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Abstract
In this paper, we study the rubella disease model with the Caputo–Fabrizio fractional
derivative. The mathematical solution of the liver model is presented by a three-step
Adams–Bashforth scheme. The existence and uniqueness of the solution are
discussed by employing fixed point theory. Finally some numerical simulations are
showed to underpin the effectiveness of the used derivative.
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1 Introduction
Rubella was first described in the mid-eighteenth century. Friedrich Hoffmann made the
first clinical description of rubella in 1740, which was confirmed by de Bergen in 1752
and Orlow in 1758 [1]. Rubella, also known as German measles or three-day measles, is
an infection caused by the rubella virus and has symptoms that are similar to those of
flu. However, the primary symptom of rubella virus infection is the appearance of a rash
(exanthem) on the face which spreads to the trunk and limbs and usually fades after three
days [2]. It usually spreads through the air via coughs of people who are infected. People are
infectious during the week before and after the appearance of the rash [3]. This disease is
often mild with half of people not realizing that they are infected [4]. Rubella is a common
infection in many areas of the world, and each year about 100,000 cases of congenital
rubella syndrome occur [5].

The mathematical model of measles and rubella has been studied by a number of math-
ematicians (see, for example, [6–10]). It has been demonstrated by many scientists and
mathematicians that fractional extensions of mathematical models of integer order rep-
resent the natural fact in a very systematic way such as in the approach of Caputo [11],
Podlubny [12], Baleanu et al. [13], Haq et al. [14], Atangana et al. [15], Erturk et al. [16],
Kilbas et al. [17], Zafar et al. [18–22]. In a very recent attempt, Caputo and Fabrizio [11]
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propounded a novel fractional derivative having exponential kernel; in addition, Losada
and Nieto [23] analyzed the properties of a newly presented fractional derivative. The
classical fractional derivatives, especially the Caputo and Riemann derivatives, have their
own limitation because their kernel is singular. Since the kernel is employed to describe
the memory effect of the physical system, it is obvious that due to this weakness, both
derivatives cannot precisely describe the full effect of the memory. Recently, many works
related to the fractional equations and applications have been published (see, for example,
[24–39]).

Therefore, we use the novel Caputo–Fabrizio (CF) fractional derivative to study the
rubella disease model and explain this problem in a better and more efficient manner.
We recall some fundamental notions. The Caputo fractional derivative of order α for a
continuous function f is defined by

CDαf (t) =
1

Γ (n – α)

∫ t

0

f (n)(s)
(t – s)α–n+1 ds

(
n = [α] + 1

)
.

Our second notion is a fractional derivative without singular kernel introduced by Ca-
puto and Fabrizio [11, 34]. Let b > 0, u ∈ H1(a, b), and α ∈ (0, 1). The Caputo–Fabrizio
derivative of order α for a function f is defined by

CFDαf (t) =
(2 – α)M(α)

2(1 – α)

∫ t

0
exp

(
–α

1 – α
(t – s)

)
f ′(s) ds,

where t > 0 and M(α) is a normalization constant depending on α such that M(0) = M(1) =
1. It is well known that the Laplace transform plays an important role in the study of or-
dinary differential equations [23]. Let α ∈ (0, 1) and n ≥ 1. The Laplace transform of CFD
is defined by

L
[CFD(α+1)u(t)

]
(s) =

1
1 – α

L
[
u(α+n)(t)

]
exp

(
–α

α – 1
t
)

=
sn+1L[u(t)] – snu(0) – sn–1u′(0) – · · · – u(n)(0)

s + α(1 – s)

and L[CFD(α)u(t)](s) = sL[u(t)]–u(0)
s+α(1–s) (for n = 0),

L
[CFD(α+1)u(t)

]
(s) =

s2L[u(t)] – su(0) – u′(0)
s + α(1 – s)

(for n = 1). The Riemann–Liouville fractional integral of order 0 < α < 1 is defined by [12]

Iαf (t) =
1

Γ (α)

∫ t

0

f (s)
(t – s)1–α

ds

whenever the integral exists. Also, the fractional integral of Caputo–Fabrizio is defined by
[23]

CFIαu(t) =
2(1 – α)

(2 – α)M(α)
u(t) +

2α

(2 – α)M(α)

∫ t

0
u(s) ds.
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Losada and Nieto gave an explicit formula for M(α) as M(α) = 2
2–α

(for 0 < α < 1). Thus,
the fractional Caputo–Fabrizio derivative of order 0 < α < 1 for a function u is given by
CFDαu(t) = 1

1–α

∫ t
0 exp( –α

1–α
(t – s))u′(s) ds. For n ≥ 1 and α ∈ (0, 1), the fractional derivatives

CFDα+n of order n + α are defined by CFDα+nu(t) := CFDα(Dnu(t)) [26].

2 Mathematical model for the spread of rubella disease
In this section, we investigate the rubella disease model discussed by Koca [8]. He consid-
ered the model of rubella disease by employing the Atangana–Baleanu fractional deriva-
tive as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC
0 Dα

t S(t) = B(a) – [λ(a, t) + P(a) + μ(a)]S(t),
ABC
0 Dα

t E(t) = λ(a, t)S(t) – (σ + μ(a))E(t),
ABC
0 Dα

t I(t) = σE(t) – (β + μ(a))I(t),
ABC
0 Dα

t R(t) = βI(t) – μ(a)R(t),
ABC
0 Dα

t V (t) = D(a)S(t) – μ(a)V (t),

(1)

where S(t), E(t), I(t), R(t), V (t) are susceptible, latent, infectious, recovered, and vacci-
nated parameters respectively. P(a) is a parameter for which immunized by vaccination
and λ(a, t) is the force of infection of age a at time t and σ is the latent rate and β is
the infection rate [40]. In this section, we moderate the system by substituting the time-
derivative by the newly introduced Caputo–Fabrizio derivative [11] for α ∈ (0, 1) given
by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF
0 Dα

t S(t) = B(a) – [λ(a, t) + P(a) + μ(a)]S(t),
CF
0 Dα

t E(t) = λ(a, t)S(t) – (σ + μ(a))E(t),
CF
0 Dα

t I(t) = σE(t) – (β + μ(a))I(t),
CF
0 Dα

t R(t) = βI(t) – μ(a)R(t),
CF
0 Dα

t V (t) = D(a)S(t) – μ(a)V (t)

(2)

with initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, V (0) = V0.

