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Abstract
In this work, the semi-analytical solution is studied for the diffusive logistic equation
with both mixed instantaneous and delayed density. The domain of
reaction–diffusion in one dimension is shown. Delay partial differential equation is
approximated with a delay ordinary differential equation system by using the Galerkin
technique method. Steady-state solutions and stability analysis as well as bifurcation
diagrams are derived. The effect of diffusion parameter and delay values is
comprehensively studied; as a result, both parameters can destabilize or stabilize the
model. We obtained that the decrease in values of the Hopf bifurcations for growth
rate is associated with an increase in delay values, whereas the diffusion parameter is
increased. Furthermore, comparisons between the numerical simulations and
semi-analytical results present a good agreement for all examples and figures of the
Hopf bifurcations. Examples of limit cycle and phase-plane map are plotted to
confirm the benefits and accuracy of semi-analytical solutions result. For periodic
solutions, an asymptotic method is studied after the Hopf bifurcation point for both
one- and two-term semi-analytical systems.
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1 Introduction
Reaction-diffusion phenomenon with time delays has been incorporated into many fields
of biological applications. These applications have explained a number of practical appli-
cations in our everyday life by using partial differential equations (PDEs), for instance, in
population ecology [15, 17, 20, 30, 31], animals [2, 4, 26], cell [5, 19, 22, 25, 33], chemicals
[1, 3, 10], and heat and mass transfer [13, 27]. This model can introduce instability, via a
Hopf bifurcation, with the subsequent development of limit cycles. The oscillatory phe-
nomena (periodic solutions) have been shown by utilizing a continuous well-stirred tank
reactor (CSTR). CSTR has a significant importance to show good outcomes with theo-
retical and experimental investigations: for more details, see [4, 5, 8] and the references
therein.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02613-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02613-0&domain=pdf
mailto:hyalfifi@iau.edu.sa


Alfifi Advances in Difference Equations        (2020) 2020:162 Page 2 of 15

The delay logistic equation with diffusion has been discussed extensively. [32] consid-
ered a diffusive logistic equation with delays. The stability analysis and Hopf points were
explored by the characteristic equation. The technique of normal form along with the the-
ory of manifold center was used to find the stability analysis and the direction of the Hopf
bifurcation. The researchers provided some numerical examples to confirm their theo-
retical results. Furthermore, [6] developed a lower-order semi-analytical system for the
delay logistic equation with feedback term. Galerkin’s method was explored to show de-
lay systems of ordinary differential equations (ODE). The Hopf bifurcation curves’ maps
and steady-state solutions were discussed. The non-smooth ODE system was constructed,
which showed that increasing the delay values in the equation is destabilizing, whilst in-
creasing the feedback delay stabilizes the model. The semi-analytical solutions represent
a novel way of predicting the stability of a non-smooth PDE model. In addition, Alfifi et al.
[7] discussed the class of generalized logistic delay PDEs in a similar way, these classes are
distributed and point delays. Galerkin’s method of approximation was utilized to discretize
the results. The semi-analytical outcomes were comprehensively developed. A great com-
parison was achieved through using semi-analytical methods. [12] investigated stability
analysis and Hopf bifurcation points in a diffusive logistic population that has a nonlocal
effect of delay. [11] considered the Hopf bifurcation of the delay diffusive logistic equa-
tion with the introduced Dirichlet condition for boundaries. [16] discussed delay-diffusion
equations with a small value of delay parameter. They derived that all results were asymp-
totic to the set of equilibrium (similar to an equation without delay) as the time approaches
infinity.

Semi-analytical methods have been used to discuss many delay systems with reaction–
diffusion phenomenon, such as delay logistic equations [6, 7], predator–prey model [2],
viral infection system [5], pellet systems [24], the Belousov–Zhabotinsky (BZ) reaction
[9], the Brusselator model [3], the reversible Selkov model [1], the equation of Nicholsons
blowflies [8], and the limited food model [4]. The outcomes for all papers that used this
method revealed an excellent agreement between semi-analytical ODEs outcomes and the
numerical solutions pertain to PDEs equations.

