1 that
system (4.2) admits a unique positive equilibrium, which is locally asymptotically stable.
However, one could not draw any conclusion about the global asymptotic stability of the
positive equilibrium. Numeric simulation (Fig. 3) shows that the positive equilibrium is
globally asymptotically stable.

5 Conclusion
Based on the traditional Leslie–Gower predator prey model and the works of Basheer et
al. [31, 32] and Deng et al. [33], we proposed a Leslie–Gower predator prey model incor-
porating the nonlinear cannibalism. Already Basheer et al. [31] incorporated the cannibal-
ism to the Holling–Tanner model with ratio-dependent functional response (i.e., system
(1.2)). They showed that cannibalism in the prey cannot stabilize the unstable interior
equilibrium in the ODE case, but can destabilize the stable interior equilibrium, leading
to a stable limit cycle. In this paper, we focus our attention on the most simple Leslie–
Gower predator prey model. Our study shows that the system with cannibalism always
admits a positive equilibrium and a predator free equilibrium, the predator free equilib-
rium is unstable, while the positive equilibrium is locally asymptotically stable. Compared
with the Leslie–Gower predator prey system without cannibalism (i.e., system (1.2)), our
result shows that cannibalism has no influence on the local stability property of the posi-
tive equilibrium, this is quite different to the results of Basheer et al. [31, 32]. Our results
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are also different to those of Deng et al. [33]: for the system they considered, cannibalism
may have both positive or negative effects on the stability of the system. Also, under some
very simple conditions, we could also prove that the positive equilibrium is globally at-
tractive. It brings to our attention that inequality (3.1) is independent of the coefficients of
the cannibalism term. However, for the system without cannibalism (i.e., system (1.2)), the
positive equilibrium is globally attractive without any restriction on the coefficients, and
numeric simulation (Fig. 3) also shows that (3.1) could be dropped out. Hence we have a
conjecture:

Conjecture Condition (3.1) is not needed to ensure the positive equilibrium of system
(1.1) to be globally attractive.

However, at present, we have difficulty to prove this conjecture, we leave this for future
investigation.
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