In system (2), the right-hand sides of the equations have dimension (time)–1. When we
change the order of the equations to α, the dimension of the left-hand side would be
(time)(–α). In order to have the dimensions match, we should change the dimensions of
the parameters σ , β , and the system we obtain eventually is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF
0 Dα

t S(t) = B(a) – [λ(a, t) + P(a) + μ(a)]S(t),
CF
0 Dα

t E(t) = λ(a, t)S(t) – (σα + μ(a))E(t),
CF
0 Dα

t I(t) = σαE(t) – (βα + μ(a))I(t),
CF
0 Dα

t R(t) = βαI(t) – μ(a)R(t),
CF
0 Dα

t V (t) = D(a)S(t) – μ(a)V (t).

(3)

The system state is made up with S, E, I , R, V .
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3 Existence and uniqueness of a system of solutions of rubella model
We examine the existence of the system of solutions by applying the fixed point theorem.
Employing the fractional integral operator due to Nieto and Losada [23] on equation (3),
we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) – S(0) = CF
0 Iα

t [B(a) – [λ(a, t) + P(a) + μ(a)]S(t)],

E(t) – E(0) = CF
0 Iα

t [λ(a, t)S(t) – (σα + μ(a))E(t)],

I(t) – I(0) = CF
0 Iα

t [σαE(t) – (βα + μ(a))I(t)],

R(t) – R(0) = CF
0 Iα

t [βαI(t) – μ(a)R(t)],

V (t) – V (0) = CF
0 Iα

t [D(a)S(t) – μ(a)V (t)].

(4)

By using the notation presented by Nieto and Losada [23], we get

S(t) – S(0) =
2(1 – α)

(2 – α)M(α)
{

B(a) –
[
λ(a, t) + P(a) + μ(a)

]
S(t)

}

+
2α

(2 – α)M(α)

∫ t

0

[
B(a) –

[
λ(a, y) + P(a) + μ(a)

]
S(y)

]
dy,

E(t) – E(0) =
2(1 – α)

(2 – α)M(α)
{
λ(a, t)S(t) –

(
σα + μ(a)

)
E(t)

}

+
2α

(2 – α)M(α)

∫ t

0

[
λ(a, y)S(y) –

(
σα + μ(a)

)
E(y)

]
dy,

I(t) – I(0) =
2(1 – α)

(2 – α)M(α)
{
σαE(t) –

(
βα + μ(a)

)
I(t)

}

+
2α

(2 – α)M(α)

∫ t

0

[
σαE(y) –

(
βα + μ(a)

)
I(y)

]
dy,

R(t) – R(0) =
2(1 – α)

(2 – α)M(α)
{
βαI(t) – μ(a)R(t)

}

+
2α

(2 – α)M(α)

∫ t

0

[
βαI(y) – μ(a)R(y)

]
dy,

V (t) – V (0) =
2(1 – α)

(2 – α)M(α)
{

D(a)S(t) – μ(a)V (t)
}

+
2α

(2 – α)M(α)

∫ t

0

[
D(a)S(y) – μ(a)V (y)

]
dy.

For clarity, we write

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1(t, S) = B(a) – [λ(a, t) + P(a) + μ(a)]S(t),

P2(t, E) = λ(a, t)S(t) – (σα + μ(a))E(t),

P3(t, I) = σαE(t) – (βα + μ(a))I(t),

P4(t, R) = βαI(t) – μ(a)R(t),

P5(t, V ) = D(a)S(t) – μ(a)V (t).

(5)
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Theorem 1 The kernel P1 satisfies the Lipschitz condition and contraction if the following
inequality holds:

0 < λ(a, t) + P(a) + μ(a) ≤ 1. (6)

Proof Let S and S1 be two functions, then we assess the following:

∥∥P1(t, S) – P1(t, S1)
∥∥ =

∥∥–
(
λ(a, t) + P(a) + μ(a)

)(
S(t) – S1(t)

)∥∥
≤ {

λ(a, t) + P(a) + μ(a)
}∥∥S(t) – S1(t)

∥∥
≤ γ1

∥∥S(t) – S1(t)
∥∥. (7)

Taking γ1 = λ(a, t) + P(a) + μ(a) are bounded functions, we get

∥∥P1(t, S) – P1(t, S1)
∥∥ ≤ γ1

∥∥S(t) – S1(t)
∥∥. (8)

Hence the Lipschitz condition is satisfied for P1. If additionally

0 < λ(a, t) + P(a) + μ(a) ≤ 1,

then it is also a contraction for P1. �

Similarly, the kernels P2, P2, P3, P4, P5 satisfy the Lipschitz condition given as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖P2(t, E) – P2(t, E1)‖ ≤ γ2‖E(t) – E1(t)‖,

‖P3(t, I) – P3(t, I1)‖ ≤ γ3‖I(t) – I1(t)‖,

‖P4(t, R) – P4(t, R1)‖ ≤ γ4‖R(t) – R1(t)‖,

‖P5(t, V ) – P5(t, V1)‖ ≤ γ5‖V (t) – V1(t)‖.