This paper has various objectives. Galerkin’s method provides a useful technique to ac-
curately predict calculation for this system. So we discuss the effect of diffusion and delay
values of this system and also give illustrations of how the Hopf bifurcation points can
be calculated, discuss the stability of the system. In addition, the objective is to find an
asymptotic analysis close the Hopf bifurcation points. Thus, this paper has been orga-
nized as follows: Sect. 2 shows a non-dimensional delay diffusive system and the Dirichlet
boundary specification. In Sect. 3 we demonstrate the application of Galerkin’s method,
which helps to find the ODEs system. Section 4 discusses a stability analysis, constructing
bifurcation diagrams, and performing comparisons of the semi-analytical and numerical
results. In Sect. 5, an asymptotic analysis of periodic result close to the point of Hopf bi-
furcation is established in detail.

2 The semi-analytical system
The non-linear PDE logistic equation growth with both instantaneous and delayed density
dependence is written as follows:

ut = Duxx + μu(t)
[
1 – αu(t) – βu(t – τ )

]
. (1)
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In this equation, u refers to the density of population at location x and time t. μ describes
the proliferation rate (growth rate), τ represents the delay term, and D refers to the dif-
fusion coefficient of the logistic equation. The parameter α stands for the portions of in-
stantaneous growth rate and β represents delay dependence of the growth rate. For easi-
ness of notation, equation (1) is rescaled by using u∗(x, t) = u(x, tτ ) and then dropping the
asterisks. Therefore, the non-dimensional diffusive system with delay and the Dirichlet
boundary specification is written as follows:

ut = Dτuxx + μτu(t)
[
1 – αu(t) – βu(t – 1)

]
,

u(x, t) = 0, at x = ±1, u(x, t) = ua, –τ < t ≤ 0.
(2)

Here, zero flux boundary condition is obtained in the middle point of domain. So at the
center of domain, the solution has a symmetrical pattern. Moreover, ua is considered to be
a positive constant initial population, when time ranges in (–τ , 0). Note that the parameter
ua = 0.5 is used in all figures and examples in this paper. The fourth-order Runge–Kutta
technique [8, 24] is utilized to compute the solution of a delay ODEs system, while the
finite-difference approximation[5, 7] is used for the numerical results of a single PDE equa-
tion. The spatial and temporal discretizations solved in this paper will be �t = 5×10–3 and
�x = 0.01. The inaccuracy proportion is examined to find the difference between the val-
ues of semi-analytical results and the values of the numerical solutions which are derived
by dividing by the precise estimate times of 100.

3 The Galerkin method technique
Galerkin’s technique utilizes orthogonality of a basis functions set, so to transform PDE
into coupled sets of ODEs. The method can be thought of most usefully as a temporal-
spatial separation. This technique considers a spatial form of the profile concentration,
which is described in [5, 7, 23, 24]. Galerkin’s method indicates an analytical technique,
which utilizes the orthogonality of rudimentary roles set, so to consider the delay ODEs
model from the PDE equation. Many authors have used this technique in different areas
and models, for example, see [6–8, 23]. Here, the following expression is a trial equation,
which was used:

u(x, t) = u1(t) cos

(
πx
2

)
+ u2(t) cos

(
3πx

2

)
. (3)

The trial function is established, in which u =
∑

ui refers to the population density u at the
center of domain. Trial equation (3) subtends the boundary conditions in PDE equation
(1). The free values of parameters in this equation are then calculated by the evaluation
of mean values of the PDE equation, which is weighted by two functions. These functions
are cos( 1

2πx) and cos( 3
2πx). Hence, a system of ODEs is considered as follows:

du1

dt
= –

π2

4
Dτu1 + τμu1 –

16
15π

ατμu1u2 –
72

35π
ατμu2

2 –
8

3π
βτμu1u1d

–
8

15π
βτμu1u2d –

8
15π

βτμu2u1d –
72

35π
βτμu2u2d –

8
3π

ατμu2
1,

du2

dt
= –

9π2

4
Dτu2 + τμu2 –

144
35π

ατμu1u2 +
8

9π
ατμu2

2 –
8

15π
βτμu1u1d (4)
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–
72

35π
βτμu1u2d –

72
35π

βτμu2u1d +
8

9π
βτμu2u2d –

8
15π

ατμu2
1,

u1d = u1(x, t – 1)u2d = u2(x, t – 1).

