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Abstract
We investigate the synchronization of stochastic multiple weighted coupled
networks with Markovian switching (SMWCNMS). By designing an appropriate
controller, we obtain several sufficient criteria ensuring the pth moment exponential
synchronization and almost surely exponential synchronization for SMWCNMS based
on graph theory. Moreover, we also investigate the pth moment asymptotical
synchronization and almost surely asymptotical synchronization for SMWCNMS.
Finally, we provide a numerical example to illustrate the availability of the proposed
synchronization criteria.
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1 Introduction
During the past decades, coupled networks have attracted attention of many mathemati-
cians and other scientists. They have extensive applications in various fields, such as power
engineering and secure communication [1–6]. Therein, synchronization, as one of the
most important dynamic characteristics of coupled networks, plays a significant role in
many fields such as biological systems, chemical reactions, and information technology
[7–14]. As is well known, when coupled networks are not synchronized by themselves,
some controllers are always designed to ensure the synchronization of coupled networks.
As an effective technique, the feedback control has drawn great attention from researchers
[15–18].

In real applications, systems are always perturbed by uncertain disturbances [19–21]. In
the coupled networks, the inevitable uncertainty should be considered. One is white noise,
and the other is color noise. Researchers always use stochastic coupled systems driven by
Brownian motion to describe complex networks with white noise [18, 22]. Telegraph noise,
which is a simple color noise, can be described as a switching between two or more en-
vironmental nodes. Markov chains can describe a system in which state changes jumping
from one state to another at different times. Therefore coupled networks with Markovian
switching can better describe telegraph noise, whereas deterministic systems or stochastic
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systems driven by Brownian motion mentioned above cannot explain it. Synchronization
of coupled networks with Markovian switching has received extensive attention [23–27].

Many real-world networks, such as social, transportation, and biology networks, can be
coupled by multiple coupling forms. To describe these networks more accurately, multi-
weighted coupled network models should be established. Some researchers also call them
as multilink networks. In the multi-weighted networks, different weights have different
properties. Hence they cannot simply merge into a single-weighted network [28, 29]. For
instance, in the social network, people can communicate with others by multiple ways,
such as mobile phone, Wechat, E-mail, and so on. Since every contact way has different
influence, social network can be described as a multi-weighted coupled network in a more
accurate sense. Therefore it is necessary and interesting to investigate the synchronization
of multi-weighted coupled networks [22, 30–33]. This investigation has wide applications
in many fields such as public traffic network and Chua’s circuits [32, 34, 35]. For example, in
[32] the authors modeled public traffic network as a complex network with triplet weights,
that is, the departing frequency, the passenger flow density, and the coefficient of bus line
length. Therein they showed the impact of triplet weights on the balance of whole complex
network.

In the literature, results are mainly about the synchronization of stochastic single-
weighted coupled networks with Markovian switching or determined multi-weighted
coupled networks. There exist few related results about the synchronization of stochas-
tic multi-weighted coupled networks with Markovian switching (SMWCNMS). Hence it
is essential for us to accomplish this task in this paper. In the literature, various types of
methods have been consecutively emerged to enrich the research topic of synchronization.
For instance, by using the Kronecker product method, Qiu et al. addressed the synchro-
nization problem for a class of complex dynamical networks with and without coupling
delay [36]. Other synchronization techniques have also imported, such as the linear matrix
inequality method, M-matrix approach, and so on.

In this paper, the influence of both multiple weights and Markovian switching is con-
sidered in the coupled networks. This makes it difficult to study the synchronization of
SMWCNMS by the method mentioned. We need to try some new method. Li and Shuai
[37] proposed a systematic approach to construct global Lyapunov functions for large-
scale coupled systems from building blocks of individual vertex systems with the help of
some results in graph theory. This graph-theoretic method can avoid the difficulty of di-
rectly constructing the global Lyapunov function of coupled networks and has been con-
sidered as an important method for dynamic behavior analysis of coupled networks. In-
spired by this method, some relevant results have been published in [22, 26, 38–42]. In
[26], by using this graph-theoretical technique, some novel sufficient criteria are derived
to ensure the exponential synchronization for stochastic coupled networks with Marko-
vian switching. In [22], exponential synchronization of stochastic complex networks with
multi-weights has also been obtained by the graph-theoretic approach.

Inspired by these discussions, this paper tends to investigate the synchronization of
SMWCNMS with the help of graph-theoretic approach and stochastic analysis theory.
Compared with results in the literature, the contribution of the paper is threefold. Firstly,
stochastic coupled systems with Markovian switching on multiple subnetworks are uti-
lized to model stochastic complex networks with multi-weights and telegraph noise. Then,
based on the drive-response concept, we combine a novel graph-theoretic method and
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M-matrix theory to investigate the synchronization of drive-response networks. We pro-
vide both exponential synchronization criteria and asymptotical synchronization criteria.
Finally, we give numerical simulations to show the applicability and effectiveness of theo-
retical results.

This paper is arranged as follows. Firstly, we recall some results in graph theory and give
model description in Sect. 2. Secondly, in Sect. 3, we present exponential synchronization
and asymptotical synchronization of SMWCNMS. To illustrate the theoretical results, in
Sect. 4, we give a numerical example. Finally, we close this paper with concluding remarks
in Sect. 5.

