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Abstract
In this paper, we investigate the existence of mild solutions for neutral Hilfer fractional
evolution equations with noninstantaneous impulsive conditions in a Banach space.
We obtain the existence results by applying the theory of resolvent operator
functions, Hausdorff measure of noncompactness, and Sadovskii’s fixed point
theorem. We also present an example to show the validity of obtained results.
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1 Introduction
Fractional calculus primarily involves the description of fractional-order derivatives and
integral operators [28]. In the last few decades, it has gained significant importance be-
cause of its wide range of applicability in diverse scientific domains. Fractional differen-
tial equations (FDEs) are among the strongest tools of mathematical modeling and are
successfully employed to model complex physical and biological phenomena like anoma-
lous diffusion, viscoelastic behavior, power laws, and automatic remote control systems. In
the available literature, notable definitions of fractional derivatives were given by famous
mathematicians, but the most commonly used are the Riemann–Liouville (RL) and Ca-
puto derivatives [1, 2, 21, 22, 24, 26, 29, 39]. Thus FDEs involving the RL fractional deriva-
tive or Caputo derivative have considered frequently for investigating the existence of mild
solutions. However, little attention has been devoted to FDEs with generalized fractional
derivatives. The Hilfer fractional derivative (HFD), a generalization of the RL fractional
derivative was first introduced by Hilfer [4, 11, 15, 16]. The existence and uniqueness of
general initial and boundary value problems involving HFD were first examined by Fu-
rati and Kassim [10] and Wang and Zhang [36], respectively. Thereafter, by means of the
noncompact measure method Gu and Trujilo [13] defined mild solutions for FDEs involv-
ing HFD. Later on, Gou and Li [12] proved the existence of mild solutions for Sobolev-
type Hilfer fractional evolution equations with boundary conditions. In [17, 32, 33] the
authors considered Hilfer FDEs with nonlocal conditions for investigating approximate
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controllability and existence of solutions. Recently, Subashini et al. [34] obtained mild so-
lutions for Hilfer integro-differential equations of fractional order by means of Monch’s
fixed point technique and noncompact measure. FDEs involving HFD are widely appli-
cable in biomedical research. These equations are successfully employed to model the
irregular boundaries of biological cells and microscopic fluctuations of biomedical mat-
ters [37].

Hernandez et al. [14] first introduced the concept of noninstantaneous impulsive condi-
tions. These conditions appeared in the mathematical description of real-world dynamical
processes experiencing a sudden change over a short interval of time like DNA sequences,
heart beat intervals, optimal control models, and so on [19]. In the published work, FDEs
involving either RL or Caputo derivative are commonly considered with impulsive condi-
tions for obtaining mild solutions [5, 7, 20, 27, 30]. However, Sousa et al. [31] for the first
time obtained the mild solutions for Hilfer FDEs with noninstantaneous impulsive con-
ditions. Similalrly, no existence results have been established for neutral Hilfer FDEs in
contrast to neutral FDEs with RL or Caputo derivative [9, 25, 35, 40]. Such equations have
a bundle of applications in physics, biology, and electrical engineering. Thus, to make a
little contribution to existing works, we consider the neutral Hilfer FDEs with impulsive
conditions of the mentioned form for obtaining mild solutions. We obtain an existence
result with the help of fixed point theory, which is proven to be an authoritative modeling
tool for obtaining exact or approximate solutions of FDEs

HDp,q
0+

(
z(t) + P

(
t, z(t)

))
= Az(t) + Q

(
t, z(t),

∫ t

0
ϑ(t, s)Φ

(
t, s, z(s)

)
ds

)
,

t ∈ (sl, tl+1] ⊂ J = [0,a], l = 0, 1, 2, . . . , m;

z(t) = ηl
(
t, z(t)

)
, t ∈ (tl, sl], l = 1, 2, . . . , m;

I1–θ
0+

(
z(0) + P

(
0, z(0)

))
= zo,

(1.1)

where I1–θ
0+ is the RL fractional integral, HDp,q

0+ is the HFD of order (p,q) with 0 ≤ p < 1, 0 ≤
q≤ 1, and 0 ≤ θ = p+q–pq ≤ 1, the linear operator A : D(A) ⊂ Z −→ Z is the infinitesimal
generator of a strongly continuous semigroup {T (t)}t≥0 in a Banach space Z, 0 = to = so <
t1 < s1 < t2 < · · · < tl < sl < tl+1 = a is a partition of [0,a], a > 0, l = 1, 2, . . . , m, Q : [0,a]×Z ×
Z −→ Z and P : [0,a] × Z −→ Z are appropriate functions satisfying some assumptions
to be discussed later, and a continuous function ηl : (tl, sl] × Z −→ Z characterizes the
impulsive conditions and zo ∈ Z. The properties of functions ϑ : � −→ R and Φ : � ×
Z −→ Z, � = (t, s) ∈ [0,a] × [0,a] are specified in later section.

This manuscript is structured as follows. In Sect. 2, we discuss the Hilfer fractional
derivative, Hausdorff measure of noncompactness, and mild solutions of equation (1.1)
along with some basic results and lemmas. In later section, we obtain existence results by
means of fixed point technique, measure of noncompactness, and Lebesgue dominated
convergence theorem. We confirm the validity of obtained results by offering an example
in the last section.

