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Abstract
This research investigates the bounds of fractional integral operators containing an
extended generalized Mittag-Leffler function as a kernel via several kinds of convexity.
In particular, the established bounds are studied for convex functions and further
connected with known results. Furthermore, these results applied to the parabolic
function and consequently recurrence relations for Mittag-Leffler functions are
obtained. Moreover, some fractional differential equations containing Mittag-Leffler
functions are constructed and their solutions are provided by Laplace transform
technique.
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1 Introduction
Fractional calculus is the generalization of classical calculus. Fractional integral/derivative
operators play a key role in the development of fractional calculus. They have been used
to formulate various physical and dynamic problems in fractional models. The complex
behavior of physical systems can be represented in terms of fractional models. For ap-
plications of fractional calculus operators in sciences and engineering we refer to reader
to [5–7, 19, 26, 51]. Physical properties of viscoelastic material can be interpreted by a
model of fractional derivatives [4]. Furthermore, fractional calculus is applied to physics
[21], bioengineering [29] optics [9, 18, 25], fluid flow [12], energy systems [11, 28] and
biology [22–24].

On the other hand fractional integral/derivative operators have been used to construct
and formulate new results in the theory of inequalities. Many of the well-known inequali-
ties and related results are generalized and extended via fractional integral/derivative op-
erators; see [2, 14–17, 30–32, 44, 52] and the references therein. At the same time con-
vexity plays a vital role in enhancing the theory of inequalities, and facilitates optimiza-
tion theory, mathematical analysis, mathematical statistics, graph theory with many other
subjects. Fractional integral inequalities being suitable constraints provide existence and
uniqueness of solutions for several mathematical problems in the form of fractional mod-
els.

The goal of this paper is the study of fractional integral operators containing Mittag-
Leffler functions in their kernels. These operators are comprised in a single definition
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(Eq. (2.4) and Remark 1). We will analyze them for a generalized notion of convexity called
(h – m)-convexity. The method of proving the results of this paper can be utilized to get
the results for other kinds of fractional and conformable integrals/derivatives already exist
in the literature which authors will may consider for their future work; for instance for
convenience Caputo–Fabrizio derivatives [3, 10] can be used.

2 Preliminary results
In this section we give definitions and notions which will be useful to establish the results
of this paper.

Definition 1 Let I be an interval in R. A function f : I → R is said to be convex if, for all
a, b ∈ I and 0 ≤ t ≤ 1, the following inequality holds:

f
(
ta + (1 – t)b

) ≤ tf (a) + (1 – t)f (b).

Convex functions are further generalized in different ways. One of the generalizations
of convex functions is called (h – m)-convexity that contains several kinds of convexity
for example h-convexity, m-convexity, s-convexity defined on the right half of real line
including zero (see [35, 45]).

Definition 2 Let J ⊆R be an interval containing (0, 1) and let h : J →R be a non-negative
function. A function f : [0, b] → R is called (h – m)-convex function, if f is non-negative
and for all x, y ∈ [0, b], m ∈ [0, 1] and α ∈ (0, 1), one has

f
(
αx + m(1 – α)y

) ≤ h(α)f (x) + mh(1 – α)f (y).

In the solution of integral and differential equations, the exponential function arises
while in the solutions of fractional integral and differential equations, Mittag-Leffler func-
tion appears naturally. The Mittag-Leffler function is defined as follows [33]:

Eα(z) =
∞∑

n=0

zn

Γ (αn + 1)
; z ∈C,α ∈C;�(α) > 0. (2.1)

The Mittag-Leffler functions are used in many areas of science and engineering, especially
in the theory of fractional differential equations, in solutions of generalized fractional ki-
netic equations (see [40]). The Mittag-Leffler function was generalized by many mathe-
maticians: for example Wiman [46], Agarwal [1], Prabhakar [36], Shukla and Prajapati [41],
Salim [38], Salim and Faraj [39], Rahman et al. [37]. For a detailed study of this function
see [20, 27, 36, 37, 39, 41–43].

Recently in [2], Andrić et al. defined the extended generalized Mittag-Leffler function
Eγ ,δ,k,c

μ,σ ,l (·; p) as follows.

Definition 3 Let μ,α, l,γ , c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0, δ > 0
and 0 < k ≤ δ + �(μ). Then the extended generalized Mittag-Leffler function Eγ ,δ,k,c

μ,α,l (t; p)
is defined by

Eγ ,δ,k,c
μ,α,l (t; p) =

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α)
tn

(l)nδ

, (2.2)
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where βp is the generalized beta function defined by

βp(x, y) =
∫ 1

0
tx–1(1 – t)y–1e– p

t(1–t) dt

and (c)nk is the Pochhammer symbol, (c)nk = Γ (c+nk)
Γ (c) .

Lemma 1 ([2]) If m ∈ N , ω,μ,α, l,γ , c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥
0, δ > 0 and 0 < k < δ + �(μ), then

(
d
dt

)m[
tα–1Eγ ,δ,k,c

μ,α,l
(
ωtμ; p

)]
= tα–m–1Eγ ,δ,k,c

μ,α–m,l
(
ωtμ; p

)
; �(α) > m. (2.3)

The left and right sided fractional integral operators corresponding to the Mittag-Leffler
function (2.2) are defined as follows.

Definition 4 ([2]) Let ω,μ,α, l,γ , c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0,
δ > 0 and 0 < k ≤ δ + �(μ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then the generalized fractional
integral operators ε

γ ,δ,k,c
μ,α,l,ω,a+ f and ε

γ ,δ,k,c
μ,α,l,ω,b– f are defined by

(
ε

γ ,δ,k,c
μ,α,l,ω,a+ f

)
(x; p) =

∫ x

a
(x – t)α–1Eγ ,δ,k,c

μ,α,l
(
ω(x – t)μ; p

)
f (t) dt, (2.4)

(
ε

γ ,δ,k,c
μ,α,l,ω,b– f

)
(x; p) =

∫ b

x
(t – x)α–1Eγ ,δ,k,c

μ,α,l
(
ω(t – x)μ; p

)
f (t) dt. (2.5)

The following remark provides the connection of integral operators with already known
fractional integral operators.