2 Preliminary and model description
First, we give some useful notations. Let (Ω ,F ,F,P) be a complete probability space with
a filtration F = {Ft}t≥0 satisfying the usual conditions (the filtration is right-continuous,
and F0 contains all P-null sets); W is a scalar standard Brownian motion defined on
the given probability space, and E denotes the mathematical expectation with respect
to P. Let | · | be the Euclidean norm for vectors or the trace norm for matrices, and let
R

n
+ = {x ∈ R

n : xi > 0, i = 1, 2, . . . , n}. We denote by C2,1(Rn ×R
1
+;R1

+) the family of all non-
negative function V (x, t) on R

n × R
1
+ that are twice continuously differentiable in x and

once in t. We denote by Lp(R1
+;R1

+) the family of positive random variables y such that
E|y|p < ∞. Moreover, a ∨ b � max{a, b} and a ∧ b � min{a, b}. Let r be a right-continuous
Markov chain on (Ω ,F ,F,P) taking values in a finite state space S = {1, 2, . . . , m}. The cor-
responding generator Γ = (γij)m×m is given by

P
{

r(t + �) = j|r(t) = i
}

=

⎧
⎨

⎩
γij� + o(�), i �= j,

1 + γij� + o(�), i = j.

Let G be a weighted digraph with N vertices and l different kinds of weights. By the
network split method [32, 43], coupled networks with multi-weights can be split into l
subnetworks. Then coupled networks with multi-weights and Markovian switching on G
can be described as

ẋk(t) = fk
(
xk(t), t, r(t)

)
+ δ1

(
r(t)

) N∑

h=1

b1
kh

(
r(t)

)
H̄1

(
xh(t), t, r(t)

)

+ δ2
(
r(t)

) N∑

h=1

b2
kh

(
r(t)

)
H̄2

(
xh(t), t, r(t)

)
+ · · ·

+ δl
(
r(t)

) N∑

h=1

bl
kh

(
r(t)

)
H̄l

(
xh(t), t, r(t)

)
, k = 1, 2, . . . , N , (1)

where xk ∈ R
n is the state variable. The meanings of other parameters are shown as follows:

fk : Rn ×R
1
+ × S→ R

n is continuously differentiable;
δs(r(t)) (s = 1, 2, . . . , l) is the coupling strength of the sth subnetwork;
H̄s : Rn ×R

1
+ × S→R

n (s = 1, 2, . . . , l) shows the inner coupling;
bs

kh (s = 1, 2, . . . , l) is the sth weight from the hth node to the kth node if it exists and 0
otherwise.
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We treat network (1) as a drive system. Then, to synchronize this system via feedback
control, we can design the following response system with white noise and Markovian
switching:

dyk(t) =

[

fk
(
yk(t), t, r(t)

)
+ δ1

(
r(t)

) N∑

h=1

b1
kh

(
r(t)

)
H̄1

(
yh(t), t, r(t)

)

+ δ2
(
r(t)

) N∑

h=1

b2
kh

(
r(t)

)
H̄2

(
yh(t), t, r(t)

)
+ · · ·

+ δl
(
r(t)

) N∑

h=1

bl
kh

(
r(t)

)
H̄l

(
yh(t), t, r(t)

)
+ uk

(
t, r(t)

)
]

dt

+ gk
(
yk(t) – xk(t), t, r(t)

)
dW (t), k = 1, 2, . . . , N , (2)

where yk ∈ R
n is the state variable of response system, and gk : Rn × R

1
+ × S → R

n is the
perturbation intensity of white noise on the kth vertex system.

For any given initial data x0, y0 ∈ R
nN and r0 ∈ S, the existence of unique solution

to the drive-response systems (1) and (2) can be guaranteed under some conditions.
For example, the coefficients of drive system (1) and response system (2) satisfy the
linear growth condition and the local Lipschitz condition [44]. Let e(t) = y(t) – x(t) =
(eT

1 (t), eT
2 (t), . . . , eT

N (t))T be the synchronization error, where x(t) = (xT
1 (t), xT

2 (t), . . . , xT
N (t))T,

y(t) = (yT
1 (t), yT

2 (t), . . . , yT
N (t))T, ek = yk – xk � (e(1)

k , e(2)
k , . . . , e(n)

k )T, k = 1, 2, . . . , N . We
also denote Fk(ek(t), t, r(t)) = fk(yk(t), t, r(t)) – fk(xk(t), t, r(t)) and Hs(eh(t), t, r(t)) =
H̄s(yh(t), t, r(t)) – H̄s(xh(t), t, r(t)). The dynamical system of synchronization error between
coupled networks (1) and (2) can be described as

dek(t) =

[

Fk
(
ek(t), t, r(t)

)
+ δ1

(
r(t)

) N∑

h=1

b1
kh

(
r(t)

)
H1

(
eh(t), t, r(t)

)

+ δ2
(
r(t)

) N∑

h=1

b2
kh

(
r(t)

)
H2

(
eh(t), t, r(t)

)
+ · · ·

+ δl
(
r(t)

) N∑

h=1

bl
kh

(
r(t)

)
Hl

(
eh(t), t, r(t)

)
+ uk

(
t, r(t)

)
]

dt

+ gk
(
ek(t), t, r(t)

)
dW (t), k = 1, 2, . . . , N . (3)

Apparently, for any i ∈ S, Fk(0, t, i) = 0, k = 1, 2, . . . , N and Hs(0, t, i) = 0, s = 1, 2, . . . , l. We
assume that gk(0, t, i) = 0, k = 1, 2, . . . , N , for any i ∈ S and t ≥ t0, which means that e(t) = 0
is the trivial solution of error system (3). For any given initial values e(t0) = e0 ∈ R

nN and
r(t0) = r0 ∈ S, the solution of (3) can be expressed by e(t; t0, e0, r0). In most cases, write
e(t; t0, e0, r0) as e(t) for simplicity. If r(t) = i ∈ S, then for Vk(ek , t, i) ∈ C2,1(Rn × R

1
+ × S;