2 Preliminaries
Let C(J , Z) denote the complete normed linear space of continuous functions z(t)
defined on the interval J = [0,a] with ‖z‖ = sup t ∈ J ‖z(t)‖. We define the Banach
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space C1–θ (J , Z) = {z : J −→ Z such that t1–θ z(t) ∈ C(J , Z)} with norm ‖z‖C1–θ
=

sup0≤t≤a |t1–θ z(t)|.
We will establish the existence results in the Banach space

PC1–θ (J , Z) =
{
z(t) : (t – tl)1–θ

z(t) ∈ C((tl, tl+1],R) and lim
t−→tl

(t – tl)1–θ
z(t) exists

}

for l = 1, 2, . . . , m with the corresponding norm

‖z‖PC1–θ
= max

{
sup
t∈J

‖t1–θ
z
(
t

+)
, sup
t∈J

∥
∥t1–θ

z
(
t

–)∥∥
}

.

By L(Z) we denotes the family of bounded linear operators defined on Z, and by
{Wp,q(t)}t≥0 the (p – q)-resolvent operator or the q-times integrated p-resolvent opera-
tor generated by A .

Definition 2.1 ([16]) The Hilfer fractional derivative of order n – 1 ≤ p < n, n ∈ N; 0 ≤
q≤ 1, with lower limit c is defined as

Dp,q
c+ f (t) = Ip(n–q)

c+
d
dt

I (1–p)(n–q)
c+ f (t) = Ip(n–q)

c+ Dq+pn–qp
c+ f (t),

where Ip(n–q)
c+ is the RL integral, and Dq+pn–pq

a+ is the RL derivative.

Lemma 2.1 ([10]) Let 0 < p < 1, 0 ≤ q ≤ 1, and θ = p + q – pq. If f ∈ C1–θ [c,d] is such that
Dθ

c+ f ∈ C1–θ [c,d], then

Iθ
c+Dθ

c+ f = Ip

c+Dp,q
c+ f and Dθ

c+Iθ
c+ f = Dq(1–p)

c+ f .

Lemma 2.2 ([18]) Let 0 < p < 1 and 0 ≤ θ ≤ 1. If f ∈ C1–θ [c,d] and I1–p
c+ f ∈ C1

θ [c,d], then

Ip

c+Dp

c+ f (x) = f (x) –
I1–p
c+ f (c)
Γ (p)

(x – c)p–1, ∀x ∈ (c,d].

Definition 2.2 ([3]) The Hausdorff measure of noncompactness on a bounded subset ΩZ

of Banach space Z is the mapping ζ : B ⊂ ΩZ −→ [0,∞) defined as

ζ (B) = inf

{
ε > 0 : B =

⋃
Bi with radii of Bi ≤ ε for i = 1, 2, . . . , m

}
.

Lemma 2.3 ([3, 23]) The measure of noncompactness ζ defined on bounded subsets P and
Q of a Banach space Z has following properties:

1 ζ (P) = 0 iff P is a relatively compact set.
2 P ⊂Q 
⇒ ζ (P) ≤ ζ (Q).
3 ζ (P̄) = ζ (P).
4 ζ (P ∪Q) = max{ζ (P), ζ (Q)}.
5 ζ (aP) = |a|ζ (P), ∀a ∈R.

Lemma 2.4 ([3, 23]) For a bounded set D ⊂ Z, there is a denumerable set Do ⊂ D such
that ζ (Do) ≤ ζ (D).
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Lemma 2.5 ([38]) For a bounded and equicontinuous function G ∈ C(J , Z), the Hausdorff
measure of noncompactness ζ (G(t)) is continuous on J , and ζ (G) = maxt∈J ζ (G(t)).

Lemma 2.6 ([23]) Let D = {zn} ⊂ C(J , Z) be a bounded denumerable subset of Z. Then
ζ (D(t)) is Lebesgue integrable on Z, and

ζ

(∫
zn(t) dt : n ∈ N

)
≤

∫
ζ
(
zn(t)

)
dt.

Lemma 2.7 ([31]) After applying Lemmas 2.1 and 2.2, the system of fractional nonlinear
differential equations (1.1) reduces to the following integral equation:

z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tθ–1zo
Γ (θ ) – P (t, z(t)) + 1

Γ (p)
∫ t

0 (t – s)p–1(Az(s)

+ Q (s, z(s),
∫ τ

0 ϑ(s, τ )Φ(s, τ , z(τ )) dτ ) ds, t ∈ [0, t1];

ηl(t, z(t)), t ∈ (tl, sl];

ηl(t, z(t)) – P (t, z(t)) + 1
Γ (p)

∫ t

0 (t – s)p–1(Az(s)

+ Q (s, z(s),
∫ τ

0 ϑ(s, τ )Φ(s, τ , z(τ )) dτ )) ds, t ∈ (sl, tl+1]; l = 1, 2, . . . , m.