Remark 1 The operator in (2.4) contains various fractional operators:
(i) Setting p = 0, it reduces to the fractional integral operator defined by Salim–Faraj in

[39].
(ii) Setting l = δ = 1, it reduces to the fractional integral operator defined by Rahman et

al. in [37].
(iii) Setting p = 0 and l = δ = 1, it reduces to the fractional integral operator defined by

Srivastava and Tomovski in [42].
(iv) Setting p = 0 and l = δ = k = 1, it reduces to the fractional integral operator defined

by Prabhakar in [36].
(v) Setting p = ω = 0, it reduces to the Riemann–Liouville fractional integral.

Fractional integral/derivative operators containing Mittag-Leffler functions are studied
extensively with the prospect of their utilization in different fields; see [8, 27, 36–38, 41,
42].

The following formulas are frequently used [16] in this paper:

(
ε

γ ,δ,k,c
μ,α,l,ω,a+ 1

)
(x; p) = (x – a)αEγ ,δ,k,c

μ,α+1,l
(
ω(x – a)μ; p

)
:= Cα,a+ (x; p), (2.6)

(
ε

γ ,δ,k,c
μ,β ,l,ω,b– 1

)
(x; p) = (b – x)βEγ ,δ,k,c

μ,β+1,l
(
ω(b – x)μ; p

)
:= Cβ ,b– (x; p). (2.7)

The following lemmas are useful in establishing Hadamard type estimations.
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Lemma 2 ([14]) Let f : [a, b] −→ R be a convex function. If f is symmetric about a+b
2 , then

the following inequality holds:

f
(

a + b
2

)
≤ f (x), x ∈ [a, b]. (2.8)

Lemma 3 ([15]) Let f : [0,∞) → R be a (h – m)-convex function. If 0 ≤ a < b and f (x) =
f ( a+b–x

m ), then the following inequality holds:

f
(

a + b
2

)
≤ (m + 1)h

(
1
2

)
f (x), x ∈ [a, b]. (2.9)

The rest of the paper is organized as follows: In Sect. 2 the bounds of sum of the left and
right sided generalized fractional integral operators (2.4) and (2.5) via (h–m)-convex func-
tions are established. These bounds hold for several kinds of convexity as well as for several
fractional integral operators. Further in Sect. 3 they are computed for the parabolic func-
tion y = x2, and as a result recurrence relations for Mittag-Leffler functions are obtained.
Section 4 consists of generalized fractional differential equations and their solutions are
computed in terms of the Mittag-Leffler function.

3 Bounds of generalized fractional integral operators
Theorem 1 Let f : [a, b] → R, 0 ≤ a < b, be a real valued function. If f is positive and
(h – m)-convex, then, for α,β ≥ 1, we have

(
ε

γ ,δ,k,c
μ,α,l,ω,a+ f

)
(x; p) +

(
ε

γ ,δ,k,c
μ,β ,l,ω,b– f

)
(x; p)

≤
(

(x – a)f (a)Cα–1,a+ (x; p) + (b – x)f (b)Cβ–1,b– (x; p)

+ mf
(

x
m

)
(
(x – a)Cα–1,a+ (x; p) + (b – x)Cβ–1,b– (x; p)

)
)∫ 1

0
h(z) dz. (3.1)

Proof Let x ∈ [a, b]. Then first we observe the function f on the interval [a, x]; for t ∈ [a, x]
and α ≥ 1, one has the following inequality:

(x – t)α–1Eγ ,δ,k,c
μ,α,l

(
ω(x – t)μ; p

) ≤ (x – a)α–1Eγ ,δ,k,c
μ,α,l

(
ω(x – a)μ; p

)
. (3.2)

As f is (h – m)-convex, so for t ∈ [a, x], we have

f (t) ≤ h
(

x – t
x – a

)
f (a) + mh

(
t – a
x – a

)
f
(

x
m

)
. (3.3)

Multiplying (3.2) and (3.3), then integrating over [a, x], we get

∫ x

a
(x – t)α–1Eγ ,δ,k,c

μ,α,l
(
ω(x – t)μ; p

)
f (t) dt

≤ f (a)(x – a)α–1Eγ ,δ,k,c
μ,α,l

(
ω(x – a)μ; p

) ∫ x

a
h
(

x – t
x – a

)
dt

+ mf
(

x
m

)
(x – a)α–1Eγ ,δ,k,c

μ,α,l
(
ω(x – a)μ; p

) ∫ x

a
h
(

t – a
x – a

)
dt. (3.4)
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By using (2.4) on left hand side and (2.6) on right hand side, we have

(
ε

γ ,δ,k,c
μ,α,l,ω,a+ f

)
(x; p) ≤ (x – a)Cα–1,a+ (x; p)

(
f (a) + mf

(
x
m

))∫ 1

0
h(z) dz. (3.5)

Now on the other hand we address the function f on the interval [x, b]; for t ∈ [x, b] and
β ≥ 1, one has the following inequality:

(t – x)β–1Eγ ,δ,k,c
μ,β ,l

(
ω(t – x)μ; p

) ≤ (b – x)β–1Eγ ,δ,k,c
μ,β ,l

(
ω(b – x)μ; p

)
. (3.6)

Again from (h – m)-convexity of f for t ∈ [x, b], we have

f (t) ≤ h
(

t – x
b – x

)
f (b) + mh

(
b – t
b – x

)
f
(

x
m

)
. (3.7)

Similarly multiplying (3.6) and (3.7), then integrating over [x, b], we get

(
ε

γ ,δ,k,c
μ,β ,l,ω,b– f

)
(x; p) ≤ (b – x)Cβ–1,b– (x; p)

(
f (b) + mf

(
x
m

))∫ 1

0
h(z) dz. (3.8)

Adding (3.5) and (3.8), inequality (3.1) is obtained. �

If m = 1 and h(z) = z in (3.1), then the following result holds for a convex function.