The series in this case are abbreviated after two-term expansion. The reason for that is
that the two-term solution gets enough accuracy without extreme swell of expression. In
particular, the equation with one term is presented by setting u2 = 0 in equation (4).

4 Bifurcation diagrams and stability analysis
4.1 Methodology and theoretical framework
This part examines methodologies utilized to provide a map of Hopf bifurcations for the
semi-analytical model of (4). A Hopf bifurcation signifies the appearance of limit cycles at
the neighborhood of the steady-state stability changes from stable to unstable solutions as
a consequence of a conjugated pair of eigenvalue values, which passes over the imaginary
axis [7, 29]. There are many books about the stability analysis and dynamical systems de-
scribed for the ODEs system [14, 18]. In our case, the Hopf bifurcation map is computed
by finding an expansion through the Taylor series constructed for the steady-state values,
this can be obtained as the following equation:

u1 = u1s + ερ1e–zt and u2 = u2s + ερ2e–zt , ε � 1. (5)

Hence, equations u1 and u2 as in (5) are substituted into ODEs model (4). After that, they
are linearized about the steady-state values. Then, the Jacobian matrix of eigenvalues de-
velops a small system perturbation, which explains the typical growth rate z, by letting
z = iω in the expression of the characteristic equation, and then by separation of the real
part (Real) and the imaginary part of equation (Imag). Thus, the following equations can
obtain the Hopf bifurcation points as follows:

Real = Imag =
du1

dt
=

du2

dt
= 0,

where du1
dt and du2

dt stand for the steady-state system of (4).

4.2 Hopf bifurcation areas
In this part, semi-analytical maps are developed for a system of equations (4), in which the
Hopf bifurcations are found and compared with numerical results. Furthermore, diffusion
parameters and the effects of delay in the system are studied by a number of illustrations
and figures.

Figure 1 shows a map of two regions with Hopf bifurcation in τ versus μ plane. The
values used are D = 0.3, α = 0.5, and β = 0.7. The numerical (cross points) and the two-
term (dotted line) semi-analytical results are shown. There are two regions in this figure:
the upper part of the curve refers to unstable region, while the down region shows a stable
area. It shows that once there is a growth in the delay values τ , then the values of the
Hopf bifurcation points for growth rate μ are decreasing. Furthermore, we found that at
small values of delay parameter τ , the Hopf bifurcation points μ are extremely similar to
the case without delay. This behavior is qualitatively conformable with the results in [16].
It obviously can be seen that there is an agreement between two-term result against the
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Figure 1 (color online) Shows the Hopf bifurcation
map for τ –μ. The red cross points represent the
solution of the numerical PDE equation and the
black dots refer to a solution of the semi-analytical
equation with two terms. The positive values used
here are D = 0.3, α = 0.5, and β = 0.7

Figure 2 (color online) Displays the Hopf
bifurcation regions of the delay values τ versus the
parameters of α and β . The semi-analytical results
with two terms are plotted. The parameters are
D = 0.3, μ = 5, and β = 0.7 in the τ – α plane
(dotted red curve), while α = 0.7 for the τ – β plane
(black dash curve)

Figure 3 (color online) (a) Demonstrates the Hopf bifurcation curves in the τ – Dmap and μ – Dmap for (b).
The two-term semi-analytical solution is provided. The parameters used are α = 0.5, β = 0.7, and μ = 5 for
Figure (a), while α = 0.5, β = 0.7, and τ = 5 for Figure (b)

numerical result, with a very small error between them with less than 1% for all μ choices
up to 50.

Figure 2 exhibits Hopf bifurcation curves in the delay value τ versus portions of instan-
taneous growth rate α (dotted curve) and delay dependence of the growth rate β (dashed
curve). The two-term semi-analytical results are obtained. The value of portions of instan-
taneous growth rate α is increased linearly as delay values increase. However, the curve
of value β is decreased as value of τ is increased. It is clear that for a long value of delay
parameter τ the values of α � β , while β > α at a small value of τ , this result is similar to
[16].

