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Abstract
The aim of this work is to develop a novel explicit unconditionally positivity
preserving finite difference (FD) scheme and an implicit positive FD scheme for the
numerical solution of dengue epidemic reaction–diffusion model with incubation
period of virus. The proposed schemes are unconditionally stable and preserve all the
essential properties of the solution of the dengue reaction diffusion model. This
proposed FD schemes are unconditionally dynamically consistent with positivity
property and converge to the true equilibrium points of dengue epidemic reaction
diffusion system. Comparison of the proposed scheme with the well-known existing
techniques is also presented. The time efficiency of both the proposed schemes is
also compared, with the two widely used techniques.

Keywords: Structure preserving methods; Finite difference schemes; Dengue
model; Diffusion epidemic system; Numerical simulations

1 Introduction
Dengue fever is a mosquito born infection which causes flu-like illness, fever and severe
pain in the body. Dengue virus is transmitted by Aedes mosquito bite. It is a lethal disease
that starts with painful fever. Some people have non-febrile illness with rash, headache,
pain behind eyes and joint pains. Dengue hemorrhagic fever is highly complicated which
can cause high fever, hemorrhage and enlargement of liver and circulatory failure. Dengue
is an epidemic disease which can be prevented by awareness programs against it. There
is no vaccine and specific medication to treat it. In order to get a good understanding of
the nature and dynamics of the transmission of dengue epidemics, various epidemic mod-
els of dengue disease dynamics are discussed in the literature [1–7]. Most of the epidemic
models of infection disease dynamics are based on ODE systems. Recently, the researchers
were developing integer order models in the setup of fractional calculus. Since the frac-
tional calculus is an extension of the classical calculus, its scope is wider than that of its
counterpart. Epidemic models, in the framework of fractional calculus, address more pa-
rameters which reduces errors. Also, by including these parameters, the models express a
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very close behavior to the actual physical problem. Several authors used various fractional
operators for developing epidemic models, for detail, see the references [8–10]. These
models provide a motivation to the young researchers.

In order to get appropriate perception of dispersal and control of dengue transmission,
it is important to consider the dengue epidemic model with diffusion because individuals
do not mix homogenously.

Let us consider a dengue epidemic model proposed by Rafiq et al. [11]:

dS
dt

= μh – βhSIv(C/μv) – μhS, (1.1)

dX
dt

= –(αh + μh)X + βhSIv(C/μv), (1.2)

dI
dt

= –(r + μh)I + αhX, (1.3)

dXv

dt
= –(αv + μv)Xv + βvINT (1 – Xv – Iv), (1.4)

dIv

dt
= –μvIv + αvXv, (1.5)

and the conditions

S + X + I + R = 1 and Sv + Xv + Iv = 1. (1.6)

Note that (1.1)–(1.5) is a normalized system discussed by M. Rafiq et al. [11].
Let dS , dX , dI , dXv and dIv be the diffusive constants of S, X, I , Xv and Iv, respectively.

Then system (1.1)–(1.5) with diffusion can be written as

∂S
∂t

= dS
∂2S
∂x2 + μh – βhSIv(C/μv) – μhS, (1.7)

∂X
∂t

= dX
∂2X
∂x2 + βhSIv(C/μv) – αhX – μhX, (1.8)

∂I
∂t

= dI
∂2I
∂x2 + αhX – rI – μhI, (1.9)

∂Xv

∂t
= dXv

∂2Xv

∂x2 + βvINT (1 – Xv – Iv) – αvXv – μvXv, (1.10)

∂Iv

∂t
= dIv

∂2Iv

∂x2 + αvXv – μvIv, (1.11)

where S(x, t), X(x, t) and I(x, t) are population sizes of susceptible, exposed, and infectious
humans, while Xv(x, t) and Iv(x, t) are population sizes of exposed and infectious vectors,
respectively, at location x and time t, where μh, βh, αh, r and NT are the rate of death of
humans population, infection rate from vector population to human population, rate at
which infected human population becomes infectious, recovery rate for human popula-
tion and total human population, respectively. The rates βv, αv, μv and C are infection
rate from human population to vector population, rate at which infected vector popula-
tion becomes infectious, death rate of vector population and recruitment rate of vector
population, respectively.
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The main theme of this work is to provide numerical techniques which are consistent
to the continuous diffusive epidemic model. The epidemic models describe the unknown
quantities as population sizes therefore negative solutions of epidemic models are mean-
ingless. In order to find the solution of dengue epidemic model, the method of solution
should preserve the positivity of the solution. Also proposed epidemic models of dengue
dynamics have two stable equilibrium points, the numerical technique must show con-
vergence towards these equilibrium points. Normally, classical and well-known numerical
techniques have flaws in their construction, therefore these techniques cannot preserve
most of the properties possessed by the continuous epidemic models. The proposed tech-
niques not only preserve the positive solution but also converge towards the true equilib-
rium points of the continuous system.