Corollary 1 Let f : [a, b] →R, a < b, be a real valued function. If f is positive and convex,
then, for α,β ≥ 1, we have

(
ε

γ ,δ,k,c
μ,α,l,ω,a+ f

)
(x; p) +

(
ε

γ ,δ,k,c
μ,β ,l,ω,b– f

)
(x; p)

≤ (x – a)f (a)Cα–1,a+ (x; p) + (b – x)f (b)Cβ–1,b– (x; p)
2

+ f (x)
[

(x – a)Cα–1,a+ (x; p) + (b – x)Cβ–1,b– (x; p)
2

]
. (3.9)

Remark 2 If ω = p = 0 in (3.9), then [14, Theorem 1] is obtained.

Theorem 2 Let f : [a, b] →R, 0 ≤ a < b, be a real valued function. If f is differentiable and
|f ′| is (h – m)-convex, then, for α,β ≥ 1, we have

∣
∣(εγ ,δ,k,c

μ,α–1,l,ω,a+ f
)
(x; p) +

(
ε

γ ,δ,k,c
μ,β–1,l,ω,b– f

)
(x; p)

–
(
f (a)Cα–1,a+ (x; p) + f (b)Cβ–1,b– (x; p)

)∣∣

≤
(

(x – a)
∣∣f ′(a)

∣∣Cα–1,a+ (x; p) + (b – x)
∣∣f ′(b)

∣∣Cβ–1,b– (x; p)

+ m
∣∣
∣∣f

′
(

x
m

)∣∣
∣∣
(
(x – a)Cα–1,a+ (x; p) + (b – x)Cβ–1,b– (x; p)

))∫ 1

0
h(z) dz. (3.10)

Proof Let x ∈ [a, b] and t ∈ [a, x]. Then using (h – m)-convexity of |f ′|, we have

∣
∣f ′(t)

∣
∣ ≤ h

(
x – t
x – a

)∣
∣f ′(a)

∣
∣ + mh

(
t – a
x – a

)∣∣
∣∣f

′
(

x
m

)∣∣
∣∣. (3.11)
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From (3.11), one has

f ′(t) ≤ h
(

x – t
x – a

)∣
∣f ′(a)

∣
∣ + mh

(
t – a
x – a

)∣∣
∣∣f

′
(

x
m

)∣∣
∣∣. (3.12)

Multiplying (3.2) and (3.12), then integrating over [a, x], we get

∫ x

a
(x – t)α–1Eγ ,δ,k,c

μ,α,l
(
ω(x – t)μ; p

)
f ′(t) dt

≤ (x – a)α–1Eγ ,δ,k,c
μ,α,l

(
ω(x – a)μ; p

)

×
[∣
∣f ′(a)

∣
∣
∫ x

a
h
(

x – t
x – a

)
dt + m

∣∣
∣∣f

′
(

x
m

)∣∣
∣∣

∫ x

a
h
(

t – a
x – a

)
dt

]
. (3.13)

The left hand side is calculated thus: Put x – t = z, that is, t = x – z, also using the derivative
property (2.3) of the Mittag-Leffler function, we have

∫ x–a

0
zα–1Eγ ,δ,k,c

μ,α,l 1
(
ωzμ; p

)
f ′(x – z) dz

= –(x – a)α–1Eγ ,δ,k,c
μ,α,l

(
ω(x – a)μ; p

)
f (a) +

∫ x–a

0
zα–2Eγ ,δ,k,c

μ,α–1,l
(
ωzμ; p

)
f (x – z) dz,

now by putting x – z = t, in second term of the right hand side of the above equation and
by using (2.4) and (2.6), we get

∫ x–a

0
zα–1Eγ ,δ,k,c

μ,α,l
(
ωzμ; p

)
f ′(x – z) dz = –f (a)Cα–1,a+ (x; p) +

(
ε

γ ,δ,k,c
μ,α–1,l,ω,a+ f

)
(x; p).

Therefore, (3.13) takes the form

(
ε

γ ,δ,k,c
μ,α–1,l,ω,a+ f

)
(x; p) – f (a)Cα–1,a+ (x; p)

≤ (x – a)Cα–1,a+ (x; p)
(∣∣f ′(a)

∣∣ + m
∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣

)∫ 1

0
h(z) dz. (3.14)

Also from (3.11), one has

f ′(t) ≥ –
(

h
(

x – t
x – a

)∣∣f ′(a)
∣∣ + mh

(
t – a
x – a

)∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣

)
. (3.15)

Following the same procedure as one did for (3.12), we also have

f (a)Cα–1,a+ (x; p) –
(
ε

γ ,δ,k,c
μ,α–1,l,ω,a+ f

)
(x; p)

≤ (x – a)Cα–1,a+ (x; p)
(∣∣f ′(a)

∣∣ + m
∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣

)∫ 1

0
h(z) dz. (3.16)

From (3.14) and (3.16), we get

∣
∣(εγ ,δ,k,c

μ,α–1,l,ω,a+ f
)
(x; p) – f (a)Cα–1,a+ (x; p)

∣
∣

≤ (x – a)Cα–1,a+ (x; p)
(∣

∣f ′(a)
∣
∣ + m

∣∣
∣∣f

′
(

x
m

)∣∣
∣∣

)∫ 1

0
h(z) dz. (3.17)
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Now let t ∈ [x, b]. Then using (h – m)-convexity of |f ′|, we have

∣
∣f ′(t)

∣
∣ ≤ h

(
t – x
b – x

)∣
∣f ′(b)

∣
∣ + mh

(
b – t
b – x

)∣∣
∣∣f

′
(

x
m

)∣∣
∣∣. (3.18)

Along the same lines as for (3.2), (3.12) and (3.15), one can get from (3.6) and (3.18) the
following inequality:

∣
∣(εγ ,δ,k,c

μ,β–1,l,ω,b– f
)
(x; p) – f (b)Cβ–1,b– (x; p)

∣
∣

≤ (b – x)Cβ–1,b– (x; p)
(∣∣f ′(b)

∣∣ + m
∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣

)∫ 1

0
h(z) dz. (3.19)

From (3.17) and (3.19) via the triangular inequality, inequality (3.10) is obtained. �

If m = 1 and h(z) = z in (3.10), then the following result holds for a convex function.