Figures 3(a) and 3(b) explain the Hopf bifurcation maps for the delay parameter τ (in
the left pane) and the growth rate μ (in the right pane) against diffusion parameters D.
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The parameters are α = 0.5, β = 0.7, and τ = 5 for Fig. 3(a) and α = 0.5, β = 0.7, and μ = 5
for Fig. 3(b). The semi-analytical two-term solution is used in each case. In these cases,
there are two regions: stable and unstable. Also, the Hopf bifurcation of the proliferation
rate μ and the delay parameter τ rises as the diffusion coefficients D are increased. The
results obtained in Fig. 3(b) agree with the same outcome in [28, 32], so when μ ≤ D,
zero solution is the global attractor of all non-negative solutions, while μ > D has a unique
positive steady-state result. Therefore, the diffusion coefficient D can play an extremely
important role in the system and can indicate the model that is destabilized or stabilized.

Furthermore, the comparisons are provided for the special values as follows: D = 0.3,
τ = 12, a = 0.3, and b = 0.7. In our special case, the points of Hopf bifurcation derived
are μc � 1.22, 1.23 for both semi-analytical one- and two-term results, while μc � 1.23
is for the numerical result. The predictions of semi-analytical two-term result agree with
the numerical predictions of PDE solution; in addition, there is less than 1% error with
one-term result. The semi-analytical solution gives a reliable prediction of the incidence
of Hopf bifurcation points.

4.3 Bifurcation maps, steady-state and oscillatory solutions
In this section, the steady-state solutions and the bifurcation maps and periodic solution
(limit cycle) are shown. In the bifurcation map, the minimum and maximum amplitudes
of limit cycle oscillations and steady-state amplitude are plotted at long time result. In ad-
dition, the bifurcation maps are explained in the domain center. Note that the parameters
α = 0.5, β = 0.7, and ua = 0.5 are applied in all figures in this part.

Figure 4 represents the behavior of u, the population steady-state density, versus value of
μ (proliferation rate), at x = 0. Semi-analytical models with one and two terms along with
numerical solutions are obtained. We let ui(t) = uid = ui(t – 1) in ODEs model (4), which
can be reduced to sets of transcendental equations. A unique solution of the steady state is
derived for the parameter u (population density). The non-uniform steady-state solution
bifurcates from the steady-state uniform solution of u = 0 at the point of μ = 0.745 and
increases exponentially as μ increases before approaching a maximum population density
of the numerical solution at u � 0.8. There is a good length of agreement among the semi-
analytical two-term solutions and numerical outcomes, with no more than 1.5% error for
the values of all parameters of growth rate up to μ = 100.

Figure 5 provides the bifurcation diagram of the concentration u versus the prolifera-
tion rate μ. This figure can show how closely numerical and semi-analytical results are
related. The two- and one-term semi-analytical results and the numerical results are plot-
ted. The values used here are τ = 5 and D = 0.3. It was found that steady-state solutions

Figure 4 (color online) The population density in
steady state u at the center of domain x = 0.
The figure shows semi-analytical one-term (blue
dashed curve) and two-term (red dotted curve)
solutions of (4) and the numerical solution (black
solid curve) of the PDE
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Figure 5 (color online) Bifurcation map of the
population density u against the growth rate μ.
The two-term semi-analytical result (dotted red
curve), one-term semi-analytical result (dashed blue
curve), and the numerical PDE solution (solid black
curve) are plotted. The values of parameters are
τ = 5 and D = 0.3

Figure 6 (color online) Bifurcation diagram of the
population density u versus μ with three different
values of diffusion parameters D. The semi-analytical
two-term solutions are plotted with D = 0.1
(displayed as blue dashed curve), D = 0.3 (shown as
red dotted curve), and D = 0.5 (black solid curve)

are stable when μ < μc � 1.90. After this point, there are periodic solutions, the so-called
supercritical Hopf bifurcations begin. Here, the Hopf bifurcation points are μc = 1.897
and 1.901, respectively. The Hopf bifurcation point for the numerical solution is at the
value of μc = 1.903. This figure shows that when μ increases, the maximum amplitude at
oscillations is growing, while in the minimum points, it is decreasing. Therefore, the pre-
dictions applying to the two semi-analytical results agree with the predictions obtained
from numerical results, with less than 1% error for all values selected of μ in the domain.