R
1
+), define the differential operator LVk(ek , t, i) associated with the kth equation of error
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system (3) by

LVk(ek , t, i) �
m∑

j=1

γijVk(ek , t, j) +
∂Vk(ek , t, i)

∂t
+

∂Vk(ek , t, i)
∂ek

[

Fk
(
ek(t), t, i

)

+ δ1(i)
N∑

h=1

b1
kh(i)H1

(
eh(t), t, i

)
+ δ2(i)

N∑

h=1

b2
kh(i)H2

(
eh(t), t, i

)
+ · · ·

+ δl(i)
N∑

h=1

bl
kh(i)Hl

(
eh(t), t, i

)
+ uk(t, i)

]

+
1
2

trace

{
gT

k (ek , t, i)
∂2Vk(ek , t, i)

∂e2
k

gk(ek , t, i)
}

, (4)

where

∂Vk(ek , t, i)
∂ek

=
(

∂Vk(ek , t, i)
∂e(1)

k

,
∂Vk(ek , t, i)

∂e(2)
k

, . . . ,
∂Vk(ek , t, i)

∂e(n)
k

)
,

∂2Vk(ek , t, i)
∂e2

k
=

(
∂2Vk(ek , t, i)
∂e(d)

k ∂e(b)
k

)

n×n
.

We recall the definitions about exponential synchronization and asymptotical synchro-
nization of drive-response networks (1) and (2) given in [44].

Definition 1 The drive-response networks (1) and (2) are said to be pth moment expo-
nentially synchronized if for any ε > 0, there exist positive constants a and δ such that

E|e0|p ≤ δ 
⇒ E
∣∣e(t; t0, e0, r0)

∣∣p ≤ εe–a(t–t0), t ≥ t0

for some p > 0 and all (t0, e0, r0) ∈ R
1
+ ×R

nN ×S. When p = 2, they are said to be exponen-
tially synchronized in mean square. Moreover, the drive-response networks (1) and (2) are
said to be almost surely exponentially synchronized if

lim sup
t→∞

1
t

log
∣∣e(t; t0, e0, r0)

∣∣ < 0 a.s.

for all (t0, e0, r0) ∈R
1
+ ×R

nN × S.

Definition 2 The drive-response networks (1) and (2) are said to be asymptotically syn-
chronized in pth moment if

lim
t→∞E

(∣∣e(t; t0, e0, r0)
∣∣p) = 0

for all (t0, e0, r0) ∈ R
1
+ × R

nN × S and some p > 0. When p = 2, they are said to be asymp-
totically synchronized in mean square. Moreover, they are said to be almost surely asymp-
totically synchronized or asymptotically synchronized with probability 1 if

lim
t→∞ e(t; t0, e0, r0) = 0 a.s.

for all (t0, e0, r0) ∈R
1
+ ×R

nN × S.
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Finally, we state two important lemmas from graph theory. We refer the readers to [37,
45] for some basic concepts of graph theory.

Lemma 1 (Kirchhoff’s matrix-tree theorem) Let N ≥ 2, and let (G, A(i)), A(i) =
(akh(i))N×N , be a weighted digraph for all i ∈ S, and let ck(i) be the cofactor of the kth
diagonal element of the Laplacian matrix of (G, A(i)). Then

ck(i) =
∑

T ∈Tk (i)

ω(T ), k = 1, 2, . . . , N , i ∈ S,

where Tk(i) is the set of all spanning trees T of (G, A(i)) that are rooted at vertex k, and
ω(T ) is the weight of T . Additionally, if (G, A(i)) is strongly connected, then ck(i) > 0 for
k = 1, 2, . . . , N , i ∈ S.

Lemma 2 Let N ≥ 2, and let (G, A(i)), A(i) = (akh(i))N×N , be a weighted digraph for all
i ∈ S. Let Q be the set of all spanning unicyclic graphs Q of (G, A(i)), CQ be the cycle of Q,
ω(Q) be the weight of Q, and let ck(i) be defined in Lemma 1. Then for arbitrary functions
Fkh(ek , eh, t, i), k, h = 1, 2, . . . , N ,

N∑

k,h=1

ck(i)akh(i)Fkh(ek , eh, t, i) =
∑

Q∈Q
ω(Q)

∑

(q,r)∈E(CQ)

Frq(er , eq, t, i), i ∈ S.

Lemmas 1 and 2 can be easily obtained by the methods similar to those in Proposition
2.1 and Theorem 2.2 in [37], respectively. So we omit their proofs.

3 Synchronization analysis for drive-response networks (1) and (2)
In this section, we are proceeding to investigate exponential synchronization and asymp-
totical synchronization of drive-response networks (1) and (2). Motivated by the research
method in [22, 26], we will obtain some sufficient criteria by using some results in graph
theory and the Lyapunov method. Here we construct the following state feedback con-
troller for the response system (2):

uk
(
t, r(t)

)
= b̄k

[
fk

(
yk(t), t, r(t)

)
– fk

(
xk(t), t, r(t)

)]
, (5)

in which b̄k �= –1 is the gain constant to be designed. The error network (3) is turned into

dek(t) =

[

(1 + b̄k)Fk
(
ek(t), t, r(t)

)
+ δ1

(
r(t)

) N∑

h=1

b1
kh

(
r(t)

)
H1

(
eh(t), t, r(t)

)

+ δ2
(
r(t)

) N∑

h=1

b2
kh

(
r(t)

)
H2

(
eh(t), t, r(t)

)
+ · · ·

+ δl
(
r(t)

) N∑

h=1

bl
kh

(
r(t)

)
Hl

(
eh(t), t, r(t)

)
]

dt

+ gk
(
ek(t), t, r(t)