(2.1)

Definition 2.3 ([13, 31]) A mild solution z ∈PC1–θ (J , Z) of problem (1.1) is the solution
of the corresponding its integral form (2.1)

z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wp,q(t)zo – P (t, z(t)) –
∫ t

0 Yp(t – s)AP (s, z(s)) ds

+
∫ t

0 Yp(t – s)Q (s, z(s),
∫ τ

0 ϑ(s, τ )Φ(s, τ , z(τ )) dτ ) ds, t ∈ [0, t1],

ηl(t, z(t)), t ∈ (tl, sl],

Wp,q(t)ηl(sl, z(sl)) – P (t, z(t)) –
∫ t

sl
Yp(t – s)AP (s, z(s)) ds

+
∫ t

sl
Yp(t – s)Q (s, z(s),

∫ τ

0 ϑ(s, τ )Φ(s, τ , z(τ )) dτ ) ds,

t ∈ (sl, tl+1], l = 1, 2, . . . , m,

Wp,q(t) = Iq(1–p)
ν Yp(t),

Yp(t) = t
θ–1

Zp(t),

Zp(t) =
∫ ∞

0
pνMp(ν)T

(
t
pν

)
dν,

(2.2)

where Mp(ν) is the Wright function defined as

Mp(ν) =
∞∑

n=1

(–ν)n–1

(n – 1)Γ (1 – μn)
, 0 < μ < 1,ν ∈ C,

and satisfying the equality

∫ ∞

0
νσMp(ν) dν =

Γ (1 + σ )
Γ (1 + pσ )

, ν,σ ≥ 0.

This definition of a mild solution is obtained by means of the Laplace transform of the
Hilfer fractional derivative.



Bedi et al. Advances in Difference Equations        (2020) 2020:155 Page 5 of 16

Remark 2.1 The Laplace transform of the Hilfer derivative of a function f (t) of order 0 <
p < 1 and 0 < q < 1 is as follows [15]:

L
{
Dp,q

a+ f (t); s
}

= s
pf (s) – s

p(q–1)I (1–p)(1–q)
0+ f (0+),

where I (1–p)(1–q)
0+ f (0+) is the RL fractional integral of order (1 – p)(1 – q).

Remark 2.2 ([6, 13]) Let us assume
1 The strong continuity of linear operators {Wp,q(t)}t>0 and {Yp(t)}t>0 with

∥
∥Wp,q(t)

∥
∥ ≤ M tθ–1

Γ (θ )
and

∥
∥Yp(t)

∥
∥ ≤ M tp–1

Γ (p)
for t > 0.

2 The norm continuity of family {T (t)} for t > 0.

3 Existence result
In the beginning of this section, we introduce some assumptions required to obtain the
desired result:

(H1) Q : J × Z × Z −→ D(B) ⊂ Z is a Carathéodory function, that is, Q (·, z1, z2) : J −→
D(B) ⊂ Z is measurable for all (z1, z2) ∈ Z × Z, Q (t, ·, ·) : Z × Z −→ D(B) ⊂ Z is continuous
a.e. for t ∈ J , and there exist ψ1 ∈ L 1

r
(J ,R+), 1

r > 1, and a continuous function ψ2 such
that

∥∥Q (·, z1, z2)
∥∥ ≤ ψ1(t)‖z1‖ + ψ2(t)‖z2‖

for almost all t ∈ J .
(H2) There exist functions φ̂1, φ̂2 ∈ L 1

r
(J ,R+) and constants M1, M2 > 0 such that

ζ
(
Q (t,D1,D2)

) ≤ M1φ̂1(t)ζ (D1) + M2φ̂2(t)ζ (D2), t ∈ J .

for any bounded, equicontinuous, and countable sets Dl ⊂ Z, l = 1, 2.
(H3) P : J × Z −→ Z is bounded and Lipschitz continuous, that is, there exist MP > 0

and LP ∈ (0, 1) such that

∥∥P
(
t, z(t)

)∥∥ ≤ MP .
∥∥P

(
t, z1(t)

)
– P

(
t, z2(t)

)∥∥ ≤LP ‖z1 – z2‖, ∀t ∈ J .

(H4) The impulsive function ηl : [tl, sl] × Z −→ Z is Lipschitz continuous, that is, there
exist Kηl > 0, l = 1, 2, . . . , m, such that for all z1, z2 ∈ Z,

∥∥ηl(t, z1) – ηl(t, z2)
∥∥ ≤Kηl‖z1 – z2‖.

(H5) Φ(t, s, ·) : Z −→ Z is a Carathéodary function, and there exist m̄ : � −→ R with

m̄
∗ = sup

t∈J

∫ t

0
m̄(t, s) < ∞ such that

∥∥Φ(t, s, z)
∥∥ ≤ m̄(t, s)‖z‖, z ∈ Z.



Bedi et al. Advances in Difference Equations        (2020) 2020:155 Page 6 of 16

(H6) For a bounded set D1 ⊂ Z and 0 ≤ s ≤ t ≤ a, there exists a function ξ : � −→ R

such that

ζ
(
Φ(t, s,D1)

) ≤ ξ (t, s)ζ (D1),

where

ξ ∗ = sup
∫ t

0
ξ (t, s) ds < ∞.

(H7) ϑ∗ = sup{ϑ(t, s) : 0 ≤ s ≤ t} is bounded and measurable on J along with the conti-
nuity of the function ϑt : J −→ L∞(J ,R) defined as ϑt(s) = ϑ(t, s).

Theorem 3.1 The equation system (1.1) has at least one mild solution in the space PC1–θ

if assumptions (H1)–(H7) hold along with the following conditions:

M
[ Kηl

Γ (θ )
+
a1–θ+p–r

Γ (p)

(
1 – r
p – r

)1–r

‖ψ1‖L 1
r [0,a]

+
‖ψ2‖a1–θ+pϑ∗m̄∗

pΓ (p)

]
< 1;

(MKηl + LP ) +
M ap–r

Γ (p)

(
1 – r
p – r

)1–r(
M1‖φ̂1‖L 1

r
[0,a] + M2‖φ̂2‖L 1

r
[0,a]ϑ

∗ξ ∗)

+
MLP Moa

p

Γ (p + 1)
< 1.