Figure 6 shows the bifurcation map of the population density against proliferation rate μ

with three different cases of diffusion parameters D = 0.1 (dashed curve), D = 0.3 (dotted
curve), and D = 0.5 (solid curve). The semi-analytical two-term results are obtained for
each case. The supercritical Hopf bifurcation solutions are established at μ = 1.39 for the
case with D = 0.1 and at μ = 1.90, 2.38 for the cases with D = 0.3 and D = 0.5. It is clearly
visible that the effect of increasing diffusion parameters stabilizes the system. This figure
confirms the outcome in Fig. 3(b).

Figure 7 shows the bifurcation map in a μ-u plane. Three different cases of delay values
τ : τ = 3 (solid curve), τ = 5 (dotted curve), and τ = 10 (dashed curve) are shown. The
two-term semi-analytical result is plotted. The supercritical Hopf bifurcation solutions
are found at μ = 2.67 for the case with delay value τ = 3 and at μ = 1.90, 1.32 for the cases
when delay values are τ = 5 and τ = 10, respectively. It can be concluded that the increase
in delay parameters destabilizes the system, so in this case the values of Hopf bifurcation
points μ are decreased. This figure confirms the results in Fig. 3(a).

Figure 8(a) exhibits u, the population density at x = 0, versus time t, while Fig. 8(b) shows
phase-plane maps for u. The values used here are τ = 5 and μ = 1.6, so the solution here
is stable for both figures (see stable region provided in Fig. 5). In addition, μc = 1.90 < μc

and the steady-state solution is formed at u(0, t) = 0.46 when the time t is large enough.
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Figure 7 (color online) Bifurcation diagram of the
growth rate μ versus population density u, with
three different values of τ : τ = 10 (blue dashed
curve), τ = 5 (red dotted curve), and τ = 3 (black
solid curve). The two-term semi-analytical result is
shown

Figure 8 (color online) Shows phase-plane maps for u. The semi-analytical two-term solution (dotted black
curve) and the numerical solutions (dotted black curve) are obtained for τ = 5 and μ = 1.6

Figure 9 (color online) Shows phase-plane maps for the population density u. The semi-analytical two-term
solution shown by black dotted line and the numerical solution represented by red solid line with τ = 5 and
μ = 2 are obtained

The semi-analytical two-term solutions and numerical outcomes are obtained. Here, these
results agree with an error rate of more than 1%.

Both Figs. 9(a) and (b) show phase-plane maps for the parameter of population density u.
The values applied are τ = 5 and μ = 2 as illustrated from limit cycle occurrence after
passing through the point of Hopf bifurcation at μ < μc � 1.90, this point is chosen from
unstable region in Fig. 5. The scheme of numerical and two-term semi-analytical solution
is given. The numerical results are extremely close to the semi-analytical outcomes, with
an error rate less than 1.5%. On the other hand, the one-term semi-analytical result is
accurate compared to the numerical results of the PDE equation.
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Figure 10 (color online) Phase-plane maps are
shown for the semi-analytical two-term solutions
with parameter value τ = 5 for four different cases
of growth rate μ: μ = 2 (red dot curve), μ = 2.5
(black dot curve), μ = 3 (blue dot curve), and
μ = 3.5 (green dot curve)

Figure 10 displays the 2-D phase space of the concentrations u with limit cycle for four
various values of μ: μ = 2 (red dot curve), μ = 2.5 (black dot curve), μ = 3 (blue dot curve),
and μ = 3.5 (green dot curve). The semi-analytical two-term result is plotted. The value of
delay parameter is τ = 5. This figure shows periodic solutions for higher values of prolif-
eration rate μ after the point of the Hopf bifurcation. There are many biological models,
for example, Nicholson’s blowflies model [8], that show a period doubling, which means
the solutions are chaotic. However, this did not happen for this system of PDE or ODEs
equations. Figure 10 demonstrates that the increase in oscillation amplitudes is associated
with the increase in growth rate μ.