)
dW (t), k = 1, 2, . . . , N . (6)

We begin by stating some basic assumptions.
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A1. For any k ∈ {1, 2, . . . , N} and i ∈ S, there exist positive constants αk(i), βk(i), and γk(i),
functions Vk(ek , t, i) and Fkh(ek , eh, t, i), and a matrix A(i) = (akh(i))N×N , akh(i) ≥ 0,
such that

αk(i)|ek|p ≤ Vk(ek , t, i) ≤ βk(i)|ek|p (7)

and

LVk(ek , t, i) ≤ –γk(i)|ek|p

+
N∑

h=1

akh(i)Fkh(ek , eh, t, i), ek , eh ∈R
n, t ≥ t0, i ∈ S. (8)

A2. Along each directed cycle C of the weighted digraph (G, A(i)), we have

∑

(h,k)∈E(C)

Fkh(ek , eh, t, i) ≤ 0, ek , eh ∈R
n, t ≥ t0, i ∈ S. (9)

Remark 1 Assumption A2 holds for each directed cycle C and any ek , eh, which seems
difficult to be checked. Actually, we do not need to verify it directly. We just need to find
some appropriate functions. For example, assume that there exist functions qk(t, i), k =
1, 2, . . . , N , i ∈ S, such that

Fkh(ek , eh, t, i) ≤ qk(t, i) – qh(t, i), k, h = 1, 2, . . . , N , i ∈ S.

Then we can obtain that

∑

(h,k)∈E(C)

Fkh(ek , eh, t, i) ≤
∑

(h,k)∈E(C)

(
qk(t, i) – qh(t, i)

)
= 0.

Theorem 1 Let (G, A(i)) be strongly connected for any i ∈ S. If assumptions A1 and A2
hold, then there exist constants C and positive constants η such that

E
∣∣e(t; t0, e0, r0)

∣∣p ≤ C|e0|pe–η(t–t0), t ≥ t0,

for some p > 0. That is, the drive-response networks (1) and (2) are pth moment exponen-
tially synchronized under controller (5).

Proof Let V (e, t, i) =
∑N

k=1 ck(i)Vk(ek , t, i), where ck(i) is defined as in Lemma 1. Then by
applying the research method in [26] there exist positive constants α and β such that

α|e|p ≤ V (e, t, i) ≤ β|e|p, i ∈ S. (10)
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Fix any (t0, e0, r0) ∈ R
1
+ × R

nN × S and write e(t; t0, e0, r0) as e(t) for simplicity. For fixed
t > t0, since ω(Q) > 0, from assumption A2 and Lemma 2, we can deduce that

LV (e, t, i) =
N∑

k=1

ck(i)LVk(ek , t, i)

≤
N∑

k=1

ck(i)

(

–γk(i)|ek|p +
N∑

h=1

akh(i)Fkh(ek , eh, t, i)

)

= –
N∑

k=1

ck(i)γk(i)|ek|p +
∑

Q∈Q
ω(Q)

∑

(h,k)∈E(CQ)

Fkh(ek , eh, t, i)

≤ – min
1≤k≤N

{
ck(i)γk(i)

} N∑

k=1

|ek|p

≤ – min
1≤k≤N

{
ck(i)γk(i)

}
N (1– p

2 )∧0|e|p � –λ|e|p.

Since e0 is given, a large positive number d0 can be chosen to satisfy |e0|p ≤ d0. For any
integer d > d0, define the stopping time

σd = inf
{

t ≥ t0 :
∣∣e(t)

∣∣ ≥ d
}

and set inf∅ = ∞ as usual. Moreover, by Itô formula (see [44]) we have

E
[
e

λ
β

(t∧σd)V
(
e(t ∧ σd), t ∧ σd, r(t ∧ σd)

)]

= EV (e0, t0, r0)e
λ
β

t0 + E

∫ t∧σd

t0

e
λ
β

s
[
LV

(
e(s), s, r(s)

)
+

λ

β
V

(
e(s), s, r(s)

)]
ds

≤ β|e0|pe
λ
β

t0 + E

∫ t∧σd

t0

e
λ
β

s
[

–λ
∣∣e(s)

∣∣p +
λ

β
β
∣∣e(s)

∣∣p
]

ds

= β|e0|pe
λ
β

t0 .

By applying the research method in [43] it is straightforward to show that

E
∣∣e(t)

∣∣p ≤ α–1β|e0|pe– λ
β

(t–t0).

Therefore, for any ε > 0, there exists a positive constant δ = ε/(α–1β) such that

E|e0|p ≤ δ 
⇒ E
∣∣e(t, e0, r0)

∣∣p ≤ εe– λ
β

(t–t0), t ≥ t0.

In other words, two coupled networks (1) and (2) can be pth moment exponentially syn-
chronized. The proof is completed. �

Remark 2 If we adopt Lyapunov stability theory, then it is vital to construct an appro-
priate Lyapunov function for the system. However, in our model, large number of nodes
in the networks, multi-weights among nodes, and stochastic perturbations are all con-
sidered, which can make the construction of a Lyapunov function very difficult. Just for
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this, very few researchers have studied the dynamical behavior of the multi-weighted
coupled networks with Markovian switching. Especially, the problem of synchronization
for multi-weighted complex dynamical networks with Markovian switching has not yet
been studied. With the help of some results in graph theory such as Kirchhoff’s matrix-
tree theorem, a global Lyapunov function of the error network (6) can be easily con-
structed, which is a weighted sum of the Lyapunov functions of vertex systems, that is,
V (e, t, i) =

∑N
k=1 ck(i)Vk(ek , t, i).