2 Equilibrium points
Dengue epidemic model (1.7)–(1.11) describes two possible equilibrium points, disease
free equilibrium (DFE) and endemic equilibrium (EE), namely

DFE

E0(1, 0, 0, 0, 0),

EE

E1
(
S∗, X∗, I∗, X∗

v , I∗
v
)
,

where

S∗ =
(αv + μv)(MNμ2

hμv + αhγvμh)
αhγv[μh(αv + μv) + αvγh]

,

X∗ =
Mμ2

hμv(αv + μv)(R0 – 1)
αhαh[μh(αv + μv) + αvγh]

,

I∗ =
μhμv(αv + μv)(R0 – 1)
αh[μh(αv + μv) + αvγh]

,

X∗
v =

μv(MNμ3
hμv)(R0 – 1)

γhαv(αhγvμh + MNμ2
hμv)

,

I∗
v =

MNμ3
hμv

γh(αhγvμh + MNμ2
hμv)

(R0 – 1),

and where

R0 =
αhαvγhγv

(r + μh)(αh + μh)μv(αv + μv)
, when dS = dX = dI = dXv = dIv = 0,

is the reproductive number.
Also

γh = βh

(
C
μv

)
, γv = βvNT , M =

r + μh

μh
and N =

αh + μh

μh
.

The reproductive number R0 decides the outcome, namely if R0 < 1, the disease is elim-
inated from the given population, and if R0 > 1, the disease persists in the population.
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3 Computational method
A nonstandard FD method, introduced by Mickens [12], is an efficient tool to solve epi-
demic models because this method is structure-preserving and consistent with the solu-
tion of epidemic models. Many researchers used structure-preserving methods to solve
epidemic models with a system of ordinary and partial differential equations [11, 13–22].
For the reaction–diffusion epidemic model and some of the work concerning positivity-
preserving finite difference schemes, we refer to the literature [23–26].

In the present study, we design two structure-preserving finite difference schemes [27–
30] for dengue epidemic model with diffusion. The proposed schemes are convergent
towards all steady states of the continuous system and preserve positivity property that
highlights the significance and efficacy of the proposed schemes.

In this section, we rewrite system (1.7)–(1.11) as

∂S
∂t

= dS
∂2S
∂x2 + μh – βhSIv(C/μv) – μhS, (3.1)

∂X
∂t

= dX
∂2X
∂x2 + βhSIv(C/μv) – αhX – μhX, (3.2)

∂I
∂t

= dI
∂2I
∂x2 + αhX – rI – μhI, (3.3)

∂Xv

∂t
= dXv

∂2Xv

∂x2 + βvINT (1 – Xv – Iv) – αvXv – μvXv, (3.4)

∂Iv

∂t
= dXv

∂2Iv

∂x2 + αvXv – μvIv, (3.5)

for all t ≥ 0, x ∈ [0, L] and the initial conditions are:

S(x, 0) = δ1(x) ≥ 0, X(x, 0) = δ2(x) ≥ 0, I(x, 0) = δ3(x) ≥ 0, (3.6)

Xv(x, 0) = δ4(x) ≥ 0 and Iv(x, 0) = δ5(x) ≥ 0, (3.7)

while the boundary conditions are:

∂S(0, t)
∂x

=
∂X(0, t)

∂x
=

∂I(0, t)
∂x

=
∂Xv(0, t)

∂x
=

∂Iv(0, t)
∂x

= 0, t > 0, (3.8)

∂S(L, t)
∂x

=
∂X(L, t)

∂x
=

∂I(L, t)
∂x

=
∂Xv(L, t)

∂x
=

∂Iv(L, t)
∂x

= 0, t > 0. (3.9)

Divide [0, L]× [0, T] using M ×N mesh points having time and space step sizes h = L
M and

τ = T
N .