5 Periodic solutions after the Hopf bifurcation point
In this section, an asymptotic analysis is performed for a periodic solution close to the
point of Hopf bifurcation for semi-analytical delay ODEs system and delay PDE equation.
We build an asymptotic solution of both semi-analytical systems, which include ODEs
with delay, utilizing the method of the Hopf perturbation used in [8, 9, 14].

In this part, the power series solution is developed near the Hopf bifurcation point in
the small oscillation amplitude limits. The mentioned technique extends the outcome re-
sult around steady-state results at the point of Hopf bifurcation. Then, it determines the
changes applied to bifurcation and frequency values. After that, it uses conditions of solv-
ability, eliminating secular terms; for more details, see [9, 21].

5.1 The one-term semi-analytical solution
The semi-analytical one-term system is derived by a single equation

du1

dt
= –

π2

4
Dτu1 + τμu1 –

8
3π

ατμu2
1 –

8
3π

βτμu1u1d,

u1d = u1(x, t – 1).
(6)

The solution technique for the one-term equation is identical to that in references [8, 9,
14]. We let a solution with 2π-periodic for equation (6) to have the following form:

u1(s) = zs + εz1(s) + ε2z2(s) + ε3z3(s) + · · · , where s = wt. (7)

The values of ε and scaled time are the amplitude of limit cycle solutions (periodic oscil-
lations) after the Hopf bifurcation point, which is determined by applying the condition
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of normalization

ε =
1

2π

∫ 2π

0
z(s, ε)e–is ds. (8)

This implies

1
2π

∫ 2π

0
z1(s)e–is ds = 1,

∫ 2π

0
zi(s)e–is ds = 0, ∀i �= 1. (9)

After that, the bifurcation value of the growth rate μ and frequency ω are defined by ap-
plying a power series as follows:

μ = μ0 + ε2μ2 + · · · , ω = ω0 + ε2ω2 + · · · (10)

Here, μ0 and ω0 are Hopf bifurcation point values. Then, we utilize solvability conditions
with the order of 3 for the perturbation analysis ε. Therefore, the corrections μ2 and ω2

are shown. Equations (7) and (10) are substituted into one-term equation (6). Therefore,
the first three orders of ε are as follows:

ω0ż1 = –
π2

4
Dτz1 + τμ0z1 –

8μ0zsτ

3π
(2αz1 + βz1 + βz1τ ), (11)

ω0ż2 = –
π2

4
Dτz2 + τμ0z2 + τμ2zs –

8τμ2z2
s

3π
(α + β)

–
8τμ0

3π

(
2αz2zs + βz2zs + αz2

1 + βz1z1τ + βzsz2τ

)
, (12)

ω0ż3 = –
π2

4
Dτz3 + τμ0z3 + τμ2z1 –

8τμ2zs

3π
(αz1 + βz1τ ) – ω2ż1

–
8τμ0

3π
(2αz3zs + 2αz1z2 + βz3zs + βz2z1τ + βzsz3τ + βz1z2τ – βω2zs ˙z1τ ). (13)

Equation (11) admits 2π-periodic solution of the form

z1(s) = eis + c.c., (14)

where the complex conjugate is defined as c.c. Here we can see z1 amplitude is selected
to meet the normalization condition (9). For O(ε2), the result of z2 can be written as the
form

z2(s) = Ae2is + c.c. (15)

Substituting (14) and (15) into (12) gives

2iAω0 = –
π2

4
AτD + τμ0A

–
8τμ0

3π

(
2αAzs + βAzs + α + βe–iω0τ + Aβzse–2iω0τ

)
+ c.c. (16)
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as an equation for the complex amplitude A. We let A = Ar + iAi and separate (16) into real
and imaginary parts as follows:

–2Aiω0 = –
8τμ0

3π

[
2αArzs + βArzs + α + β cos(ω0τ ) + Arβzs cos(2ω0τ )

]