Proof To prove the existence of a mild solution for equation system (1.1), it is sufficient to
prove the existence of a solution the corresponding integral form (2.2).

Define

Ωδ =
{
z ∈PC1–θ (J , Z) :

∥
∥z(t)

∥
∥
C1–θ

< δ, t ∈ J
}

.

Clearly, Ωδ is a closed convex bounded subset of Z. Define the operator

Θ : Ωδ −→ Ωδ by

Θz(t) = Θ1z(t) + Θ2z(t), where

Θ1z(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Wp,q(t)zo – P (t, z(t)), t ∈ [0, t1],

ηl(t, z(t)), t ∈ (tl, sl],

Wp,q(t)ηl(sl, z(sl)) – P (t, z(t)), t ∈ (sl, tl+1], l = 1, 2, . . . , m;

Θ2z(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ t

0 Yp(t – s)Q (s, z(s),
∫ τ

0 ϑ(s, τ )Φ(s, τ , z(τ )) dτ ) ds

–
∫ t

0 Yp(t – s)AP (s, z(s)) ds, t ∈ [0, t1],
∫ t

sl
Yp(t – s)Q (s, z(s),

∫ τ

0 ϑ(s, τ )Φ(s, τ , z(τ )) dτ ) ds

–
∫ t

sl
Yp(t – s)AP (s, z(s)) ds, t ∈ (sl, tl+1], l = 1, 2, . . . , m.

The operator Θ is well defined.
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We establish our results in six steps.
Step 1. We show that Θz ∈ PC1–θ for z ∈ PC1–θ , that is, t1–θΘz(t) is a continuous func-

tion for t ∈ (tl, tl+1], l = 0, 1, 2, . . . , m. For 0 ≤ t̃≤ t < t1, we consider

∥∥Θz(t) – Θz(t̃)
∥∥
C1–θ

=
∥∥t1–θ

(
Θz(t) – Θz(t̃)

)∥∥

≤ ∥∥Wp,q(t)zo – Wp,q(t̃)zo
∥∥
C1–θ

+
∥∥P (t) – P (t̃)

∥∥
C1–θ

+
∫ t̃

0
t

1–θ
∥∥Yp(t – s) – Yp(t̃ – s)

∥∥
∥
∥∥
∥Q

(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)∥
∥∥
∥ds

+
∫ t

t̃

t
1–θ

∥
∥Yp(t – s)

∥
∥
∥∥
∥∥Q

(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)∥∥
∥∥ds

+
∫ t̃

0
t

1–θ
∥∥Yp(t – s) – Yp(t̃ – s)

∥∥
∥
∥∥
∥A

∥∥‖P
(
s, z(s)

)∥∥ds

+
∫ t

t̃

t
1–θ‖Yp(t – s)‖‖A‖∥∥P

(
s, z(s)

)∥∥ds.

Substituting t̃ – s = s1 into the third and fifth terms, we have

≤ ∥
∥Wp,q(t)zo – Wp,q(t̃)zo

∥
∥
C1–θ

+ LS‖t – t̃‖C1–θ
+

∫ t̃

0
a

1–θ
∥
∥Yp(t – t̃ + s1) – Yp(s1)

∥
∥

×
∥∥
∥∥Q

(
t̃ – s1, z(t̃ – s1),

∫ τ

0
ϑ(t̃ – s1, τ )Φ

(
t̃ – s1, τ , z(τ )

)
dτ

)∥∥
∥∥ds1

+
∫ t

t̃

a
1–θ

∥∥Yp(t – s)
∥∥
∥
∥∥
∥Q

(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)∥
∥∥
∥
C1–θ

ds

+
∫ t̃

0
a

1–θ
∥
∥Yp(t – t̃ + s1) – Yp(s1)

∥
∥‖A‖∥∥P

(
t̃ – s1, z(t̃ – s1)

)∥∥ds1

+
∫ t

t̃

a
1–θ

∥∥Yp(t – s)
∥∥‖A‖∥∥P

(
s, z(s)

)∥∥ds

−→ 0 as t−→ t̃.

This proves the continuity of t1–θΘz(t) for t ∈ [0, t1], that is, Θz ∈ C1–θ ([0, t1], Z).
Using the continuity of noninstantaneous impulsive functions ηl(t, z(t)) for l = 1, 2, . . . , m

and applying the similar procedure as before, we easily see that Θz ∈ C1–θ ((tl, sl], Z) and
Θz ∈ C1–θ ((sl, tl+1], Z). Thus we conclude that Θz ∈PC1–θ for z ∈PC1–θ .