The nodal points then are

xi = ih, i = 0, 1, 2, . . . , M,

tn = nτ , n = 0, 1, 2, . . . , N ,

Sn
i , Xn

i , In
i , Xn

vi and In
vi are denoted as FD values of S(ih, nτ ), X(ih, nτ ), I(ih, nτ ), Xv(ih, nτ )

and Iv(ih, nτ ), respectively.
Four FD schemes are used to solve system (3.1)–(3.5) numerically: forward Euler explicit

FD scheme, Crank–Nicolson implicit FD scheme and the proposed FD scheme. Forward
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Euler FD scheme for system (3.1)–(3.5) is:

Sn+1
i = Sn

i + R1
(
Sn

i–1 – 2Sn
i + Sn

i+1
)

+ τμh – τβh(C/μh)Sn
i In

vi – τμhSn
i ,

Xn+1
i = Xn

i + R2
(
Xn

i–1 – 2Xn
i + Xn

i+1
)

+ τβhSn
i In

vi

(
C
μh

)
– τ (μh + αh)Xn

i ,

In+1
i = In

i + R3
(
In

i–1 – 2In
i + In

i+1
)

+ ταhXn
i – τ (r + μh)In

i ,

Xn+1
vi = Xn

vi + R4
(
Xn

vi–1 – 2Xn
vi + Xn

vi+1
)

+ τβvNtIn
i
(
1 – Xn

vi – In
vi
)

– τ (αv + μv)Xn
vi,

In+1
vi = In

vi + R5
(
In

vi–1 – 2In
vi + In

vi+1
)

+ ταvXn
vi – τμvIn

vi.

The stability range of Forward Euler explicit scheme is R1 ≤ 2–τμh
4 , R2 ≤ 2–τ (μh+αh)

4 , R3 ≤
2–τ (r+μh)

4 , R4 ≤ 2–τ (αv+μv)
4 and R5 ≤ 2–τμv

4 .
Crank–Nicolson FD scheme for system (3.1)–(3.5) is:

(1 + R1)Sn+1
i –

R1

2
(
Sn+1

i–1 + Sn+1
i+1

)

= (1 – R1)Sn
i +

R1

2
(
Sn

i–1 + Sn
i+1

)
+ τμh – τβh(C/μh)Sn

i In
vi – τμhSn

i ,

(1 + R2)Xn+1
i –

R2

2
(
Xn+1

i–1 + Xn+1
i+1

)

= (1 – R2)Xn
i +

R2

2
(
Xn

i–1 + Xn
i+1

)
+ τβhSn

i In
vi

(
C
μh

)
– τ (μh + αh)Xn

i ,

(1 + R3)In+1
i –

R3

2
(
In+1

i–1 + In+1
i+1

)
= (1 – R3)In

i +
R3

2
(
In

i–1 + In
i+1

)
+ ταhXn

i – τ (r + μh)In
i ,

(1 + R4)Xn+1
vi –

R4

2
(
Xn+1

vi–1 + Xn+1
vi+1

)

= (1 – R4)Xn
vi +

R4

2
(
Xn

vi–1 + Xn
vi+1

)
+ τβvNtIn

i
(
1 – Xn

vi – In
vi
)

– τ (αv + μv)Xn
vi,

(1 + R5)In+1
vi –

R5

2
(
In+1

vi–1 + In+1
vi+1

)
= (1 – R5)In

vi +
R5

2
(
In

vi–1 + In
vi+1

)
+ ταvXn

vi – τμvIn
vi.

Crank–Nicolson scheme is unconditionally stable.
Now the proposed explicit positive FD scheme is developed [27–30] with the help of

rules defined by Mickens [12] as follows:

Sn+1
i = Sn

i + R1
(
Sn

i–1 + Sn
i+1

)
– 2R1Sn+1

i + τμh – τβhIn
vi(C/μh)Sn+1

i – τμhSn+1
i , (3.10)

Sn+1
i + τβhIn

vi

(
C
μh

)
Sn+1

i + τμhSn+1
i + 2R1Sn+1

i = Sn
i + R1

(
Sn

i–1 + Sn
i+1

)
+ τμh,

(
1 + τβhIn

vi

(
C
μh

)
+ τμh + 2R1

)
Sn+1

i = Sn
i + R1

(
Sn

i–1 + Sn
i+1

)
+ τμh,

Sn+1
i =

Sn
i + R1(Sn

i–1 + Sn
i+1) + τμh

1 + τβhIn
vi(

C
μh

) + τμh + 2R1
. (3.11)