Corollary 2 Let f : [a, b] −→ R, a < b, be a real valued function. If f is differentiable and
|f ′| is convex, then, for α,β ≥ 1, we have

∣
∣(εγ ,δ,k,c

μ,α–1,l,ω,a+ f
)
(x; p) +

(
ε

γ ,δ,k,c
μ,β–1,l,ω,b– f

)
(x; p)

–
(
f (a)Cα–1,a+ (x; p) + f (b)Cβ–1,b– (x; p)

)∣∣

≤ (x – a)|f ′(a)|Cα–1,a+ (x; p) + (b – x)|f ′(b)|Cβ–1,b– (x; p)
2

+
∣
∣f ′(x)

∣
∣
(

(x – a)Cα–1,a+ (x; p) + (b – x)Cβ–1,b– (x; p)
2

)
. (3.20)

Remark 3
(i) If ω = p = 0 and replace α by α + 1 in (3.20), then [14, Theorem 2] is obtained.

(ii) If ω = p = 0, α = β = 1 and f ′ passes through x = a+b
2 , then from (3.20) [13,

Theorem 2.2] is obtained.

Theorem 3 Let f : [a, b] →R, 0 ≤ a < b, be a real valued function. If f is positive, (h – m)-
convex and f (x) = f ( a+b–x

m ), then, for α,β > 0, we have

f ( a+b
2 )

(m + 1)h( 1
2 )

[
Cβ+1,b– (a; p) + Cα+1,a+ (b; p)

]

≤ (
ε

γ ,δ,k,c
μ,β+1,l,ω,b– f

)
(a; p) +

(
ε

γ ,δ,k,c
μ,α+1,l,ω,a+ f

)
(b; p)

≤ (b – a)2[Cβ–1,b– (a; p) + Cα–1,a+ (b; p)
]
(

f (a) + mf
(

b
m

))∫ 1

0
h(z) dz. (3.21)

Proof For x ∈ [a, b], we have

(x – a)βEγ ,δ,k,c
μ,β ,l

(
ω(x – a)μ; p

) ≤ (b – a)βEγ ,δ,k,c
μ,β ,l

(
ω(b – a)μ; p

)
, β > 0. (3.22)

As f is (h – m)-convex, for x ∈ [a, b] we have

f (x) ≤ mh
(

x – a
b – a

)
f
(

b
m

)
+ h

(
b – x
b – a

)
f (a). (3.23)
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Multiplying (3.22) and (3.23), then integrating over [a, b], we get

∫ b

a
(x – a)βEγ ,δ,k,c

μ,β ,l
(
ω(x – a)μ; p

)
f (x) dx

≤ m(b – a)βEγ ,δ,k,c
μ,β ,l

(
ω(b – a)μ; p

)
f
(

b
m

)∫ b

a
h
(

x – a
b – a

)
dx

+ (b – a)βEγ ,δ,k,c
μ,β ,l

(
ω(b – a)μ; p

)
f (a)

∫ b

a
h
(

b – x
b – a

)
dx.

From this we have

(
ε

γ ,δ,k,c
μ,β+1,l,ω,b– f

)
(a; p) ≤ (b – a)2Cβ–1,b– (a; p)

(
f (a) + mf

(
b
m

))∫ 1

0
h(z) dz. (3.24)

On the other hand for x ∈ [a, b], we have

(b – x)αEγ ,δ,k,c
μ,α,l

(
ω(b – x)μ; p

) ≤ (b – a)αEγ ,δ,k,c
μ,α,l

(
ω(b – a)μ; p

)
, α > 0. (3.25)

Similarly multiplying (3.23) and (3.25), then integrating over [a, b], we get

(
ε

γ ,δ,k,c
μ,α+1,l,ω,a+ f

)
(b; p) ≤ (b – a)2Cα–1,a+ (b; p)

(
f (a) + mf

(
b
m

))∫ 1

0
h(z) dz. (3.26)

Adding (3.24) and (3.26), we get

(
ε

γ ,δ,k,c
μ,β+1,l,ω,b– f

)
(a; p) +

(
ε

γ ,δ,k,c
μ,α+1,l,ω,a+ f

)
(b; p)

≤ (b – a)2(Cβ–1,b– (a; p) + Cα–1,a+ (b; p)
)
(

f (a) + mf
(

b
m

))∫ 1

0
h(z) dz. (3.27)

Multiplying (2.9) with (x – a)βEγ ,δ,k,c
μ,β ,l (ω(x – a)μ; p), then integrating over [a, b], we get

f
(

a + b
2

)∫ b

a
(x – a)βEγ ,δ,k,c

μ,β ,l
(
ω(x – a)μ; p

)
dx

≤ (m + 1)h
(

1
2

)∫ b

a
(x – a)βEγ ,δ,k,c

μ,β ,l
(
ω(x – a)μ; p

)
f (x) dx,

by using (2.5) and (2.7), we get

f ( a+b
2 )

(m + 1)h( 1
2 )

Cβ+1,b– (a; p) ≤ (
ε

γ ,δ,k,c
μ,β+1,l,ω,b– f

)
(a; p). (3.28)

Similarly multiplying (2.9) with (b – x)αEγ ,δ,k,c
μ,α,l (ω(b – x)μ; p), then integrating over [a, b] and

using (2.4) and (2.6), one can get

f ( a+b
2 )

(m + 1)h( 1
2 )

Cα+1,a+ (b; p) ≤ (
ε

γ ,δ,k,c
μ,α+1,l,ω,a+ f

)
(b; p). (3.29)



Chen et al. Advances in Difference Equations        (2020) 2020:163 Page 9 of 18

Adding (3.28) and (3.29), we get

f ( a+b
2 )

(m + 1)h( 1
2 )

[
Cβ+1,b– (a; p) + Cα+1,a+ (b; p)

]

≤ (
ε

γ ,δ,k,c
μ,β+1,l,ω,b– f

)
(a; p) +

(
ε

γ ,δ,k,c
μ,α+1,l,ω,a+ f

)
(b; p). (3.30)

From inequalities (3.27) and (3.30), inequality (3.21) is obtained. �

If m = 1 and h(z) = z in (3.21), then the following result holds for a convex function.