Step 2. We show that Θ maps the bounded closed convex set Ωδ onto itself, that is,
Θz ∈ Ωδ for z ∈ Ωδ . Suppose the contrary, that is, there are z ∈ Ωδ and t ∈ J such that
‖Θz‖C1–θ

> δ. Let us evaluate ‖Θz‖ for t ∈ [0, t1], (tl, sl], and (sl, tl+1], l = 1, 2, . . . , m.
For t ∈ [0, t1], we have

∥∥Θz(t)
∥∥
C1–θ

=
∥
∥t1–θΘz(t)

∥
∥

≤ ∥∥t1–θWp,q(t)zo
∥∥ +

∥∥t1–θ P
(
t, z(t)

)∥∥
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+
∫ t

0

∥
∥Yp(t – s)

∥
∥
∥∥
∥∥t

1–θ Q
(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)∥∥
∥∥ds

+
∫ t

0

∥∥Yp(t – s)
∥∥‖A‖∥∥t1–θ P

(
s, z(s)

)∥∥ds

≤ MP +
M ‖zo‖
Γ (θ )

+
M MP ‖A‖ap

Γ (p + 1)

+
M t1–θ

Γ (p)

∫ t

0
(t – s)p–1

∥∥
∥∥Q

(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)∥∥
∥∥ds

≤ MP +
M ‖zo‖
Γ (θ )

+
M MP ‖A‖ap

Γ (p + 1)

+
M t1–θ

Γ (p)

∫ t

0
(t – s)p–1

(
ψ1(s)δ + ψ2(s)ϑ∗δ

∫ s

0
m̄(s, τ ) dτ

)
ds

≤ MP +
M ‖zo‖
Γ (θ )

+
M MP ‖A‖ap

Γ (p + 1)
+

M ‖ψ2‖ϑ∗δm̄∗ap

pΓ (p)

+
M δa1–θ

Γ (p)

(∫ t

0
(t – s)

p–1
1–r ds

)1–r(∫ t

0

(
ψ1(s)

) 1
r ds

)r

= MP +
M ‖zo‖
Γ (θ )

+
M MP ‖A‖ap

Γ (p + 1)

+
M δa1–θ

Γ (p)

[(
1 – r
p – r

)1–r

a
p–r‖ψ1‖L 1

r [0,a]
+

‖ψ2‖apϑ∗m̄∗

p

]


⇒ ∥
∥Θz(t)

∥
∥
C1–θ

≤ MP +
M ‖zo‖
Γ (θ )

+
M MP ‖A‖ap

Γ (p + 1)

+
M δ

Γ (p)

[(
1 – r
p – r

)1–r

a
1–θ+p–r‖ψ1‖L 1

r [0,a]
+

‖ψ2‖a1–θ+pϑ∗m̄∗

p

]
. (3.1)

For t ∈ (tl, sl], l = 1, 2, . . . , m, we have

∥
∥Θz(t)

∥
∥
C1–θ

=
∥
∥t1–θΘz(t)

∥
∥ =

∥
∥t1–θηl

(
t, z(t)

)∥∥ =
∥
∥ηl

(
t, z(t)

)∥∥
C1–θ

=
∥∥ηl

(
t, z(t)

)
– ηl(t, 0) + ηl(t, 0)

∥∥
C1–θ

≤Kηl

∥∥z(t)
∥∥
C1–θ

+
∥∥ηl(t, 0)

∥∥
C1–θ

≤Kηlδ + N , where N = sup
∥
∥ηl(t, 0)

∥
∥
C1–θ


⇒ ∥∥Θz(t)
∥∥
C1–θ

≤Kηlδ + N . (3.2)

For t ∈ (sl, tl+1], l = 1, 2, . . . , m, we have

∥∥Θz(t)
∥∥
C1–θ

=
∥∥t1–θΘz(t)

∥∥

=
∥∥
∥∥t

1–θ

[
Wp,q(t)ηl

(
sl, z(sl)

)
– P

(
t, z(t)

)
–

∫ t

sl

Yp(t – s)AP
(
s, z(s)

)
ds

+
∫ t

sl

Yp(t – s)Q
(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)
ds

]∥
∥∥
∥
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≤ M (Kηlδ + N)
Γ (θ )

+ MP +
M MP ‖A‖(t – sl)p

Γ (p + 1)

+
M δa1–θ

Γ (p)

[(
1 – r
p – r

)1–r

a
p–r‖ψ1‖L 1

r [0,a]
+

‖ψ2‖apϑ∗m̄∗

p

]


⇒ ∥
∥Θzr(t)

∥
∥
C1–θ

≤ MP +
M (Kηlδ + N)

Γ (θ )
+

M MP ‖A‖(t – sl)p

Γ (p + 1)

+
M δ

Γ (p)

[(
1 – r
p – r

)1–r

a
1–θ+p–r‖ψ1‖L 1

r [0,a]
+

‖ψ2‖a1–θ+pϑ∗m̄∗

p

]
. (3.3)

Combining (3.1)–(3.3), we get

∥∥Θz(t)
∥∥
C1–θ

≤ MP +
M ‖zo‖
Γ (θ )

+
M (Kηlδ + N)

Γ (θ )
+

M MP ‖A‖ap
Γ (p + 1)

+
M δ

Γ (p)

[(
1 – r
p – r

)1–r

a
1–θ+p–r‖ψ1‖L 1

r [0,a]
+

‖ψ2‖a1–θ+pρm̄∗

p

]
.

By our assumptions we have

∥∥Θz(t)
∥∥
C1–θ

> δ


⇒ MP +
M ‖zo‖
Γ (θ )

+
M (Kηlδ + N)

Γ (θ )
+

M MP ‖A‖ap
Γ (p + 1)

+
M δ

Γ (p)

[(
1 – r
p – r

)1–r

a
1–θ+p–r‖ψ1‖L 1

r [0,a]
+

‖ψ2‖a1–θ+pω∗m̄∗

p

]

≥ ∥
∥Θz(t)

∥
∥
C1–θ

> δ.