Remark 3 The related results in the literature are divided into two parts: one is mainly
about the synchronization of complex networks with multiple weights but without
stochastic perturbations [31–34, 36], whereas the other part is about the synchronization
of stochastic complex networks with single weight [12, 26]. Only few papers investigated
the synchronization of stochastic multiple complex networks with white noise or Lévy
noise [22, 29, 35, 46]. We focus on the synchronization of stochastic multiple complex
networks with white noise and telegraph noise. The model is different from the results in
the literature. The most important in this paper is that a novel graph-theoretic approach
and stochastic analysis are combined to get the synchronization criteria, which is also
different from the results in the literature.

In Theorem 1, some synchronized conditions are given in the form of Lyapunov func-
tions of vertex systems. In fact, we need to find some appropriate Lyapunov functions to
check the conditions of Theorem 1, which is the task of Theorem 2. The following as-
sumptions on the coefficients of the error system (6) are imposed for any k = 1, 2, . . . , N ,
ek ∈ R

n, t ≥ t0, and i ∈ S.
A3. There are constants σk(i) and ρk(i) ≥ 0 such that

eT
k Fk(ek , t, i) ≤ σk(i)|ek|2,

∣∣gk(ek , t, i)
∣∣2 ≤ ρk(i)|ek|2. (11)

A4. There exists a positive number ηs(i) such that

∣∣Hs(ek , t, i)
∣∣ ≤ ηs(i)|ek|, s = 1, 2, . . . , l. (12)

For brevity, we set

Dkh(i) = max
1≤s≤l

{
δs(i)bs

kh(i)ηs(i)
}

, k, h = 1, 2, . . . , N , i ∈ S.

For each p ≥ 2 and k = 1, 2, . . . , N , define the m × m matrix

Ak(p) := – diag

(

Mk(1) + pl
N∑

h=1

Dkh(1), . . . , Mk(m) + pl
N∑

h=1

Dkh(m)

)

– Γ , (13)

where

Mk(i) = p|1 + b̄k|σk(i) +
1
2

p(p – 1)ρk(i).
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Theorem 2 Suppose that assumptions A3, A4 hold and (G, (Dkh(i))N×N ) is strongly con-
nected for each i ∈ S. If Ak(p) is a nonsingular M-matrix for any k = 1, 2, . . . , N and some
p ≥ 2, then the drive-response networks (1) and (2) are pth moment exponentially synchro-
nized under controller (5).

Proof For simplicity, we write Fk(ek(t), t, r(t)) = Fk , Hs(eh, t, i) = Hs and gk(ek , t, i) = gk . Since
Ak(p) is a nonsingular M-matrix, we can find qk(i) > 0 and λk(i) > 0 such that λk = Ak(p)qk ,
where λk = (λk(1),λk(2), . . . ,λk(m))T and qk = (qk(1), qk(2), . . . , qk(m))T. Define the function
Vk : Rn ×S →R

1
+ by Vk(ek , i) = qk(i)|ek|p. Now we can compute LVk(ek , i) by the definition

of operator (4):

LVk(ek , i)

= qk(i)p|ek|p–2eT
k (t)

[

(1 + b̄k)Fk + δ1(i)
N∑

h=1

b1
kh(i)H1 + · · · + δl(i)

N∑

h=1

bl
kh(i))Hl

]

+
m∑

j=1

γijqk(j)|ek|p +
1
2

trace
[
gT

k
(
qk(i)p|ek|p–2I + qk(i)p(p – 2)|ek|p–4ekeT

k
)
gk

]

≤ qk(i)p|1 + b̄k|σk(i)|ek|p

+ qk(i)p|ek|p–1

[

δ1(i)
N∑

h=1

b1
kh(i)η1(i)|eh| + · · · + δl(i)

N∑

h=1

bl
kh(i)ηl(i)|eh|

]

+
m∑

j=1

γijqk(j)|ek|p +
1
2

qk(i)p|ek|p–2|gk|2 +
1
2

qk(i)p(p – 2)|ek|p–4∣∣eT
k gk

∣∣2

≤
[

qk(i)p|1 + b̄k|σk(i) +
m∑

j=1

γijqk(j) +
1
2

qk(i)p(p – 1)ρk(i)

]

|ek|p

+ qk(i)p
N∑

h=1

δ1(i)b1
kh(i)η1(i)

(
p – 1

p
|ek|p +

1
p
|eh|p

)

+ · · · + qk(i)p
N∑

h=1

δl(i)bl
kh(i)ηl(i)

(
p – 1

p
|ek|p +

1
p
|eh|p

)

≤
[

qk(i)p|1 + b̄k|σk(i) +
m∑

j=1

γijqk(j) +
1
2

qk(i)p(p – 1)ρk(i)

]

|ek|p

+ qk(i)pl
N∑

h=1

Dkh(i)
(

p – 1
p

|ek|p +
1
p
|eh|p

)

≤
[

qk(i)p|1 + b̄k|σk(i) +
m∑

j=1

γijqk(j) +
1
2

qk(i)p(p – 1)ρk(i) + qk(i)pl
N∑

h=1

Dkh(i)

]

|ek|p

+ qk(i)l
N∑

h=1

Dkh(i)
(|eh|p – |ek|p

)

= –λk(i)|ek|p +
N∑

h=1

qk(i)Dkh(i)l
(|eh|p – |ek|p

)
� –λk(i)|ek|p +

N∑

h=1

akh(i)Fkh(ek , eh, t, i),
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where akh(i) = qk(i)Dkh(i) and Fkh(ek , eh, t, i) = l(|eh|p – |ek|p). Clearly, for each i ∈ S,
the strong connectedness of (G, (Dkh(i))N×N ) implies the strong connectedness of
(G, (akh(i))N×N ). Furthermore, along each directed cycle C of weighted digraph (G, A(i))
(A(i) = (akh(i))N×N ), it follows that

∑

(h,k)∈E(C)

Fkh(ek , eh, t, i) =
∑

(h,k)∈E(C)

l
(|eh|p – |ek|p

)
= 0.