Corollary 3 Let f : [a, b] −→ R, a < b, be a real valued function. If f is positive, convex and
symmetric about a+b

2 , then, for α,β > 0, we have

f
(

a + b
2

)
[
Cβ+1,b– (a; p) + Cα+1,a+ (b; p)

]

≤ (
ε

γ ,δ,k,c
μ,β+1,l,ω,b– f

)
(a; p) +

(
ε

γ ,δ,k,c
μ,α+1,l,ω,a+ f

)
(b; p)

≤ (b – a)2[Cβ–1,b– (a; p) + Cα–1,a+ (b; p)
]
[

f (a) + f (b)
2

]
. (3.31)

Remark 4
(i) If ω = p = 0 in (3.31), then [14, Theorem 3] is obtained.

(ii) If α = β → 0 and ω = p = 0, then from the above inequality, we get the Hadamard
inequality.

4 Inequalities for the extended generalized Mittag-Leffler functions
In this section, results of previous section are applied for the function f (x) = x2. The func-
tion f is convex and |f ′(x)| = 2|x| is also convex. By virtue of this function we succeeded
to establish recurrence relations among Mittag-Leffler functions which may be useful in
the solutions of fractional boundary value problems and fractional differential equations.
Ullah et al. computed generalized fractional integral operators for the function f (x) = x2,
in [44], as follows:

(
ε

γ ,δ,k,c
μ,α,l,ω,a+ f

)
(x; p) = (x – a)α

[
a2Eγ ,δ,k,c

μ,α+1,l
(
ω(x – a)μ; p

)

+ 2a(x – a)Eγ ,δ,k,c
μ,α+2,l

(
ω(x – a)μ; p

)

+ 2(x – a)2Eγ ,δ,k,c
μ,α+3,l

(
ω(x – a)μ; p

)]
, (4.1)

(
ε

γ ,δ,k,c
μ,α,l,ω,b– f

)
(x; p) = (b – x)α

[
b2Eγ ,δ,k,c

μ,α+1,l
(
ω(b – x)μ; p

)

– 2b(b – x)Eγ ,δ,k,c
μ,α+2,l

(
ω(b – x)μ; p

)

+ 2(b – x)2Eγ ,δ,k,c
μ,α+3,l

(
ω(b – x)μ; p

)]
. (4.2)

Below, the results of Sect. 2 are applied to obtain recurrence inequalities for Mittag-Leffler
functions.
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Theorem 4 Mittag-Leffler functions satisfy the following recurrence relation:

(a2 + b2)
(b – a)2 Eγ ,δ,k,c

μ,α+1,l
(
ω′(b – a)μ; p

)
+ Eγ ,δ,k,c

μ,α+3,l
(
ω′(b – a)μ; p

)

≤ ((2m + 1)(a2 + b2) + 2ab)
2m(b – a)2 Eγ ,δ,k,c

μ,α,l
(
ω′(b – a)μ; p

) ∫ 1

0
h(z) dz

+ Eγ ,δ,k,c
μ,α+2,l

(
ω′(b – a)μ; p

)
, (4.3)

where ω′ = ω
2μ .

Proof By using (4.1), (4.2) and f (x) = x2 in (3.1) of Theorem 1, we have

(x – a)α
[
a2Eγ ,δ,k,c

μ,α+1,l
(
ω(x – a)μ; p

)
+ 2a(x – a)Eγ ,δ,k,c

μ,α+2,l
(
ω(x – a)μ; p

)

+ 2(x – a)2Eγ ,δ,k,c
μ,α+3,l

(
ω(x – a)μ; p

)]
+ (b – x)β

[
b2Eγ ,δ,k,c

μ,β+1,l
(
ω(b – x)μ; p

)

– 2b(b – x)Eγ ,δ,k,c
μ,β+2,l

(
ω(b – x)μ; p

)
+ 2(b – x)2Eγ ,δ,k,c

μ,β+3,l
(
ω(b – x)μ; p

)]

≤
((

a2 +
x2

m

)
(x – a)αEγ ,δ,k,c

μ,α,l
(
ω(x – a)μ; p

)

+
(

b2 +
x2

m

)
(b – x)βEγ ,δ,k,c

μ,β ,l
(
ω(b – x)μ; p

))∫ 1

0
h(z) dz. (4.4)

Now by putting x = a+b
2 and α = β in (4.4), then after simplification, inequality (4.3) is

obtained. �

Corollary 4 If m = 1 and h(z) = z in (4.3), then we have

(a2 + b2)
(b – a)2 Eγ ,δ,k,c

μ,α+1,l
(
ω′(b – a)μ; p

)
+ Eγ ,δ,k,c

μ,α+3,l
(
ω′(b – a)μ; p

)

≤ (3a2 + 3b2 + 2ab)
4(b – a)2 Eγ ,δ,k,c

μ,α,l
(
ω′(b – a)μ; p

)
+ Eγ ,δ,k,c

μ,α+2,l
(
ω′(b – a)μ; p

)
. (4.5)

Theorem 5 Mittag-Leffler functions satisfy the following recurrence relation:

∣
∣Eγ ,δ,k,c

μ,α+2,l
(
ω′(b – a)μ; p

)
– Eγ ,δ,k,c

μ,α+1,l
(
ω′(b – a)μ; p

)∣∣

≤ 1
m(b – a)

(
ma + mb + (a + b)

)
Eγ ,δ,k,c

μ,α,l
(
ω′(b – a)μ; p

)∫ 1

0
h(z) dz, (4.6)

where ω′ = ω
2μ .