Dividing both sides by δ and taking the limits of both sides as δ → ∞, we have

M
[ Kηl

Γ (θ )
+
a1–θ+p–r

Γ (p)

(
1 – r
p – r

)1–r

‖ψ1‖L 1
r [0,a]

+
‖ψ2‖a1–θ+pω∗m̄∗

pΓ (p)

]
> 1,

which is a contradiction. Hence

∥
∥Θz(t)

∥
∥
C1–θ

< δ.

This proves that Θ maps bounded sets to bounded sets.
Step 3. We prove that Θ1 is Lipschitz continuous. For t ∈ [0, t1], we have

∥∥Θ1z1(t) – Θ1z2(t)
∥∥
C1–θ

≤LP ‖z1 – z2‖C1–θ
. (3.4)

For t ∈ (tl, sl], l = 1, 2, . . . , m, we have

∥∥Θ1z1(t) – Θ1z2(t)
∥∥
C1–θ

≤Kηl‖z1 – z2‖C1–θ
. (3.5)

For t ∈ (sl, tl+1], we have

∥∥Θ1z1(t) – Θ1z2(t)
∥∥
C1–θ

≤ (MKηl + LP )‖z1 – z2‖C1–θ
. (3.6)
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Combining Eqs. (3.4)–(3.6), we get

∥∥Θ1z1(t) – Θ1z2(t)
∥∥
C1–θ

≤ (MKηl + LP )‖z1 – z2‖C1–θ
, ∀t ∈ J .

This proves that Θ1 is a Lipschitz function with Lipschitz constant (MKηl + LP ).
Step 4. Let {zn(t)} be a sequence in Ωδ such that

∥∥zn(t) – z(t)
∥∥ −→ 0 as n −→ ∞.

Since P and Q are continuous functions with respect to the second and third variables, it
follows that

lim
n−→∞ P

(
t, zn(t)

)
= P

(
t, z(t)

)
and

lim
n−→∞ Q

(
t, zn(t),

∫ τ

0
ϑ(s, τ )Φ

(
t, τ , zn(τ )

)
dτ

)
= Q

(
t, z(t),

∫ τ

0
ϑ(t, τ )Φ

(
t, τ , z(τ )

)
dτ

)
.

By assumptions (H1) and (H3) we have

∥∥P
(
t, zn(t)

)
– P

(
t, z(t)

)∥∥ ≤ 2MP
∥∥
∥∥Q

(
t, zn(t),

∫ τ

0
ϑ(t, τ )Φ

(
t, τ , zn(τ )

)
dτ

)
– Q

(
t, z(t),

∫ τ

0
ϑ(t, τ )Φ

(
t, τ , z(τ )

)
dτ

)∥∥
∥∥

≤ 2δ
[
ψ1(t) + ψ2(t)ϑ∗

m̄
∗].

Since ψ1 ∈ L 1
r [0,a] and ψ2(t) is continuous, both functions on the right-hand side are inte-

grable.
For all t ∈ J , zn, z ∈ Ωδ , consider

∥∥Θ2zn(t) – Θ2z(t)
∥∥
C1–θ

=
∥∥t1–θ

(
Θ2zn(t) – Θ2z(t)

)∥∥

≤
∥∥
∥∥

∫ t

sl

t
1–θ

Yp(t – s)
[

Q
(
s, zn(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , zn(τ )

)
dτ

)

– Q
(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)]
ds

∥
∥∥
∥

+
∥∥
∥∥

∫ t

sl

t
1–θ

Yp(t – s)
{

P (s, zn(s) – P (s, z(s)
}
∥∥
∥∥

≤ M a1–θ

Γ (p)

∫ t

sl

(t – s)p–1
∥∥
∥∥Q

(
s, zn(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , zn(τ )

)
dτ

)

– Q
(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ(s, τ , z(τ )) dτ

)∥
∥∥∥ds

+
M a1–θ

Γ (p)

∫ t

sl

(t – s)p–1∥∥P
(
s, zn(s)

)
– P

(
s, z(s)

)∥∥ds.

By the Lebesgue dominated convergence theorem

∥
∥Θ2zn(t) – Θ2z(t)

∥
∥
C1–θ

−→ 0 as n −→ ∞.
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This proves the continuity of the operator Θ2.
Step 5. Let us prove that Θ2 is equicontinuous. For any z ∈ Ωδ and sl < t1 < t2 < tl+1,

l = 0, 1, 2, . . . , m, we have

∥
∥Θ2z(t2) – Θ2z(t1)

∥
∥
C1–θ

=
∥
∥t1–θ

(
Θ2z(t2) – Θ2z(t1)

)∥∥

=
∥∥
∥∥

∫ t2

sl

t
1–θYp(t2 – s)Q

(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)
ds

–
∫ t1

sl

t
1–θYp(t1 – s)Q

(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)
ds

–
∫ t2

sl

t
1–θYp(t2 – s)AP

(
s, z(s)

)
ds +

∫ t1

sl

t
1–θYp(t1 – s)AP

(
s, z(s)

)
ds

∥∥
∥∥

≤
∥∥
∥∥

∫ t1

sl

{
Yp(t2 – s) – Yp(t1 – s)

}
t

1–θ Q
(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)
ds

∥∥
∥∥

+
∥
∥∥
∥

∫ t2

t1

Yp(t2 – s)t1–θ Q
(
s, z(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , z(τ )

)
dτ

)
ds

∥
∥∥
∥

+
∥
∥∥
∥

∫ t1

sl

{
Yp(t2 – s) – Yp(t1 – s)

}
t

1–θ AP
(
s, z(s)

)
ds

∥
∥∥
∥

+
∥
∥∥∥

∫ t2

t1

Yp(t2 – s)t1–θ AP
(
s, z(s)

)
ds

∥
∥∥∥

= I1 + I2 + I3 + I4.