A similar process is used and we get

Xn+1
i =

Xn
i + R2(Xn

i–1 + Xn
i+1) + τβhSn

i In
vi(

C
μh

)
1 + τμh + ταh + 2R2

, (3.12)
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In+1
i =

In
i + R3(In

i–1 + In
i+1) + ταhXn

i
1 + τ r + τμh + 2R3

, (3.13)

Xn+1
vi =

Xn
vi + R4(Xn

vi–1 + Xn
vi+1) + τβvNtIn

i (1 – In
vi)

1 + τβvNtIn
i + ταv + τμv + 2R4

, (3.14)

In+1
vi =

In
vi + R5(In

vi–1 + In
vi+1) + ταvXn

vi
1 + τμv + 2R5

. (3.15)

Now we design the proposed positive implicit scheme for the given model (3.1)–(3.5) as:

(1 + 2R1)Sn+1
i – R1

(
Sn+1

i–1 + Sn+1
i+1

)
= Sn

i + +τμh – τβh(C/μh)Sn+1
i In

vi – τμhSn+1
i , (3.16)

(1 + 2R2)Xn+1
i – R2

(
Xn+1

i–1 + Xn+1
i+1

)
= Xn

i + +τβhSn
i In

vi

(
C
μh

)
– τ (μh + αh)Xn+1

i , (3.17)

(1 + 2R3)In+1
i – R3

(
In+1

i–1 + In+1
i+1

)
= In

i + ταhXn
i – τ (r + μh)In+1

i , (3.18)

(1 + 2R4)Xn+1
vi – R4

(
Xn+1

vi–1 + Xn+1
vi+1

)

= Xn
vi + τβvNtIn

i
(
1 – Xn+1

vi – In
vi
)

– τ (αv + μv)Xn+1
vi , (3.19)

(1 + 2R5)In+1
vi – R5

(
In+1

vi–1 + In+1
vi+1

)
= In

vi + ταvXn
vi – τμvIn+1

vi . (3.20)

Here,

R1 = dS
τ

h2 , R2 = dX
τ

h2 , R3 = dI
τ

h2 , R4 = dXv
τ

h2 and R5 = dIv
τ

h2 .

3.1 Stability
For the stability analysis, we apply the von Neumann method to (3.10). Substituting Sn

i
with ς (t)eiωx and linearizing, we have

ς (t + 
t)eiωx = ς (t)eiωx + R1
(
eiω(x–
x) + eiω(x+
x))ς (t)

– 2R1ς (t + 
t)eiωx – τμhς (t + 
t)eiωx.

After simplification, we have

∣
∣∣
∣
ς (t + 
t)

ς (t)

∣
∣∣
∣ =

∣
∣∣
∣
1 + 2R1 – 4R1 sin2(ω
z/2)

1 + 2R1 + τμh

∣
∣∣
∣ ≤

∣
∣∣
∣

1 – 2R1

1 + 2R1 + τμh

∣
∣∣
∣ < 1. (3.21)

A similar process is used for Xn+1
i , In+1

i , Xn+1
vi and In+1

vi , so we have:

∣∣
∣∣
�(t + 
t)

�(t)

∣∣
∣∣ =

∣∣
∣∣
1 + 2R2 – 4R2 sin2(ω
z/2)

1 + 2R2 + τ (αh + μh)

∣∣
∣∣ ≤

∣∣
∣∣

1 – 2R2

1 + 2R2 + τ (αh + μh)

∣∣
∣∣ < 1, (3.22)

∣∣
∣∣
�(t + 
t)

�(t)

∣∣
∣∣ =

∣∣
∣∣
1 + 2R3 – 4R3 sin2(ω
z/2)

1 + 2R3 + τ (r + μh)

∣∣
∣∣ ≤

∣∣
∣∣

1 – 2R3

1 + 2R3 + τ (r + μh)

∣∣
∣∣ < 1, (3.23)

∣
∣∣
∣
�(t + 
t)

�(t)

∣
∣∣
∣ =

∣
∣∣
∣
1 + 2R4 – 4R4 sin2(ω
z/2)

1 + 2R4 + τ (αv + μv)

∣
∣∣
∣ ≤

∣
∣∣
∣

1 – 2R4

1 + 2R4 + τ (αv + μv)