Proof By using (4.1), (4.2) and |f ′(x)| = 2|x| in (3.10) of Theorem 2, we have

∣
∣(x – a)α

[
a2(x – a)–1Eγ ,δ,k,c

μ,α,l
(
ω(x – a)μ; p

)
+ 2aEγ ,δ,k,c

μ,α+1,l
(
ω(x – a)μ; p

)

+ 2(x – a)Eγ ,δ,k,c
μ,α+2,l

(
ω(x – a)μ; p

)]
+ (b – x)β

[
b2(b – x)–1Eγ ,δ,k,c

μ,β ,l
(
ω(b – x)μ; p

)

– 2bEγ ,δ,k,c
μ,β+1,l

(
ω(b – x)μ; p

)
+ 2(b – x)Eγ ,δ,k,c

μ,β+2,l
(
ω(b – x)μ; p

)]

–
(
a2(x – a)α–1Eγ ,δ,k,c

μ,α,l
(
ω(x – a)μ; p

)
+ b2(b – x)β–1Eγ ,δ,k,c

μ,β ,l
(
ω(b – x)μ; p

))∣∣
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≤
(

2
(

|a| +
|x|
m

)
(x – a)αEγ ,δ,k,c

μ,α,l
(
ω(x – a)μ; p

)

+ 2
(

|b| +
|x|
m

)
(b – x)βEγ ,δ,k,c

μ,β ,l
(
ω(b – x)μ; p

)
)∫ 1

0
h(z) dz. (4.7)

Now by putting x = a+b
2 and α = β in (4.7), then after simplification, inequality (4.6) is

obtained. �

Corollary 5 If m = 1 and h(z) = z in (4.6), then we have

∣
∣Eγ ,δ,k,c

μ,α+2,l
(
ω′(b – a)μ; p

)
– Eγ ,δ,k,c

μ,α+1,l
(
ω′(b – a)μ; p

)∣∣

≤ 1
b – a

(a + b)Eγ ,δ,k,c
μ,α,l

(
ω′(b – a)μ; p

)
. (4.8)

Theorem 6 Mittag-Leffler functions satisfy the following recurrence relation:

Eγ ,δ,k,c
μ,α+1,l

(
ω(b – a)μ; p

)
–

(
1 +

1
m

)
Eγ ,δ,k,c

μ,α,l
(
ω(b – a)μ; p

) ∫ 1

0
h(z) dz

≤ 2(b – a)2

(a2 + b2)
(
Eγ ,δ,k,c

μ,α+2,l
(
ω(b – a)μ; p

)
– 2Eγ ,δ,k,c

μ,α+3,l
(
ω(b – a)μ; p

))
. (4.9)

Proof In (4.4), putting x = a and x = b, then adding for α = β , inequality (4.9) is obtained. �

Corollary 6 If m = 1 and h(z) = z in (4.9), then we have

Eγ ,δ,k,c
μ,α+1,l

(
ω(b – a)μ; p

)
– Eγ ,δ,k,c

μ,α,l
(
ω(b – a)μ; p

)

≤ 2(b – a)2

(a2 + b2)
(
Eγ ,δ,k,c

μ,α+2,l
(
ω(b – a)μ; p

)
– 2Eγ ,δ,k,c

μ,α+3,l
(
ω(b – a)μ; p

))
. (4.10)

Theorem 7 Mittag-Leffler functions satisfy the following recurrence relation:

∣
∣∣
∣E

γ ,δ,k,c
μ,α+2,l

(
ω(b – a)μ; p

)
–

1
2

Eγ ,δ,k,c
μ,α+1,l

(
ω(b – a)μ; p

)
∣
∣∣
∣

≤ (1 + 1
m )

2(b – a)
(a + b)Eγ ,δ,k,c

μ,α,l
(
ω(b – a)μ; p

) ∫ 1

0
h(z) dz. (4.11)

Proof In (4.7), putting x = a and x = b, then adding for α = β , inequality (4.11) is ob-
tained. �

Corollary 7 If m = 1 and h(z) = z in (4.11), then we have

∣∣
∣∣E

γ ,δ,k,c
μ,α+2,l

(
ω(b – a)μ; p

)
–

1
2

Eγ ,δ,k,c
μ,α+1,l

(
ω(b – a)μ; p

)
∣∣
∣∣

≤ 1
2(b – a)

(a + b)Eγ ,δ,k,c
μ,α,l

(
ω(b – a)μ; p

)
. (4.12)
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Theorem 8 Mittag-Leffler functions satisfy the following recurrence relation:

Eγ ,δ,k,c
μ,α+1,l(ω; p) –

(
1 +

1
m

)
Eγ ,δ,k,c

μ,α,l (ω; p)
∫ 1

0
h(z) dz

≤ 2
(
Eγ ,δ,k,c

μ,α+2,l(ω; p) – 2Eγ ,δ,k,c
μ,α+3,l(ω; p)

)
. (4.13)

Proof In (4.9), putting a = 0 and b = 1, then inequality (4.13) is obtained. �

Corollary 8 If m = 1 and h(z) = z in (4.13), then we have

Eγ ,δ,k,c
μ,α+1,l(ω; p) – Eγ ,δ,k,c

μ,α,l (ω; p)

≤ 2
(
Eγ ,δ,k,c

μ,α+2,l(ω; p) – 2Eγ ,δ,k,c
μ,α+3,l(ω; p)

)
. (4.14)

Theorem 9 Mittag-Leffler functions satisfy the following recurrence relation:

∣
∣2Eγ ,δ,k,c

μ,α+2,l(ω; p) – Eγ ,δ,k,c
μ,α+1,l(ω; p)

∣
∣

≤
(

1 +
1
m

)
Eγ ,δ,k,c

μ,α,l (ω; p)
∫ 1

0
h(z) dz. (4.15)

Proof In (4.11), putting a = 0 and b = 1, then inequality (4.15) is obtained. �

Corollary 9 If m = 1 and h(z) = z in (4.15), then we have

∣∣2Eγ ,δ,k,c
μ,α+2,l(ω; p) – Eγ ,δ,k,c

μ,α+1,l(ω; p)
∣∣ ≤ Eγ ,δ,k,c

μ,α,l (ω; p). (4.16)

By applying Theorem 3 similar relations can be established; we leave these for the reader.