By substituting (t1 – s) = s1 into I1 and I3 we have

I1 ≤
∫ t1

0
a

1–θ
∥
∥Yp(t2 – t1 + s1) – Yp(s1)

∥
∥

×
∥∥
∥∥Q

(
t1 – s1, z(t1 – s1),

∫ τ

0
ϑ(t1 – s1, τ )Φ

(
t1 – s1, τ , z(τ )

)
dτ

)∥∥
∥∥ds1,

I3 ≤
∫ t1

0
a

1–θ
∥∥Yp(t2 – t1 + s1) – Yp(s1)

∥∥∥∥AP
(
t1 – s1, z(t1 – s1)

)∥∥ds1.

By the equicontinuity of (p – q)-resolvent operator and the Lebesgue dominated conver-
gence theorem both the integrals I1, I3 −→ 0 as t2 −→ t1.

Clearly, I2, I4 −→ 0 as t2 −→ t1, from which it follows that

∥∥Θ2z(t2) – Θ2z(t1)
∥∥
C1–θ

−→ 0 as t2 −→ t1.

This proves the equicontinuity of Θ2.
Step 6. Let us prove that Θ is a condensing operator. We have to show that for any

bounded subset D ⊂ Ωδ ,

ζ
(
Θ(D)

)
< ζ (D).
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Since Θ2 is a continuous map, for any bounded set D ⊂ Ωδ , there exists a countable set
Do = {zn} ⊂D such that ζ (Θ2(D))PC1–θ

= ζ (Θ2(Do))PC1–θ
.

Since Θ2 is a bounded and equicontinuous operator, it follows that

ζ
(
Θ2(Do)

)
PC1–θ

= max
t∈(sl ,tl+1]

ζ
(
Θ2(Do)(t)

)
, l = 0, 1, 2, . . . , m, (3.7)

ζ
(
(Θ2Do)(t)

)

= ζ

(∫ t

sl

Yp(t – s)Q
(
s, zn(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , zn(τ )

)
dτ

)
ds

–
∫ t

sl

Yp(t – s)AP
(
s, zn(s)

)
ds

)

≤ M
Γ (p)

∫ t

sl

(t – s)p–1ζ

(
Q

(
s, zn(s),

∫ τ

0
ϑ(s, τ )Φ

(
s, τ , zn(τ )

)
dτ

))
ds

+
M

Γ (p)

∫ t

sl

(t – s)p–1ζ
(
AP

(
s, zn(s)

))
ds

≤ M
Γ (p)

ζ
(
Do(s)

)∫ t

sl

(t – s)p–1(M1φ̂1(s) + M2φ̂2(s)ξ ∗ϑ∗)ds

+
M

Γ (p)
ζ
(
Do(s)

)∫ t

sl

(t – s)p–1‖A‖LP ds

≤ M ap–r

Γ (p)

(
1 – r
p – r

)1–r{
M1‖φ̂1‖L 1

r [0,a]
+ M2ϑ

∗ξ ∗‖φ̂2‖L 1
r [0,a]

}
ζ (D) +

MLP Moa
p

Γ (p + 1)
ζ (D)


⇒ ζ
(
Θ2(Do)

)
PC1–θ

≤ MLP Moa
p

Γ (p + 1)
ζ (D)

+
M ap–r

Γ (p)

(
1 – r
p – r

)1–r{
M1‖φ̂1‖L 1

r [0,a]
+ M2ϑ

∗ξ ∗‖φ̂2‖L 1
r [0,a]

}
ζ (D),

where Mo = ‖A‖.

Equation (3.6) implies

ζ
(
Θ2(D)

)
PC1–θ

≤ M LP Moa
p

Γ (p + 1)
ζ (D)

+
M ap–r

Γ (p)

(
1 – r
p – r

)1–r[
M1‖φ̂1‖L 1

r [0,a]
+ M2ϑ

∗ξ ∗‖φ̂2‖L 1
r [0,a]

]
ζ (D).

Since Θ1 is a Lipschitz function with Lipschitz constant (MKηl +LP ), for any bounded set
D ∈ Ωδ ,

ζ
(
Θ1(D)

)
PC1–θ

≤ (MKηl + LP )ζ (D). (3.8)
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As Θ = Θ1 + Θ2, we have

ζ
(
Θ(D)

)
PC1–θ

≤ ζ
(
Θ1(D)

)
PC1–θ

+ ζ
(
Θ2(D)

)
PC1–θ

≤
[

(MKηl + LP ) +
MLP Moa

p

Γ (p + 1)

+
M ap–r

Γ (p)

(
1 – r
p – r

)1–r(
M1‖φ̂1‖L 1

r [0,a]
+ M2ϑ

∗ξ ∗‖φ̂2‖L 1
r [0,a]

)]
ζ (D)

< ζ (D).