(9)

On consideration of the aforesaid kernels, equation (5) becomes

S(t) = S(0) +
2(1 – α)

(2 – α)M(α)
P1(t, S) +

2α

(2 – α)M(α)

∫ t

0
P1(y, S) dy,

E(t) = E(0) +
2(1 – α)

(2 – α)M(α)
P2(t, E) +

2α

(2 – α)M(α)

∫ t

0
P2(y, E) dy,

I(t) = I(0) +
2(1 – α)

(2 – α)M(α)
P3(t, I) +

2α

(2 – α)M(α)

∫ t

0
P3(y, I) dy,

R(t) = R(0) +
2(1 – α)

(2 – α)M(α)
P4(t, R) +

2α

(2 – α)M(α)

∫ t

0
P4(y, R) dy,

V (t) = V (0) +
2(1 – α)

(2 – α)M(α)
P5(t, V ) +

2α

(2 – α)M(α)

∫ t

0
P5(y, V ) dy.

(10)

Now, we present the following recursive formula on consideration of the aforesaid kernels,
equation (5) becomes

Sn(t) =
2(1 – α)

(2 – α)M(α)
P1(t, Sn–1) +

2α

(2 – α)M(α)

∫ t

0
P1(y, Sn–1) dy,
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En(t) =
2(1 – α)

(2 – α)M(α)
P2(t, En–1) +

2α

(2 – α)M(α)

∫ t

0
P2(y, En–1) dy,

In(t) =
2(1 – α)

(2 – α)M(α)
P3(t, In–1) +

2α

(2 – α)M(α)

∫ t

0
P3(y, In–1) dy, (11)

Rn(t) =
2(1 – α)

(2 – α)M(α)
P4(t, Rn–1) +

2α

(2 – α)M(α)

∫ t

0
P4(y, Rn–1) dy,

Vn(t) =
2(1 – α)

(2 – α)M(α)
P5(t, Vn–1) +

2α

(2 – α)M(α)

∫ t

0
P5(y, Vn–1) dy.

The initial conditions are given as follows:

S0(t) = S(0), E0(t) = E(0), I0(t) = I(0),

R0(t) = R(0), V0(t) = V (0).
(12)

Now we present the difference between the successive terms in the following manner:

φn(t) = Sn(t) – Sn–1(t) =
2(1 – α)

(2 – α)M(α)
[
P1(t, Sn–1) – P1(t, Sn–2)

]

+
2α

(2 – α)M(α)

∫ t

0

[
P1(y, Sn–1) – P1(y, Sn–2)

]
dy,

ψn(t) = En(t) – En–1(t) =
2(1 – α)

(2 – α)M(α)
[
P2(t, En–1) – P2(t, En–2)

]

+
2α

(2 – α)M(α)

∫ t

0

[
P2(y, En–1) – P2(y, En–2)

]
dy,

ξn(t) = In(t) – In–1(t) =
2(1 – α)

(2 – α)M(α)
[
P3(t, In–1) – P3(t, In–2)

]

+
2α

(2 – α)M(α)

∫ t

0

[
P3(y, In–1) – P3(y, In–2)

]
dy,

χn(t) = Rn(t) – Rn–1(t) =
2(1 – α)

(2 – α)M(α)
[
P4(t, Rn–1) – P4(t, Rn–2)

]

+
2α

(2 – α)M(α)

∫ t

0

[
P4(y, Rn–1) – P4(y, Rn–2)

]
dy,

ζn(t) = Vn(t) – Vn–1(t) =
2(1 – α)

(2 – α)M(α)
[
P5(t, Vn–1) – P5(t, Vn–2)

]

+
2α

(2 – α)M(α)

∫ t

0

[
P5(y, Vn–1) – P5(y, Vn–2)

]
dy.

(13)

It is worth noticing that

Sn(t) =
n∑

i=0

φi(t),

En(t) =
n∑

i=0

ψi(t),

In(t) =
n∑

i=0

ξi(t), (14)
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Rn(t) =
n∑

i=0

χi(t),

Vn(t) =
n∑

i=0

ζi(t).

On the other hand,

∥∥φn(t)
∥∥ =

∥∥Sn(t) – Sn–1(t)
∥∥

=
∥∥∥∥ 2(1 – α)

(2 – α)M(α)
[
P1(t, Sn–1) – P1(t, Sn–2)

]

+
2α

(2 – α)M(α)

∫ t

0

[
P1(y, Sn–1) – P1(y, Sn–2)

]
dy

∥∥∥∥. (15)

By using the triangular inequality, we get

∥∥Sn(t) – Sn–1(t)
∥∥ ≤ 2(1 – α)

(2 – α)M(α)
∥∥P1(t, Sn–1) – P1(t, Sn–2)

∥∥

+
2α

(2 – α)M(α)

×
∥∥∥∥
∫ t

0

[
P1(y, Sn–1) – P1(y, Sn–2)

]
dy

∥∥∥∥. (16)

Since the kernel satisfies the Lipschitz condition, we have

∥∥Sn(t) – Sn–1(t)
∥∥ ≤ 2(1 – α)

(2 – α)M(α)
γ1‖Sn–1 – Sn–2‖

+
2α

(2 – α)M(α)
γ1

∫ t

0
‖Sn–1 – Sn–2‖dy, (17)

then we get

∥∥φn(t)
∥∥ ≤ 2(1 – α)

(2 – α)M(α)
γ1

∥∥φn–1(t)
∥∥ +

2α

(2 – α)M(α)
γ1

∫ t

0

∥∥φn–1(y)
∥∥dy. (18)

Similarly, we get the following results:

∥∥ψn(t)
∥∥ ≤ 2(1 – α)

(2 – α)M(α)
γ2

∥∥ψn–1(t)
∥∥ +

2α

(2 – α)M(α)
γ2

∫ t

0

∥∥ψn–1(y)
∥∥dy,

∥∥ξn(t)
∥∥ ≤ 2(1 – α)

(2 – α)M(α)
γ3

∥∥ξn–1(t)
∥∥ +

2α

(2 – α)M(α)
γ3

∫ t

0

∥∥ξn–1(y)
∥∥dy,

∥∥χn(t)
∥∥ ≤ 2(1 – α)

(2 – α)M(α)
γ4

∥∥χn–1(t)
∥∥ +

2α

(2 – α)M(α)
γ4

∫ t

0

∥∥χn–1(y)
∥∥dy,

∥∥ζn(t)
∥∥ ≤ 2(1 – α)

(2 – α)M(α)
γ5

∥∥ζn–1(t)
∥∥ +

2α

(2 – α)M(α)
γ5

∫ t

0

∥∥ζn–1(y)
∥∥dy.