–
π2

4
ArτD + τμ0Ar ,

2Arω0 = –
8τμ0

3π

[
2αAizs + βAizs – β sin(ω0τ ) – Aiβzs sin(2ω0τ )

]

–
π2

4
AiτD + τμ0Ai

(17)

for the two components of A. Afterwards we examine (13), the equation for z3. Substituting
the known first and second order solutions z1 and z2 gives

⇒ ω0ż3 +
π2

4
Dτz3 – τμ0z3

+
8τμ0

3π
(2αz3zs + 2αz1z2 + βz3zs + βz2z1τ + βzsz3τ + βz1z2τ )

= τμ2eis –
8τμ2zs

3π

(
αeis + βeise–iω0τ

)
+ eis 8τμ0

3π

(
iβω2zse–iω0τ

)

– ω2ż1 + c.c. (18)

The solvability condition for (18) needs to have e±is, terms in coefficients of the rhs (right-
hand side) of (18) should be equal to zero, so that there are no secular terms. This leads to
the condition

τμ2 –
8τμ2zs

3π

(
α + βe–iω0τ

)
+

8iβω2τμ0

3π

(
zse–iω0τ

)
– iω2 = 0, (19)

which can be divided into the two parts (real and imaginary) as follows:

τμ2 –
8τμ2zs

3π

(
α + β cos(ω0τ )

)
+

8βω2τμ0

3π

(
zs sin(ω0τ )

)
= 0,

8τβμ2zs

3π
sin(ω0τ ) +

8βω2τμ0

3π

(
zs cos(ω0τ )

)
– ω2 = 0.

(20)

This refers to two equations for μ2 and ω2, where ω0, μ0, and zs are non-negative solutions
(positive solutions).

Figure 11 displays the corrections μ2 and ω2 for the one-term and two-term solutions.
At τ = 5, the Hopf bifurcation point is established at (μ0,ω0, zs) = (1.90, 2.37, 0.60), where
other positive values are (D,α,β) = (0.3, 0.5, 0.7). Solving (20) and (17) gives

A = 13.10 × 10–1 + 5.85 × 10–1i, μ2 = 2.41, ω2 = –1.17 × 10–2. (21)

Using (10), we show leading-order approaches for the limit-cycle outcomes. The period
will be

u1(s) � zs + ε2 cos(ωt), ε �
√

4.15 × 10–1μ – 7.88 × 10–1,

ω � 2.38 – 7.05 × 10–3μ.
(22)
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Figure 11 (color online) Bifurcation diagram of the population density in the μ – umap. The semi-analytical
solutions (red dotted curve) and perturbation solutions (black solid curve) are obtained

The oscillation extrema are established while cos(ωt) = ∓1, derived by zs ± 2ε. Here we
mention that at large values of μ the amplitude of periodic solutions is increasing like μ1/2.

5.2 Two-term semi-analytical solution
The ODEs model for the semi-analytical two-term equations has been derived in Sect. 2.
The method for deriving periodic results close to the point of Hopf bifurcation is similar
to the case of one-term solutions outcome with additional modifications. We perform a
form of solution (4) as follows:

u1(s) = zs1 + εz1(s) + ε2z2(s) + ε3z3(s) + · · · ,

u2(s) = zs2 + εz11(s) + ε2z22(s) + ε3z33(s) + · · · .
(23)

We substitute (23) and (10) into (4) and show equations at first three orders equation of s.
Note that two equations are displayed at each step of ε. Thus, at O(ε) the solution at this
case can be found as follows:

z1(s) = eis + c.c., z11(s) = Beis + c.c. (24)

In order to explore the secondary oscillation amplitude related to u2, we put (24) into the
condition of O(ε). We point out that B is u2 secondary complex oscillation, whose phase
is not equal to the primary u1-oscillation. The condition of O(ε2) shows the following
outcome:

z2(s) = C1e2is + c.c., z22(s) = C2e2is + c.c. (25)

Putting (24) along with (25) in the O(ε2) condition, two complex expressions are found for
amplitudes C1 and C2.