All conditions in Theorem 1 have been checked. Thus drive-response networks (1) and
(2) are pth moment exponentially synchronized, which completes the proof. �

Remark 4 In Theorem 2, pth moment exponential synchronization of drive-response net-
works (1) and (2) has been obtained by combining a graph-theoretic method and M-matrix
theory. The obtained synchronization criteria are closely related to the coupling strength
δs of each subnetwork, inner coupling H̄s, multi-weights bs

kh, the perturbation intensity gk

of white noise, and the generator Γ of Markov chain. Theorem 2 is shown with the coef-
ficients of drive-response networks (1) and (2), whereas Theorem 1 is given by Lyapunov
functions. Theorem 1 is the theoretical basis of Theorem 2, but Theorem 2 can be much
more easily checked than Theorem 1.

In Theorem 2, (G, (Dkh(i))N×N ) is strongly connected for each i ∈ S. Define Bkh(i) =
max1≤s≤l{bs

kh(i)}. Since δs(i) > 0 and ηs(i) > 0, the strong connectedness of (G, (Bkh(i))N×N )
implies the strong connectedness of (G, (Dkh(i))N×N ). In other words, we do not need the
strong connectedness of each subnetwork (G, (bkh(i))N×N ) to ensure the synchronization
of drive-response networks (1) and (2).

Remark 5 In [26] the exponential synchronization criteria of single-weighted stochastic
coupled networks with Markovian switching have been obtained. However, in this paper,
we focus on the multi-weighted stochastic coupled networks with Markovian switching.
The inclusion of multi-weights makes coupled networks being split into multiple subnet-
works. Hence we cannot directly use the theory in [26] to solve the problem. In [22, 43] the
synchronization and stability of stochastic multi-weighted coupled networks with white
noise have been obtained by the graph-theoretic method. In our paper, the perturbations
by white noise and color noise are both considered in the multi-weighted coupled net-
works. Our model is more general, and the method is novel. Compared with the existing
methods in the literature, we successfully construct a Lyapunov function for SMWCNMS
indirectly. In more detail, by the graph-theoretic method we can easily construct a Lya-
punov function for SMWCNMS as the weighted sum of Lyapunov functions of vertex sys-
tems, that is, V (e, t, i) =

∑N
k=1 ck(i)Vk(ek , t, i), where ck(i) is the cofactor of the kth diagonal

element of the Laplacian matrix of (G, A(i)), (A(i) = (akh(i))N×N ) = (qk(i)Dkh(i))N×N .

Corollary 1 The drive-response networks (1) and (2) are almost surely exponentially syn-
chronized under the conditions of Theorem 2.

This corollary can be proved by applying the Borel–Cantelli lemma and Burkholder–
Davis–Gundy inequality. We omit its proof for simplicity. For more detail, see [44].

Until now, we have shown the exponential synchronization of drive-response networks
(1) and (2). In the real applications, there exists another kind of synchronization, that is,
asymptotical synchronization.
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Theorem 3 Under the conditions of Theorem 2, the drive-response networks (1) and (2) are
not only asymptotically synchronized in pth moment, but also almost surely asymptotically
synchronized.

Motivated by [44], before proving Theorem 3, we show a lemma.

Lemma 3 Assume that there are functions V ∈ C2,1(RnN ×R
1
+ ×S;R1

+) and γ ∈ L1(R1
+;R1

+)
and positive constants p and ν such that

LV (e, t, i) ≤ γ (t) – ν|e|p. (14)

Moreover, assume that there exist positive constants L and M such that

∣∣Fk(ek , t, i)
∣∣ +

∣∣gk(ek , t, i)
∣∣ ≤ L|ek|,

∣∣Hs(ek , t, i)
∣∣ ≤ M|ek|, k = 1, 2, . . . , l, (15)

for all (ek , t, i) ∈ R
n × R

1
+ × S. Then the drive-response networks (1) and (2) are not only

asymptotically synchronized in pth moment, but also almost surely asymptotically syn-
chronized.

Proof Obviously, under condition (15), there exist positive constants C and D such that
for all k = 1, 2, . . . , N and i ∈ S,

∣∣gk
(
ek(t), t, i

)∣∣ ≤ D
∣∣ek(t)

∣∣

and

∣∣∣∣∣
(1 + b̄k)Fk

(
ek(t), t, i

)
+ δ1(i)

N∑

h=1

b1
kh(i)H1

(
eh(t), t, i

)
+ · · · + δl(i)

N∑

h=1

bl
kh(i)Hl

(
eh(t), t, i

)
∣∣∣∣∣

≤ C
∣∣ek(t)

∣∣.

Then the conditions of Theorem 5.29 in [44] can be easily checked for the error network
(6). So, the error network (6) is not only asymptotically stable in the pth moment, but
also almost surely asymptotically stable. In other words, the drive-response networks (1)
and (2) are not only asymptotically synchronized in pth moment, but also almost surely
asymptotically synchronized. �

Now let us prove Theorem 3.

Proof Define

Vk(ek , i) = qk(i)|ek|p,

where qk(i) is defined in Theorem 2. From the proof of Theorem 2 we can obtain that

LVk(ek , i) ≤ –λk(i)|ek|p +
N∑

h=1

qk(i)Dkh(i)l
(|eh|p – |ek|p

)
.
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Define V (e, i) =
∑N

k=1 ck(i)Vk(ek , i), where ck(i) is the cofactor of the kth diagonal element
of the Laplacian matrix of (G, A(i)), A(i) = (qk(i)Dkh(i))N×N . Then we can obtain from The-
orem 1 that there exists a positive constant λ̄ such that

LV (e, i) ≤ –λ̄|e|p.