Thus Θ : Ωδ −→ Ωδ is a condensing operator. Hence by Sadovskii’s fixed point theorem
[8] operator Θ has at least one fixed point z ∈ Ωδ , which is a PC1–θ mild solution of the
given system of equations. �

4 Applications
Consider the following neutral Hilfer FDE with noninstantaneous impulsive condition on
J = [0, 1]:

D
1
2 , 1

8
0+

[
z(t, x) +

sin(z(t, x))
40

]

=
∂2z(t, x)

∂x2 +
z(t, x)

10(1 + et) 1
4

+
e –t

2

5

∫ t

0

e–s sin(z(s, x))
t2 ds, t ∈

(
0,

1
3

]
∪

(
2
3

, 1
]

,

z(t, x) =
cos t|z(t, x)|
25 + |z(t, x)| , t ∈

(
1
3

,
2
3

]
,

z(t, 0) = z(t, 1) = 0, t ∈ [0, 1],

I1–γ

0+
[
z(0, x) + P

(
0, z(0, x)

)]
= zo.

(4.1)

Let Z = L2[0, 1] and Az = z′′ with

D(A) =
{
z ∈ Z : z, z′ are absolutely continuous, and z(0) = z(1) = 0

}
.

The operator A generates an equicontinuous Co-semigroup W(t), (t ≥ 0) on Z with
‖W(t)‖ ≤ 1 for t ≥ 0. On comparing with equation system (1.1), we have

p =
1
2

, q =
1
8

, θ =
9

16
, a = 1,

Q
(
t, z(t),

∫ τ

0
ϑ(s, τ )Φ

(
t, s, z(s, x)

)
ds

)
=

z(t, x)
10(1 + et) 1

4
+

e –t
2

5

∫ t

0

e–s sin(z(s, x))
t2 ds,

Φ
(
t, s, z(s, x)

)
=

e–s sin(z(s, x))
t2 , ϑ(t, s) = 1,

P
(
t, z(t, x)

)
=

sin(z(t, x))
40

, ηl
(
t, z(t, x)

)
=

cos t|z(t, x)|
25 + |z(t, x)| .
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Put z(t, x) = z(t). It is easy to see that

∥
∥∥
∥Q

(
t, z(t),

∫ t

0
ϑ(s, τ )Φ

(
t, s, z(s)

)
ds

)∥
∥∥
∥

≤ ψ1(t)
∥∥z(t)

∥∥

+ ψ2(t)
∥∥
∥∥

∫ t

0
Φ

(
t, s, z(s)

)
ds

∥∥
∥∥ for ψ1(t) =

1
10(1 + et) 1

4
,ψ2(t) =

e –t
2

5
.

Similarly,

ζ

(
Q

(
t, z(t),

∫ τ

0
ϑ(s, τ )Φ

(
t, s, z(s)

)
ds

))

≤ φ̂1(t)ζ
(
z(t)

)

+ φ̂2(t)ζ (
∫ t

0
ϑ(s, τ )Φ

(
t, s, z(s) ds

)
for φ̂1(t) =

1
10(1 + et) 1

4
, φ̂2(t) =

e –t
2

5
.

∥∥Φ
(
t, s, z(s, x)

)∥∥ ≤ m(t, s)
∥∥z(s, x)

∥∥ with m(t, s) =
e–s

t2 and

m
∗ = sup

t∈[0,1]

∫ 1

0
m(t, s) ds = 0.63212,

ζ (Φ
(
t, s, z(s)

) ≤ η∗ζ (
(
z(s)

)
with η∗ = 0.63212.

In particular, take r = 1
4 :

‖ψ1‖L 1
r [0,1]

=
(∫ 1

0

[
1

10(1 + et) 1
4

dt
]4) 1

4
= 0.063 and

‖ψ2‖L 1
r [0,1]

=
(∫ 1

0

[
e –t

2

5
dt

]4) 1
4

= 0.102.

Both P (t, z(t)) and ηl(t, z(t)) are Lipschitz functions with Lipschitz constants LP = 1
40 and

Lηl = 1
25 . Thus we have p = 1

2 , q = 1
8 , θ = 9

16 , r = 1
4 , M = 1, ϑ∗ = 1, M1 = 1, M2 = 1, LP = 1

40 ,
Lηl = 1

25 , ‖ψ1‖ = ‖φ̂1‖ = 0.063, ‖ψ2‖ = ‖φ̂2‖ = 0.102, η∗ = m̄∗ = 0.63212.
For these values, the first condition of Theorem 3.1 is satisfied:

M
[ Kηl

Γ (θ )
+
a1–θ+p–r

Γ (p)

(
1 – r
p – r

)1–r

‖ψ1‖L 1
r [0,a]

+
‖ψ2‖a1–θ+pϑ∗m̄∗

pΓ (p)

]
≈ 0.834 < 1.

Similarly, we have the second condition:

(MKηl + LP ) +
M ap–r

Γ (p)

(
1 – r
p – r

)1–r(
M1‖φ̂1‖L 1

r
[0,a] + M2‖φ̂2‖L 1

r
[0,a]ϑ

∗η∗)

+
MLP Moa

p

Γ (p + 1)
≈ 0.714 < 1

Thus both conditions of Theorem 3.1 are satisfied. So the equation system (4.1) has at
least one mild solution in PC1–θ (J ).
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5 Conclusion
We established the existence of mild solutions for neutral fractional-order system involv-
ing the Hilfer fractional derivative in a Banach space by converting it into an integral form
and hence applying Sadovskii’s fixed point technique. For future research work, for the
proposed problem, we suggest stability analysis, multiple solutions, and singular solutions.
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