(19)

By taking the above results, we can present the following theorem.
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Theorem 2 Fractional rubella model (3) has a system of solutions under the conditions
that we can find t0 such that

2(1 – α)
(2 – α)M(α)

γ1 +
2α

(2 – α)M(α)
γ1t0 ≤ 1. (20)

Proof We have considered that the functions S(t), E(t), I(t), R(t), V (t) are bounded. Addi-
tionally, we have proven that the kernels satisfy the Lipschitz condition, hence by taking
the results of equations (19) and (20) and by employing the recursive method, we derive
the succeeding relation as follows:

∥∥φn(t)
∥∥ ≤ ∥∥S(0)

∥∥
[

2(1 – α)
2 – α)M(α)

γ1 +
2α

(2 – α)M(α)
γ1t

]n

,

∥∥ψn(t)
∥∥ ≤ ∥∥E(0)

∥∥
[

2(1 – α)
2 – α)M(α)

γ2 +
2α

(2 – α)M(α)
γ2t

]n

,

∥∥ξn(t)
∥∥ ≤ ∥∥I(0)

∥∥
[

2(1 – α)
2 – α)M(α)

γ3 +
2α

(2 – α)M(α)
γ3t

]n

, (21)

∥∥χn(t)
∥∥ ≤ ∥∥R(0)

∥∥
[

2(1 – α)
2 – α)M(α)

γ4 +
2α

(2 – α)M(α)
γ4t

]n

,

∥∥ζn(t)
∥∥ ≤ ∥∥V (0)

∥∥
[

2(1 – α)
2 – α)M(α)

γ5 +
2α

(2 – α)M(α)
γ5t

]n

.

Therefore, the system of functions (15) exists and is smooth. To show that the above func-
tions are a system of solutions of the system of equation (3), we assume

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) – S(0) = Sn(t) – Bn(t),

E(t) – E(0) = En(t) – Cn(t),

I(t) – I(0) = In(t) – Dn(t),

R(t) – R(0) = Rn(t) – Fn(t),

V (t) – V (0) = Vn(t) – Hn(t).

(22)

Therefore, we get

∥∥Bn(t)
∥∥ =

∥∥∥∥ 2(1 – α)
(2 – α)M(α)

(
P(t, S) – P(t, Sn–1)

)

+
2α

(2 – α)M(α)

∫ t

0

(
P(y, S) – P(y, Sn–1)

)
dy

∥∥∥∥
≤ 2(1 – α)

(2 – α)M(α)
∥∥P(t, S) – P(t, Sn–1)

∥∥

+
2α

(2 – α)M(α)

∫ t

0

∥∥P(y, S) – P(y, Sn–1)
∥∥dy

≤ 2(1 – α)
(2 – α)M(α)

γ1‖S – Sn–1‖ +
2α

(2 – α)M(α)
γ1‖S – Sn–1‖t. (23)
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By using this process recursively, it yields

∥∥Bn(t)
∥∥ ≤

[
2(1 – α)

(2 – α)M(α)
+

2α

(2 – α)M(α)
t
]n+1

γ n+1
1 k. (24)

Now, taking the limit on equation (25) as n tends to infinity, we get

∥∥Bn(t)
∥∥ → 0. (25)

Similarly, we have

∥∥Cn(t)
∥∥ → 0,

∥∥Dn(t)
∥∥ → 0,

∥∥Fn(t)
∥∥ → 0,

∥∥Hn(t)
∥∥ → 0. (26)

This completes the proof. �

To prove the uniqueness of a system of solutions of equation (3), we present the following
theorem.

Theorem 3 The system of equations (3) has a unique system of solutions if the following
condition holds:

(
1 –

2(1 – α)
(2 – α)M(α)

γ1 –
2α

(2 – α)M(α)
γ1t

)
≥ 0. (27)

Proof Let there exist another system of solutions of (3)

S1(t), E1(t), I1(t), R1(t), V1(t),

then

S(t) – S1(t) =
2(1 – α)

(2 – α)M(α)
[
P1(t, S) – P1(t, S1)

]

+
2α

(2 – α)M(α)

∫ t

0

[
P1(y, S) – P1(y, S1)

]
dy. (28)

Applying the norm on equation (29), we get

∥∥S(t) – S1(t)
∥∥ ≤ 2(1 – α)

(2 – α)M(α)
∥∥P1(t, S) – P1(t, S1)

∥∥ (29)

+
2α

(2 – α)M(α)

∫ t

0

∥∥P1(y, S) – P1(y, S1)
∥∥dy.

By employing the Lipschitz conditions of the kernel, we get

∥∥S(t) – S1(t)
∥∥ ≤ 2(1 – α)

(2 – α)M(α)
γ1

∥∥S(t) – S1(t)
∥∥ +

2α

(2 – α)M(α)
γ1t

∥∥S(t) – S1(t)
∥∥. (30)

It gives

∥∥S(t) – S1(t)
∥∥(1 –

2(1 – α)
(2 – α)M(α)

γ1 –
2α

(2 – α)M(α)
γ1t ≤ 0. (31)
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On the other hand, (28) holds, then

∥∥S(t) – S1(t)
∥∥(1 –

2(1 – α)
(2 – α)M(α)

γ1 –
2α

(2 – α)M(α)
γ1t ≥ 0. (32)

We conclude from (31) and (32) that

∥∥S(t) – S1(t)
∥∥ = 0. (33)

Then we get S(t) = S1(t). Similarly, we have

E(t) = E1(t), I(t) = I1(t), R(t) = R1(t), V (t) = V1(t). (34)

This completes the proof. �

4 Equilibrium points of the model and asymptotic stability
To determine the equilibrium points of fractional order system (3), we set the right-hand
side of the equations to zero

CFDα
t S(t) = CFDα

t E(t) = CFDα
t I(t) = CFDα

t R(t) = CFDα
t V (t) = 0. (35)

By solving the algebraic equations, we obtain the equilibrium point E∗ = (S∗, E∗, I∗, R∗, V ∗)
such that

S∗ =
B(a)

λ(a, t) + P(a) + μ(a)
, E∗ =

B(a)λ(a, t)
(λ(a, t) + P(a) + μ(a))(σα(a) + μ(a))

,

I∗ =
σα(a)B(a)λ(a, t)

(βασα(a) + βαμ(a) + μ(a)σα(a) + μ2(a))(λ(a, t) + P(a) + μ(a))
,

R∗ =
βασα(a)B(a)λ(a, t)

(βασα(a) + βαμ(a) + μ(a)σα(a) + μ2(a))(λ(a, t) + P(a) + μ(a))
,

V ∗ =
D(a)B(a)

μ(a)(λ(a, t) + P(a) + μ(a))
.