From assumptions A3 and A4, it is easy to find positive numbers L and M to meet (15).
Until now, all conditions of Lemma 3 have been checked. Hence Lemma 3 tells us that
drive-response networks (1) and (2) can be asymptotically synchronized in pth moment
and almost surely asymptotically synchronized. �

4 Numerical example
To illustrate the theoretical results, we give a numerical example.

Example 1 Let r(t) be a right-continuous Markovian chain taking values in S = {1, 2} with
generator

Γ = (γij)2×2 =

(
–1 1
7 –7

)

.

For brevity, consider a network G with six nodes and three different kinds of weights in
Fig. 1. In the web version of this paper, the readers can see three kinds of weights more
clearly. The following coupled system with Markovian switching on G is designed as a
drive system:

ẋk(t) =
α(r(t))

k
xk(t) + δ1

(
r(t)

) 6∑

h=1

b1
kh

(
r(t)

)
A

(
r(t)

)
cos

(
xh(t)

)

+ δ2
(
r(t)

) 6∑

h=1

b2
kh

(
r(t)

)
B
(
r(t)

)
sin

(
xh(t)

)

+ δ3
(
r(t)

) 6∑

h=1

b3
kh

(
r(t)

)
C

(
r(t)

)
xh(t), k = 1, 2, . . . , 6, (16)

where xk ∈ R
3, r(t) ∈ S = {1, 2}, α(1) = –0.6, α(2) = –1.2, δ1(1) = 0.4, δ2(1) = 0.25, δ3(1) =

0.2, δ1(2) = 0.5, δ2(2) = 1, δ3(2) = 0.5, and A(1) = diag(0.5, 0.4, 0.3), B(1) = diag(0.8, 0.6, 0.5),
C(1) = diag(1, 0.5, 0.6), A(2) = diag(0.8, 0.6, 0.5), B(2) = diag(0.3, 0.2, 0.4), C(2) =
diag(0.4, 0.8, 0.5).

The corresponding noise-perturbed response system is described by

dyk(t) =

[
α(r(t))

k
yk(t) + δ1

(
r(t)

) 6∑

h=1

b1
kh

(
r(t)

)
A

(
r(t)

)
cos

(
yh(t)

)

+ δ2
(
r(t)

) 6∑

h=1

b2
kh

(
r(t)

)
B
(
r(t)

)
sin

(
yh(t)

)
+ δ3

(
r(t)

) 6∑

h=1

b3
kh

(
r(t)

)
C

(
r(t)

)
yh(t)

+ uk
(
t, r(t)

)
]

dt + βk
(
r(t)

)(
yk(t) – xk(t)

)
dW (t), k = 1, 2, . . . , 6, (17)
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Figure 1 The diagram for a network with six nodes, three different kinds of weights, and two states

where W (t) is a scalar Brownian motion, βk(1) = (0.02k)1/2, βk(2) = (0.01k)1/2, k =
1, 2, . . . , 6. The state feedback controller is designed as

uk
(
t, r(t)

)
= b̄k

[
α(r(t))

k
yk(t) –

α(r(t))
k

xk(t)
]

, k = 1, 2, . . . , 6, (18)

where b̄k �= –1 is the gain constant to be scheduled. Three weighted matrices in two states
Qs(i) = (bs

kh(i))6×6 (s = 1, 2, 3, i = 1, 2) are given as follows:

Q1(1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0.1 0 0.1 0 0
0 0 0 0 0 0.1
0 0.1 0 0 0.2 0
0 0.2 0 0 0.3 0

0.2 0 0 0 0 0
0 0 0.3 0 0.1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Q1(2) =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0.2 0 0
0.1 0 0.15 0 0.1 0
0 0.2 0 0 0 0
0 0 0 0 0.2 0
0 0.1 0 0.15 0 0.2
0 0 0.1 0 0 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,
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Q2(1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0.2 0 0 0 0
0 0 0.1 0 0 0

0.1 0 0 0 0 0.1
0.1 0 0 0 0 0.1
0 0 0 0.2 0 0
0 0 0 0 0.1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Q2(2) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0.2 0 0.2 0 0
0.2 0 0 0.1 0.1 0
0 0.2 0 0 0 0.2
0 0 0 0 0.15 0
0 0 0 0 0 0.1
0 0 0.1 0 0.15 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Q3(1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0
0.1 0 0 0 0.2 0
0 0.1 0 0 0 0.1

0.1 0 0 0 0 0
0 0.2 0 0.1 0 0
0 0 0 0 0.1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Q3(2) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0.15 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0 0 0.2

0.2 0 0 0 0 0
0 0 0.2 0.1 0 0
0 0 0 0 0.1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Further, we verify the conditions of Theorem 2. We can make a direct calculation to get
that

σk(1) =
–0.6

k
, σk(2) =

–1.2
k

,

ρk(1) = 0.02k, ρk(2) = 0.01k, k = 1, 2, . . . , 6,

η1(1) = 0.5, η2(1) = 0.8, η3(1) = 1,

η1(2) = 0.8, η2(2) = 0.4, η3(2) = 0.8.

Define

Dkh(i) = max
1≤s≤3

{
δs(i)bs

kh(i)ηs(i)
}

, k, h = 1, 2, . . . , 6, i = 1, 2.