5 Fractional differential equations involving extended generalized
Mittag-Leffler function

In this section, generalized fractional differential equations are solved. The Riemann–
Liouville fractional derivative operator Dν

a+ is defined as follows:

(
Dν

a+ f
)
(x) =

(
d

dx

)n(
In–ν

a+ f
)
(x), ν ∈ C;�(ν) > 0

(
n =

[�(ν)
]

+ 1
)
, (5.1)

where (Iν
a+ f )(x) is the Riemann–Liouville fractional integral operator defined as follows:

(
Iν

a+ f
)
(x) =

1
Γ (ν)

∫ x

a
(x – t)ν–1f (t) dt, x > a. (5.2)

For a = 0 the operator (Dν
a+ f )(x) is represented by (Dν

0+ f )(x) and (Iν
a+ f )(x) is represented by

(Iν
0+ f )(x).
The Laplace transform of a function f (x) is defined as follows:

L
[
f (x); s

]
=

∫ ∞

0
e–sxf (x) dx = F(s). (5.3)
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In [34], the Laplace transform of fractional derivative (Dν
0+ f )(x) is found to be

L
[
Dν

0+ f ; s
]

= sνF(s) –
n∑

k=1

sk–1Dν–k
0+ f (0+) (n – 1 < ν < n) �(s) > 0. (5.4)

For more information related to differential equations see Refs. [47–50].

Theorem 10 Let a ∈ R+; μ,α, l,γ ,ν, c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥
0, δ > 0 and 0 < k ≤ δ + �(μ). Then, for x > a, we have

Dν
a+

[
(t – a)α–1Eγ ,δ,k,c

μ,α,l
(
ω(t – a)μ; p

)]
(x) = (x – a)α–ν–1Eγ ,δ,k,c

μ,α–ν,l
(
ω(x – a)μ; p

)
, (5.5)

Iν
a+

[
(t – a)α–1Eγ ,δ,k,c

μ,α,l
(
ω(t – a)μ; p

)]
(x) = (x – a)α+ν–1Eγ ,δ,k,c

μ,α+ν,l
(
ω(x – a)μ; p

)
. (5.6)

Proof By using the definition of Eγ ,δ,k,c
μ,α,l defined in (2.2), we have

Dν
a+

[
(t – a)α–1Eγ ,δ,k,c

μ,α,l
(
ω(t – a)μ; p

)]
(x)

= Dν
a+

[

(t – a)α–1
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α)
(ω(t – a)μ)n

(l)nδ

]

(x)

=
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α)
ωn

(l)nδ

Dν
a+

[
(t – a)μn+α–1](x). (5.7)

By using the formula Dν
a+ [(t – a)η](x) = Γ (η+1)

Γ (η–ν+1) (x – a)η–ν , we have

Dν
a+

[
(t – a)α–1Eγ ,δ,k,c

μ,α,l
(
ω(t – a)μ; p

)]
(x)

=
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α – ν)
(ω(x – a)μ)n

(l)nδ

(x – a)α–ν–1

= (x – a)α–ν–1Eγ ,δ,k,c
μ,α–ν,l

(
ω(x – a)μ; p

)
. (5.8)

Proof of (5.6) is similar to the proof of (5.5) just using the definition of fractional integral
operator Iν

a+ therein. �

Theorem 11 Let μ,α, l,γ ,ν, c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0, δ > 0
and 0 < k ≤ δ + �(μ). Then the differential equation

(
Dν

0+ y
)
(x) = λ1

(
ε

γ ,δ,k,c
μ,α,l,ω,a+ 1

)
(x; p) + f (x) (5.9)

with the initial condition (I1–ν
0+ )(0+) = C, has its solution in the space L(0,∞)

y(x) = C
xν–1

Γ (ν)
+ λ1

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α + ν + 1)
ωn

(l)nδ

xμn+α+ν

+
1

Γ (ν)

∫ x

0
(x – t)ν–1f (t) dt, (5.10)

where C is an arbitrary constant.
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Proof Using the generalized fractional integral operator (εγ ,δ,k,c
μ,α,l,ω,a+ 1)(x; p) given in (2.6)

with a = 0 in (5.9), we have

(
Dν

0+ y
)
(x) = λ1xαEγ ,δ,k,c

μ,α+1,l
(
ωxμ; p

)
+ f (x). (5.11)

Applying the Laplace transform on both sides of (5.11), we have

L
[(

Dν
0+ y

)
(x); s

]
= λ1L

[
xαEγ ,δ,k,c

μ,α+1,l
(
ωxμ; p

)
; s

]
+ L

[
f (x); s

]
. (5.12)

First we calculate the Laplace transform of Mittag-Leffler function as follows:

L
[
xα–1Eγ ,δ,k,c

μ,α,l
(
ωxμ; p

)
; s

]

=
∫ ∞

0
xαe–sxEγ ,δ,k,c

μ,α,l
(
ωxμ; p

)
dx

=
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α)
ωn

(l)nδ

∫ ∞

0
xα+μn–1e–sx dx

=
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α)
ωn

(l)nδ

Γ (μn + α)L
[

xα+μn–1

Γ (μn + α)
; s

]
. (5.13)

Since L[ tn–1

Γ (n) ] = 1
sn (n > 0), using it in the above, we have

L
[
xα–1Eγ ,δ,k,c

μ,α,l
(
ωxμ; p

)
; s

]
=

1
sα

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

(
ω

sμ

)n

. (5.14)

By using (5.3), (5.4) (for n = 1) and (5.14) in (5.12), we have

sνy(s) = C + λ1s–(α+1)
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

(
ω

sμ

)n

+ F(s),

which implies that

y(s) = Cs–ν + λ1s–(α+ν+1)
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

(
ω

sμ

)n

+ F(s)s–ν . (5.15)

Now taking the inverse Laplace transformation on both sides of (5.15), we have

y(x) = C
xν–1

Γ (ν)
+ λ1

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

ωnL–1[s–(μn+α+ν+1)]

+ L–1[F(s)s–ν
]
.