(36)

To investigate the stability of equilibrium point, first consider the fractional-order linear
system as follows:

CFDα
t u(t) = Tu(t), (37)

where u(t) ∈ Rn, T ∈ Rn×n, 0 < α < 1.

Definition 4 ([41]) For system (37) with Caputo–Fabrizio fractional derivative, the char-
acteristic equation is given by

det
(
s
(
I – (1 – α)T

)
– αT

)
= 0. (38)

Theorem 5 ([41]) If (I – (1 – α)T) is invertible, then system (37) is asymptotically stable if
and only if the roots to the characteristic equation of system (37) have negative real parts.
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The Jacobian matrix associated with system (3) is given as follows:

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

–(λ(a, t) + P(a) + μ(a)) 0 0 0 0
λ(a, t) –(σα(a) + μ(a)) 0 0 0

0 σα(a) –(βα + μ(a)) 0 0
0 0 βα –μ(a) 0

D(a) 0 0 0 –μ(a)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus the characteristic equation of system (3) is

det
(
s
(
I – (1 – α)J

)
– αJ

)
= 0. (39)

Theorem 6 The equilibrium point E∗ of model (3) is asymptotically stable if and only if
real parts of the roots of the characteristic equation (39) are negative.

Proof According to the above Jacobian matrix, we have J = J(E∗). Therefore, it is sufficient
that we compute the roots of equation (39). We have

det
(
s
(
I – (1 – α)J

)
– αJ

)

=
{

s +
(
s(1 – α) + α

)(
λ(a, t) + P(a) + μ(a)

)}{
s +

(
s(1 – α) + α

)(
σα(a) + μ(a)

)}
,

× {
s +

(
s(1 – α) + α

)(
βα + μ(a)

)}{
s +

(
s(1 – α) + α

)
μ(a)

}2 = 0.

By solving this algebraic equation, we get

s1 =
–α(λ(a, t) + P(a) + μ(a))

1 + (1 – α)(λ(a, t) + P(a) + μ(a))
,

s2 =
–α(σα(a) + μ(a))

1 + (1 – α)(σα(a) + μ(a))
,

s3 =
–α(βα + μ(a))

(βα + μ(a))
,

s4 =
–αμ(a)

1 + (1 – α)μ(a)
.

Since α ∈ (0, 1), then s1, s2, s3, s4 are negative. Hence by using Theorem 5, the equilibrium
point E∗ of model (3) is asymptotically stable. �

4.1 Numerical method and simulations
In this section, using the Adams–Bashforth scheme, we present a numerical solution for
the rubella model (3). Owolabi and Atangana introduced the three-step Adams–Bashforth
scheme with the Caputo–Fabrizio fractional derivative [42]. We use this method to find
three step Adams–Bashforth scheme for fractional order system (3).

Consider the fractional differential equation with Caputo–Fabrizio derivative

CFDα
t x(t) = f

(
t, x(t)

)
, 0 < α < 1. (40)
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Applying the Caputo–Fabrizio fractional integral on both sides of equation (40), we have

x(t) – x(0) =
(1 – α)
M(α)

f
(
t, x(t)

)
+

α

M(α)

∫ t

0
f
(
τ , x(τ )

)
dτ . (41)

By discretizing the time interval [0, t] in steps of h, we obtain the sequence t0 = 0, tj+1 = tj +
h, j = 0, 1, 2, . . . , n – 1, tj = t. By replacing t = tj+1 and t = tj in equation (41) and computing
the difference of the resulting equations, we obtain

x(tj+1) – x(tj) =
(1 – α)
M(α)

[
f
(
tj+1, x(tj+1)

)
– f

(
tj, x(tj)

)]
+

α

M(α)

∫ tj+1

tj

f
(
τ , x(τ )

)
dτ . (42)

By approximating the integral
∫ tj+1

tj
f (τ , x(τ )) dτ with the approximation of

∫ tj+1
tj

Q2(τ ) dτ ,
where Q2(τ ) is the Lagrange interpolating polynomial of degree two passing through the
points (tj–2, f (tj–2, x(tj–2))), (tj–1, f (tj–1, x(tj–1))), and (tj, f (tj, x(tj))). That is,

Q2(τ ) =
i=2∑
i=0

f
(
tj–i, x(tj–i)

)
)Li(τ ),

where Li(τ ) are the Lagrange basis polynomials on the points tj–2, tj–1, tj. Let xj = x(tj),
using the change of variable s = tj+1–τ

h , substituting for the Lagrange basis polynomials and
integrating, we obtain

∫ tj+1

tj

f
(
τ , x(τ )

)
dτ = h

∫ 1

0
f (tj, xj)

(s – 2)(s – 3)
(1 – 2)(1 – 3)

+ f (tj–1, xj–1)
(s – 1)(s – 3)
(2 – 1)(2 – 3)

+ f (tj–2, xj–2)
(s – 2)(s – 1)
(3 – 2)(3 – 1)

ds

=
23h
12

f (tj, xj) –
16h
12

f (tj–1, xj–1) +
5h
12

f (tj–2, xj–2). (43)

Then

x(tj+1) – x(tj) =
(

1 – α

M(α)
+

23αh
12M(α)

)
f (tj, xj) –

(
1 – α

M(α)

+
16αh

12M(α)

)
f (tj–1, xj–1) +

(
5αh

12M(α)

)
f (tj–2, xj–2). (44)

In this method, the error is

Rα
j (t) =

α

M(α)