Then the following two new matrices D(i) = (Dkh(i))6×6, i = 1, 2 are given:

D(1) =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 0.04 0 0.04 0 0
0.02 0 0.02 0 0.04 0.02
0.02 0.02 0 0 0.04 0.02
0.02 0.04 0 0 0.06 0.02
0.04 0.04 0 0.04 0 0

0 0 0.06 0 0.02 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

,
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Figure 2 The diagram for two diagraphs (G ,D(1)) and (G ,D(2))

D(2) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0.08 0 0.08 0 0
0.08 0 0.06 0.04 0.04 0

0 0.08 0 0 0 0.08
0.08 0 0 0 0.08 0

0 0.04 0.08 0.06 0 0.08
0 0 0.04 0 0.06 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Two new digraphs (G, D(1)) and (G, D(2)) are shown in Fig. 2. Obviously, they are strongly
connected.

Let p = 2. Then the matrices defined by (13) are as follows:

A1(2) = – diag
(
–1.2|1 + b̄1| + 0.5, –2.4|1 + b̄1| + 0.97

)
– Γ

=

(
1.2|1 + b̄1| + 0.5 –1

–7 2.4|1 + b̄1| + 6.03

)

,

A2(2) = – diag
(
–0.6|1 + b̄2| + 0.64, –1.2|1 + b̄2| + 1.34

)
– Γ

=

(
0.6|1 + b̄2| + 0.36 –1

–7 1.2|1 + b̄2| + 5.66

)

,

A3(2) = – diag
(
–0.4|1 + b̄3| + 0.66, –0.8|1 + b̄3| + 0.99

)
– Γ

=

(
0.4|1 + b̄3| + 0.34 –1

–7 0.8|1 + b̄3| + 6.01

)

,
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A4(2) = – diag
(
–0.3|1 + b̄4| + 0.9, –0.6|1 + b̄4| + 1

)
– Γ

=

(
0.3|1 + b̄4| + 0.1 –1

–7 0.6|1 + b̄4| + 6

)

,

A5(2) = – diag
(
–0.24|1 + b̄5| + 0.82, –0.48|1 + b̄5| + 0.65

)
– Γ

=

(
0.24|1 + b̄5| + 0.18 –1

–7 0.48|1 + b̄5| + 6.35

)

,

A6(2) = – diag
(
–0.2|1 + b̄6| + 0.6, –0.4|1 + b̄6| + 0.66

)
– Γ

=

(
0.2|1 + b̄6| + 0.4 –1

–7 0.4|1 + b̄6| + 6.34

)

.

If we choose b̄1 ≥ –0.58 or b̄1 ≤ –1.42, b̄2 ≥ 0.08 or b̄2 ≤ –2.08, b̄3 ≥ 0.57 or b̄3 ≤ –2.57,
b̄4 ≥ 1.73 or b̄4 ≤ –3.73, b̄5 ≥ 2 or b̄5 ≤ –4, b̄6 ≥ 1.72 or b̄6 ≤ –3.72, then Ak(2) is an
M-matrix for each k (k = 1, 2, 3, 4, 5, 6). By Theorem 2 and Corollary 1 drive-response net-
works (16) and (17) are mean square exponentially synchronized and almost surely expo-
nentially synchronized.

Taking the initial data x1(0) = 1.5, x2(0) = –1.2, x3(0) = 1.3, x4(0) = –1.4, x5(0) = 1.5,
x6(0) = –1.5, y1(0) = –1.4, y2(0) = 1.3, y3(0) = –1.4, y4(0) = 1.5, y5(0) = –1.5, y6(0) = 1.5,
b̄1 = 1, b̄2 = 2, b̄3 = 2, b̄4 = 2.5, b̄5 = 2.5, b̄6 = 3, the simulation results for the second mo-
ment and the sample path of drive-response networks (16) and (17) are shown in Fig. 3
and 4, respectively. Figure 3 tells us that drive-response networks (16) and (17) are expo-
nentially synchronized in mean square, whereas Fig. 4 shows almost surely exponential
synchronization of (16) and (17). Some sample path of drive-response networks (16) and
(17) is presented in Fig. 5, from which we can clearly see that drive-response networks
(16) and (17) are synchronized.

Remark 6 In the numerical example, triplet weights and two kinds of noise, white noise
and telegraph noise, are considered in complex networks. These factors make it difficult

Figure 3 The second moment of solution to synchronization error for drive-response networks (16) and (17)
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Figure 4 Sample path of synchronization error for drive-response networks (16) and (17)

Figure 5 Sample path of drive-response networks (16) and (17)

to achieve the synchronization of drive-response networks. Based on drive-response con-
cept, a novel graph-theoretic method and state feedback control technique are combined
to overcome this difficulty. Criteria about pth moment exponential synchronization and
almost surely exponential synchronization are provided. Numerical simulations clearly
show the effectiveness of theoretical results.

5 Conclusion
In this paper, multi-weights and perturbation by white noise and color noise are all consid-
ered in the complex networks. Based on the concept of drive-response, the synchroniza-
tion for stochastic multiple weighted coupled networks with Markovian switching has
been investigated. The key point is constructing a global Lyapunov function of coupled
networks by using a graph-theoretic method. Then the synchronization criteria have been
obtained by combing state feedback control technique and stochastic analysis. Both expo-
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nential synchronization criteria and asymptotical synchronization criteria have been pre-
sented. In this paper, drive network and response network have the same topology struc-
ture. In real applications, the topology of complex networks is always unknown. So, we
can do the topology identification of stochastic multiple weighted networks with Marko-
vian switching based on the synchronization criteria in this paper. This is our future work.
Besides, we tend to extend the main results to multi-agent system and cyber-physical sys-
tem.
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