After simplification one can get (5.10). �

Theorem 12 Let μ,α, l,γ ,ν, c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0, δ > 0
and 0 < k ≤ δ + �(μ). Then the differential equation

(
Dν

0+ y
)
(x) = λ1

(
ε

γ ,δ,k,c
μ,α,l,ω,a+

)
(x; p) + λ2xαEγ ,δ,k,c

μ,α+1,l
(
ωxμ; p

)
, (5.16)



Chen et al. Advances in Difference Equations        (2020) 2020:163 Page 15 of 18

with the initial condition (I1–ν
0+ )(0+) = C, has a solution in the space L(0,∞),

y(x) = C
xν–1

Γ (ν)
+ (λ1 + λ2)

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α + ν + 1)
ωn

(l)nδ

xμn+α+ν , (5.17)

where C is an arbitrary constant.

Proof Using the generalized fractional integral operator (εγ ,δ,k,c
μ,α,l,ω,a+ 1)(x; p) given in (2.6)

with a = 0 in (5.16), we have

(
Dν

0+ y
)
(x) = λ1xαEγ ,δ,k,c

μ,α+1,l
(
ωxμ; p

)
+ λ2xαEγ ,δ,k,c

μ,α+1,l
(
ωxμ; p

)

= (λ1 + λ2)xαEγ ,δ,k,c
μ,α+1,l

(
ωxμ; p

)
. (5.18)

Applying the Laplace transform on both sides of (5.18), we have

L
[(

Dν
0+ y

)
(x); s

]
= (λ1 + λ2)L

[
xαEγ ,δ,k,c

μ,α+1,l
(
ωxμ; p

)
; s

]
. (5.19)

By using (5.3), ((5.4) for n = 1) and (5.14) in (5.19), we have

sνy(s) = C + (λ1 + λ2)s–(α+1)
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

(
ω

sμ

)n

,

which implies that

y(s) = Cs–ν + (λ1 + λ2)s–(α+ν+1)
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

(
ω

sμ

)n

. (5.20)

Now taking the inverse Laplace transformation on both sides of (5.20), we have

y(x) = C
xν–1

Γ (ν)
+ (λ1 + λ2)

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

ωnL–1[s–(μn+α+ν+1)].

After simplification one can get (5.17). �

Theorem 13 Let μ,α, l,γ ,ν, c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0, δ > 0
and 0 < k ≤ δ + �(μ). Then the differential equation

(
Dν

0+ y
)
(x) = λ

(
ε

γ ,δ,k,c
μ,α,l,ω,a+

)
(x; p) +

n∑

j=1

[
λjxαj Eγj ,δj ,kj ,cj

μj ,αj+1,lj

(
wjxμj ; p

)]
, (5.21)

with the initial condition (I1–ν
0+ )(0+) = C, has a solution in the space L(0,∞),

y(x) = C
xν–1

Γ (ν)
+ λ

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + α + ν + 1)
ωn

(l)nδ

xμn+α+ν

+
n∑

j=1

[

λj

∞∑

n=0

βp(γj + nkj, cj – γj)
β(γj, cj – γj)

(cj)nkj

Γ (μjn + αj + ν + 1)
ωj

n

(lj)nδj

xμjn+αj+ν

]

, (5.22)

where C is an arbitrary constant.
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Proof Using the generalized fractional integral operator (εγ ,δ,k,c
μ,α,l,ω,a+ 1)(x; p) given in (2.6)

with a = 0 in (5.21), we have

(
Dν

0+ y
)
(x) = λxαEγ ,δ,k,c

μ,α+1,l
(
ωxμ; p

)
+

n∑

j=1

[
λjxαj Eγj ,δj ,kj ,cj

μj ,αj+1,lj

(
wjxμj ; p

)]
. (5.23)

Applying Laplace transform on both sides of (5.18), we have

L
[(

Dν
0+ y

)
(x); s

]
= λL

[
xαEγ ,δ,k,c

μ,α+1,l
(
ωxμ; p

)
; s

]

+ L

[ n∑

j=1

[
λjxαj Eγj ,δj ,kj ,cj

μj ,αj+1,lj

(
wjxμj ; p

)]
; s

]

. (5.24)

By using (5.3), ((5.4) for n = 1) and (5.14) in (5.24), we have

sνy(s) = C + λs–(α+1)
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

(
ω

sμ

)n

+
n∑

j=1

[

λjs–(αj+1)
∞∑

n=0

βp(γj + nkj, cj – γj)
β(γj, cj – γj)

(cj)nkj

(lj)nδj

(
ωj

sμj

)n
]

,

which implies that

y(s) = Cs–ν + λs–(α+ν+1)
∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

(
ω

sμ

)n

+ s–ν

n∑

j=1

[

λjs–(αj+1)
∞∑

n=0

βp(γj + nkj, cj – γj)
β(γj, cj – γj)

(cj)nkj

(lj)nδj

(
ωj

sμj

)n
]

. (5.25)

Now taking the inverse Laplace transformation on both sides of (5.25), we have

y(x) = C
xν–1

Γ (ν)
+ λ

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

(l)nδ

ωnL–1[s–(μn+α+ν+1)]

+
n∑

j=1

[

λj

∞∑

n=0

βp(γj + nkj, cj – γj)
β(γj, cj – γj)

(cj)nkj

(lj)nδj

ωj
nL–1[s–(μjn+αj+ν+1)]

]

.

After simplification one can get (5.22). �

6 Concluding remarks
This research computes the bounds of fractional integral operators containing an ex-
tended generalized Mittag-Leffler function in their kernel. These results provide compact
formulas for bounds of several kinds of fractional integral operators via several kinds of
convexity. By setting specific values to parameters involved in the Mittag-Lefller function
some interesting results can be obtained. For example estimations of the fractional inte-
gral operators: by Salim and Faraj defined in [39] setting p = 0, by Rahman et al. defined
in [37] by setting l = δ = 1, by Shukla and Prajapati defined in [41] by setting p = 0 and
l = δ = 1 (see also [42]), by Prabhakar defined in [36] by setting p = 0 and l = δ = k = 1. Also
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inequalities for recurrence relations of Mittag-Leffler functions are obtained via a partic-
ular convex function x2. At the end some generalized fractional differential equations are
solved.
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