∫ tj+1

tj

3
8

h3f (4)(η) dη =
3αh3

8M(α)
f (3)(λj, x(λj)

)
, λj ∈ (tj, tj+1). (45)

In the following, we obtain the numerical simulations of model (3) using the three-
step Adams–Bashforth scheme for Caputo–Fabrizio fractional derivative in equation (44).
Consider the vectors x(t) = (S(t), E(t), I(t), R(t), V (t)) and f(t, x(t)) = (f1(t, x(t)), f2(t, x(t)),
f3(t, x(t)), f4(t, x(t)), f5(t, x(t))), where fi(t, x(t)), i = 1, 2, 3, 4, are scalar functions that are de-
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fined from system (3) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, x(t)) = B(a) – [λ(a, t) + P(a) + μ(a)]S(t),

f2(t, x(t)) = λ(a, t)S(t) – (σα + μ(a))E(t),

f3(t, x(t)) = σαE(t) – (βα + μ(a))I(t),

f4(t, x(t)) = βαI(t) – μ(a)R(t),

f5(t, x(t)) = D(a)S(t) – μ(a)V (t).

(46)

We write system (3) in the vector form as follows:

CFDα
t x(t) = f

(
t, x(t)

)
, 0 < α < 1. (47)

Using equation (44), we obtain the solution of system (3) as the following iterative formula:

x(tj+1) = x(tj) +
(

1 – α

M(α)
+

23αh
12M(α)

)
f(tj, xj)

–
(

1 – α

M(α)
+

16αh
12M(α)

)
f(tj–1, xj–1) +

(
5αh

12M(α)

)
f(tj–2, xj–2). (48)

Assume x0 = x(t0) = [S(t0), E(t0), I(t0), R(t0), V (t0)]T , xj–2 = x(tj–2), xj–1 = x(tj–1), xj = x(tj),
xj+1 = x(tj+1), then

xj+1 = xj +
(

1 – α

M(α)
+

23αh
12M(α)

)
f(tj, xj)

–
(

1 – α

M(α)
+

16αh
12M(α)

)
f(tj–1, xj–1) +

(
5αh

12M(α)

)
f(tj–2, xj–2). (49)

Thus, we obtain the iterative formulas

Sj+1 = Sj +
(

1 – α

M(α)
+

23αh
12M(α)

)
f1(Sj, Ej, Ij, Rj, Vj)

–
(

1 – α

M(α)
+

16αh
12M(α)

)
f1(Sj–1, Ej–1, Ij–1, Rj–1, Vj–1)

+
(

5αh
12M(α)

)
f1(Sj–2, Ej–2, Ij–2, Rj–2, Vj–2),

Ej+1 = Sj +
(

1 – α

M(α)
+

23αh
12M(α)

)
f2(Sj, Ej, Ij, Rj, Vj)

–
(

1 – α

M(α)
+

16αh
12M(α)

)
f2(Sj–1, Ej–1, Ij–1, Rj–1, Vj–1)

+
(

5αh
12M(α)

)
f2(Sj–2, Ej–2, Ij–2, Rj–2, Vj–2),

Ij+1 = Ij +
(

1 – α

M(α)
+

23αh
12M(α)

)
f3(Sj, Ej, Ij, Rj, Vj)
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Figure 1 Plots of all variables in model (3) with α = 0.9

–
(

1 – α

M(α)
+

16αh
12M(α)

)
f3(Sj–1, Ej–1, Ij–1, Rj–1, Vj–1)

+
(

5αh
12M(α)

)
f3(Sj–2, Ej–2, Ij–2, Rj–2, Vj–2),

Rj+1 = Rj +
(

1 – α

M(α)
+

23αh
12M(α)

)
f4(Sj, Ej, Ij, Rj, Vj)

–
(

1 – α

M(α)
+

16αh
12M(α)

)
f4(Sj–1, Ej–1, Ij–1, Rj–1, Vj–1)

+
(

5αh
12M(α)

)
f4(Sj–2, Ej–2, Ij–2, Rj–2, Vj–2),

Vj+1 = Vj +
(

1 – α

M(α)
+

23αh
12M(α)

)
f5(Sj, Ej, Ij, Rj, Vj)

–
(

1 – α

M(α)
+

16αh
12M(α)

)
f5(Sj–1, Ej–1, Ij–1, Rj–1, Vj–1)

+
(

5αh
12M(α)

)
f5(Sj–2, Ej–2, Ij–2, Rj–2, Vj–2).

For numerical simulations, we utilize the values of the parameters B = 100, P = 0.3, λ =
0.4, μ = 0.4, σ = 0.3, β = 0.4, D = 0.2, and the initial conditions are given by S0 = 300,
E0 = 0, I0 = 0, R0 = 0, V0 = 0.

The equilibrium point is E∗ = (S∗, E∗, I∗, R∗, V ∗) = (90.9, 49.24, 19.87, 21.78, 45.454).
Fig. (1) shows the plots of the solutions of model (3) for α = 0.9. As can be seen, the system
is stable at equilibrium point. Figures 2–4 show plots for S(t), E(t), I(t), R(t), V (t) in model
(3) for the fractional orders α = 0.9, 0.8, 0.7, 0.6, respectively. We can observe from these
plots that the curves of each variable have the same trend when α is changed. However,
their values are slightly different. We can observe from Fig. 2 that the curves of S(t) are
decreasing, and they finally converge to the equilibrium point S∗ = 90.9. Figure 2 shows
that all the graphs of E(t) increase with time and tend to the equilibrium point E∗ = 49.24.
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Figure 2 Plots of susceptible parameter S(t) and latent parameter E(t) corresponding to different values of
α = 0.9, 0.8, 0.7, 0.6

Figures 3 and 4 show that all graphs of I(t), R(t), and V (t) increase with time and then
converge to the equilibrium points I∗ = 19.87, R∗ = 21.78, and V ∗ = 45.454, respectively.