At O(ε3) the coupled equations are not presented here, due to their length. Both coupled
equations include e±is in rhs, and this indicates the presence of secular terms. The solution
(z3, z33) = Γ eis(1, A)T of the coupled system is a result of the homogeneous equation and
therefore cannot be used to exclude secular terms at third order of ε (O(ε3)). However, a
choice orthogonal to this, such as (z3, z33) = Γ eis(1, 0)T , does not represent a homogeneous
equation solution. So, secular terms can be eliminated by a corresponding selection of Γ ,
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μ2, and ω2 values at the third-order level. For more details about finding O(ε2) and O(ε3),
please see [8, 9, 14]. Again, we give a special example when τ = 5 to compute our results, so
in this case the Hopf bifurcation happens at (μ0,ω0, zs1, zs2) = (1.901, 2.374, 0.604, –0.007).
Hence, solving equations at O(ε1), O(ε2) and the secularity condition implies the follow-
ing:

B = 3.11 × 10–3 + 1.21 × 10–3i = 5.83 × 10–3e0.268i,

C1 = 3.23 × 10–3 + 4.02 × 10–3i, C2 = 2.05 × 10–3 + 7.13 × 10–3i, (26)

μ2 = 2.56, ω2 = –2.37 × 10–2.

Therefore, the oscillatory result is displayed by

u(s) � zs1 + zs2 + 2ε
(
cos(wt) + 
{

Aeis + Āe–is}),

ε �
√

3.91 × 10–1μ – 7.42 × 10–1, ω � 2.39 – 9.26 × 10–3μ,
(27)

where the extrema of the oscillatory outcome are 0.597 ± 1.01ε.
Figures 11(a) and 11(b) provide the bifurcation diagram of the μ values (the proliferation

rate) against concentration u. The parameters are used here μ0 = 1.9, D = 0.3, α = 0.5,
β = 0.7, and τ = 5. Both numerical perturbation (solid curve) and the results for the semi-
analytical solutions (dotted curve) are obtained. At Hopf supercritical bifurcation point,
the solution becomes unstable, which occurs at μc = 1.897 for one-term case and at μc =
1.901 for the two-term case. The regions where periodic solutions have extrema oscillation
amplitudes have been found. The periodic solution branches create an approximately right
angle with the branch of steady-state solutions. The deviation from the exactly right angle
is due to the fact that a finite number of points are plotted on the figure. Also, it can be
seen that the comparison is better for the maximum amplitude than for the minimum
amplitude for both one- and two-term numerical perturbations. Perturbation solutions
and one-term semi-analytical solutions have an outstanding comparison for the interval
μc < μ < 1.921 as in Fig. 11(a). In addition, Fig. 11(b) shows perfect comparison between
these solutions in the interval μc < μ < 1.928, which are close to a point of Hopf bifurcation
in both cases. It should be noted that the perturbation solution with limit-cycle is only a
satisfactory outcome approximation in a limited μ range. The happens because periodic
oscillation capacity grows rapidly when values of μ are increasing.

6 Conclusions
This paper derived the diffusive logistic equation with both mixed instantaneous and de-
layed density. The 1-D domain was investigated. Galerkin’s method was exhibited to ob-
tain a delay system of ODEs. We successfully performed the stability analysis, determined
Hopf bifurcation regions, and constructed bifurcation maps. The effect of diffusion and
delay values was fully discussed. We obtained that delay and diffusion values can influ-
ence the stability of regions of a parameter space. Consequently, as parameter values of
delay increased, the values of the growth rate decreased. However, the diffusion values
increased as the values of delay increased. Results in this paper were confirmed by con-
tracted numerical examples and plotted stable and unstable limit cycles. No chaotic solu-
tions were found, no period doubling was found in this model over a long period of time.



Alfifi Advances in Difference Equations        (2020) 2020:162 Page 14 of 15

In addition, an asymptotic method for the periodic outcome after the point of Hopf bi-
furcation was comprehensively discussed. Outcomes of numerical PDE model and semi-
analytical model supported the efficiency of the semi-analytical technique. It indicated
that this technique can be helpful to present a precise analytical method for estimation of
a PDEs system. In the future, we are looking forward to using this technique with another
delay model with reaction–diffusion domain.
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