Tables 1–5 present the comparative study between the standard derivative, Caputo
derivatives, and the Caputo–Fabrizio derivative. It can easily be observed from Tables 1–
5 that the Caputo–Fabrizio fractional derivative shows the new nature compared to the
standard derivative and Caputo fractional derivative. The graphical representation shows
that the model depends notably on the fractional order. Figures 2–4 and Tables 1–5 show
the clear difference at different values of α.
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Figure 3 Plots of infected parameter I(t) and recovered parameter R(t) corresponding to different values of
α = 0.9, 0.8, 0.7, 0.6

5 Conclusion
In this paper, we have investigated a Caputo–Fabrizio fractional differential equation
model for the spread of rubella disease. Using fixed point theory, we have demon-
strated the existence of a unique solution. Also, we have determined the equilibrium
point of the model and investigated its stability. We have used a three-step fractional
Adams–Bashforth scheme to obtain numerical results of the fractional system of rubella
model. Eventually, we have presented the numerical simulations for different values of the
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Figure 4 Plots of vaccinated parameter V(t) corresponding to different values of α = 0.9, 0.8, 0.7, 0.6

Table 1 Comparison between the standard derivative, Caputo fractional derivatives, and
Caputo–Fabrizio fractional derivative for S(t)

t

0 1 2 3 4 5

Dα (α = 1) 50 76.4116 86.4888 89.1413 90.1514 90.6258
cDα (α = 0.95) 50 77.8345 85.689 88.4888 91.1344 92.678
cf Dα (α = 0.95) 52.1327 77.5116 86.47658 89.9403 90.9814 91.0058

Table 2 Comparison between the standard derivative, Caputo fractional derivatives, and
Caputo–Fabrizio fractional derivative for E(t)

t

0 1 2 3 4 5

Dα (α = 1) 9.5612 12.0014 9.1120 6.021 3.998 2.8791
cDα (α = 0.95) 9.8721 13.9864 10.2341 7.234 4.5432 3.5402
cf Dα (α = 0.95) 10.5704 13.0185 9.9593 6.7502 4.4770 3.0694

Table 3 Comparison between the standard derivative, Caputo fractional derivatives, and
Caputo–Fabrizio fractional derivative for I(t)

t

0 1 2 3 4 5

Dα (α = 1) 8.6753 7.84 6.3251 3.987 3.001 2.765
cDα (α = 0.95) 8.9674 7.983 5.372 3.865 2.0216 3.2157
cf Dα (α = 0.95) 9.6789 7.6784 5.934 3.213 2.8764 2.1451

fractional-order α = 0.9, 0.8, 0.7, 0.6 and have compared the numerical results of the stan-
dard derivative with two fractional derivatives of rubella model for α = 0.95.
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Table 4 Comparison between the standard derivative, Caputo fractional derivatives, and
Caputo–Fabrizio fractional derivative for R(t)

t

0 1 2 3 4 5

Dα (α = 1) 2.15 18.6573 28.1124 44.8761 69.9672 107.8351
cDα (α = 0.95) 2.1511 18.9631 29.6782 47.9246 70.5361 110.1133
cf Dα (α = 0.95) 2.1731 19.8653 28.9632 45.3197 68.5167 108.3261

Table 5 Comparison between the standard derivative, Caputo fractional derivatives, and
Caputo–Fabrizio fractional derivative for V(t)

t

0 1 2 3 4 5

Dα (α = 1) 19.1246 36.8261 56.9181 85.2111 125.6753 186.7658
cDα (α = 0.95) 19.5831 37.9461 59.7263 88.0051 129.8584 190.6483
cf Dα (α = 0.95) 20.8921 37.6961 58.1155 86.5283 127.6918 187.9709

Acknowledgements
Research of the third author was supported by Azarbaijan Shahid Madani University. Research of the second author was
supported by Miandoab Branch of Islamic Azad University. The authors thank dear referees for the valuable comments
which improved basically the final version of this work.

Funding
Not available.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved
the final manuscript.

Author details
1Department of Mathematics, Cankaya University, Ankara, Turkey. 2Department of Mathematics, Miandoab Branch,
Islamic Azad University, Miandoab, Iran. 3Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
4Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 December 2019 Accepted: 2 April 2020

References
1. Wesselhoeft, C.: Rubella and congenital deformities. N. Engl. J. Med. 240(7), 258–261 (1949)
2. Edlich, R.F., Winters, K.L., Long, W.B., Gubler, K.D.: Rubella and congenital rubella (German measles). J. Long-Term Eff.

Med. Implants 15(3), 319–328 (2005)
3. Trmal, J., Limberkova, R.: Report on a measles epidemic in the Usti nad Labem Region. Epidemiol. Mikrobiol. Imunol.

64(3), 139–145 (2015)
4. Neighbors, M., Tannehill-Jones, R.: Childhood diseases and disorders. In: Human Diseases, pp. 457–479. Clifton Park,

New York (2010)
5. Ackerknecht, E.H.: A Short History of Medicine. Johns Hopkins University Press, Baltimore (1982)
6. Edmunds, W.J., Heijden, O.G., Eerola, M., Gay, N.J.: Modelling rubella in Europe. Epidemiol. Infect. 125(3), 617–634

(2000)
7. Fred, M.O., Sigey, J.K., Okello, J.A., Okwoyo, J.M., Kangethe, G.J.: Mathematical modeling on the control of measles by

vaccination: case study of KISII county, Kenya. SIJ Trans. Comput. Sci. Eng. Appl. (CSEA) 2(3), 61–69 (2014)



Baleanu et al. Advances in Difference Equations        (2020) 2020:184 Page 19 of 19

8. Koca, I.: Analysis of rubella disease model with non-local and non-singular fractional derivatives. Int. J. Optim. Control
8(1), 17–25 (2018)

9. Mac Intyre, C.R., Gay, N.J., Gidding, H.F., Hull, B.I., Gilbert, G.L., McIntyre, I.B.: A mathematical model to measure the
impact of the Measles Control Campaign on the potential for measles transmission in Australia. J. Infect. Dis. 6(4),
277–282 (2002)

10. Ochoche, J.M., Gweryina, R.I.: A mathematical model of measles with vaccination and two phases of infectiousness.
IOSR J. Math. 10(1), 95–105 (2014)

11. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2),
73–85 (2015)

12. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
13. Baleanu, D., Guvenc, Z.B., Machado, J.A.T.: New Trends in Nano Technology and Fractional Calculus Applications.

Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-3293-5
14. Haq, F., Shah, K., Rahman, G., Shahzad, M.: Numerical analysis of fractional order model of HIV-1 infection of CD4+

T-cells. Comput. Methods Differ. Equ. 5(1), 1–11 (2017)
15. Atangana, A., Alkahtani, B.S.T.: Analysis of the Keller–Segel model with a fractional derivative without singular kernel.

Entropy 17(6), 4439–4453 (2015)
16. Erturk, V.S., Zaman, G., Momani, S.: A numeric analytic method for approximating a giving up smoking model

containing fractional derivatives. Comput. Math. Appl. 65(10), 3068–3074 (2012)
17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New

York (2006)
18. Khalid, M., Sultana, M., Zaidi, F., Arshad, U.: Application of Elzaki transform method on some fractional differential

equations. Math. Theory Model. 5(1), 89–96 (2015)
19. Zafar, Z.U.A., Rehan, K., Mushtaq, M.: Fractional-order scheme for bovine babesiosis disease and tick populations. Adv.

Differ. Equ. 2017, 86 (2017)
20. Zafar, Z.U.A., Rehan, K., Mushtaq, M.: HIV/AIDS epidemic fractional-order model. J. Differ. Equ. Appl. 23(7), 1298–1315

(2017)
21. Zafar, Z.U.A., Mushtaq, M., Rehan, K.: A non-integer order dengue internal transmission model. Adv. Differ. Equ. 2018,

23 (2018)
22. Zafar, Z.U.A.: Fractional order Lengyel–Epstein chemical reaction model. Comput. Appl. Math. 2019, 131 (2019)
23. Losada, J., Nieto, J.J.: Properties of the new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2),

87–92 (2015)
24. Akbari Kojabad, E., Rezapour, Sh.: Approximate solutions of a sum-type fractional integro-differential equation by

using Chebyshev and Legendre polynomials. Adv. Differ. Equ. 2017, 351 (2017)
25. Alizadeh, Sh., Baleanu, D., Rezapour, Sh.: Analyzing transient response of the parallel RCL circuit by using the

Caputo–Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 55 (2020)
26. Aydogan, M.S., Baleanu, D., Mousalou, A., Rezapour, Sh.: On high order fractional integro-differential equations

including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018)
27. Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, Sh.: On approximate solutions for two higher-order

Caputo–Fabrizio fractional integro-differential equations. Adv. Differ. Equ. 2017, 221 (2017)
28. Baleanu, D., Ghafarnezhad, Kh., Rezapour, Sh., Shabibi, M.: On the existence of solutions of a three steps crisis

integro-differential equation. Adv. Differ. Equ. 2018, 135 (2018)
29. Baleanu, D., Ghafarnezhad, Kh., Rezapour, Sh.: On a three steps crisis integro-differential equation. Adv. Differ. Equ.

2019, 153 (2019)
30. Baleanu, D., Jajarmi, A., Mohammadi, H., Mozyrska, D.: Analysis of the human liver model with Caputo–Fabrizio

fractional derivative. Chaos Solitons Fractals 134, 109705, 7 pages (2020)
31. Baleanu, D., Mohammadi, H., Rezapour, Sh.: Analysis of the model of HIV-1 infection of CD4+ T-cell with a new

approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020)
32. Baleanu, D., Mohammadi, H., Rezapour, Sh.: On a nonlinear fractional differential equation on partially ordered metric

spaces. Adv. Differ. Equ. 2013, 83 (2013)
33. Baleanu, D., Rezapour, Sh., Mohammadi, H.: Some existence results on nonlinear fractional differential equations.

Philos. Trans. - Royal Soc., Math. Phys. Eng. Sci. 371, 20120144 (2013). https://doi.org/10.1098/rsta.2012.0144
34. Baleanu, D., Mohammadi, H., Rezapour, Sh.: The existence of solutions for a nonlinear mixed problem of singular

fractional differential equations. Adv. Differ. Equ. 2013, 359 (2013)
35. Baleanu, D., Mousalou, A., Rezapour, Sh.: A new method for investigating approximate solutions of some fractional

integro-differential equations involving the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2017, 51 (2017)
36. Baleanu, D., Mousalou, A., Rezapour, Sh.: The extended fractional Caputo–Fabrizio derivative of order 0 ≤ σ < 1 on

CR[0, 1] and the existence of solutions for two higher-order series-type differential equations. Adv. Differ. Equ. 2018,
255 (2018)

37. Baleanu, D., Mousalou, A., Rezapour, Sh.: On the existence of solutions for some infinite coefficient-symmetric
Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 145 (2017)

38. Baleanu, D., Hedayati, V., Rezapour, Sh., Al-Qurashi, M.M.: On two fractional differential inclusions. SpringerPlus 5, 882
(2016)

39. Baleanu, D., Rezapour, Sh., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional
Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019)

40. Gay, N., Pelletier, L., Duclos, P.: Modelling the incidence of measles in Canada: An assessment of the options for
vaccination policy. Vaccine 16(8), 794–801 (1998)

41. Li, H., Cheng, J., Li, H.B., Zhong, S.M.: Stability analysis of a fractional-order linear system described by the
Caputo–Fabrizio derivative. Mathematics 7(2), 200 (2019)

42. Owolabi, K.M., Atangana, A.: Analysis and application of new fractional Adams–Bashforth scheme with
Caputo–Fabrizio derivative. Chaos Solitons Fractals 105, 111–119 (2017)

https://doi.org/10.1007/978-90-481-3293-5
https://doi.org/10.1098/rsta.2012.0144

	A mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the Rubella disease model
	Abstract
	MSC
	Keywords

	Introduction
	Mathematical model for the spread of rubella disease
	Existence and uniqueness of a system of solutions of rubella model
	Equilibrium points of the model and asymptotic stability
	Numerical method and simulations

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Publisher's Note
	References