∣
∣∣
∣ < 1, (3.24)

∣∣
∣∣
�(t + 
t)

�(t)

∣∣
∣∣ =

∣∣
∣∣
1 + 2R5 – 4R5 sin2(ω
z/2)

1 + 2R5 + τμv

∣∣
∣∣ ≤

∣∣
∣∣

1 – 2R5

1 + 2R5 + τμv

∣∣
∣∣ < 1. (3.25)

From (3.21)–(3.25), it is clear that the proposed FD scheme is unconditionally stable.
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In a similar fashion, the stability of the proposed implicit scheme (3.16)–(3.20) can be
verified [21].

3.2 Consistency
To check the consistency of the proposed FD scheme, we use Taylor series expansion of
Sn+1

i , Sn
i+1 and Sn

i–1:

Sn+1
i = Sn

i + τ
∂S
∂t

+
τ 2

2!
∂2S
∂t2 +

τ 3

3!
∂3S
∂t3 + · · · ,

Sn
i+1 = Sn

i + h
∂S
∂x

+
h2

2!
∂2S
∂x2 +

h3

3!
∂3S
∂x3 + · · · ,

Sn
i–1 = Sn

i – h
∂S
∂x

+
h2

2!
∂2S
∂x2 –

h3

3!
∂3S
∂x3 + · · · .

The proposed scheme for equation (3.1) is

Sn+1
i = Sn

i + R1
(
Sn

i–1 + Sn
i+1

)
– 2R1Sn+1

i + τμh – τβhIn
vi

(
C
μh

)
Sn+1

i – τμhSn+1
i . (3.26)

Putting the values of Sn+1
i , Sn

i+1 and Sn
i–1 in (3.26) and simplifying, we get

(
∂S
∂t

+
τ

2!
∂2S
∂t2 +

τ 2

3!
∂3S
∂t3 + · · ·

)(
1 + 2dS

τ

h2 + τβhIn
vi(C/μh) + τμh

)

= μh + 2dS

(
1
2!

∂2S
∂x2 +

h2

4!
∂4S
∂x4 + · · ·

)
– Sn

i
(
βhIn

vi(C/μh) + μh
)
. (3.27)

Putting τ = h3 and letting h → 0, equation (3.27) becomes (3.1) [27, 28].
In a similar way, by using Taylor series expansion of Xn+1

i , Xn
i+1 and Xn

i–1 in (3.12) and
simplifying, we get

(
∂X
∂t

+
τ

2!
∂2X
∂t2 +

τ 2

3!
∂3X
∂t3 + · · ·

)(
1 + 2

dXτ

h2 + τ (αh + μh)
)

= 2dX

(
1
2!

∂2X
∂x2 +

h2

4!
∂4X
∂x4 + · · ·

)
+ βhSn

i In
vi(C/μh) + Xn

i
(
–(αh + μh)

)
. (3.28)

Putting τ = h3 and letting h → 0, equation (3.28) becomes (3.2).
Substituting the Taylor series expansion of In+1

i , In
i+1 and In

i–1 in (3.13) and simplifying,
we get

(
∂I
∂t

+
τ

2!
∂2I
∂t2 +

τ 2

3!
∂3I
∂t3 + · · ·

)(
1 + 2

dIτ

h2 + τ (r + μh)
)

= 2dI

(
1
2!

∂2I
∂x2 +

h2

4!
∂4I
∂x4 + · · ·

)
+ αhXn

i – In
i (r + μh). (3.29)

Putting τ = h3 and letting h → 0, equation (3.29) becomes (3.3).
Putting the values of Xn+1

vi , Xn
vi+1 and Xn

vi–1 in (3.14) and simplifying, we get

(
∂Xv

∂t
+

τ

2!
∂2Xv

∂t2 +
τ 2

3!
∂3Xv

∂t3 + · · ·
)(

1 + 2
dXvτ

h2 + τβvNtIn
i + τ (αv + μv)

)
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= 2dXv

(
1
2!

∂2Xv

∂x2 +
h2

4!
∂4Xv

∂x4 + · · ·
)

+ βvNtIn
i
(
1 – In

vi
)

– Xn
vi
(
βvNtIn

i + (αv + μv)
)
. (3.30)

Putting τ = h3 and letting h → 0, equation (3.30) becomes (3.4).
Again substituting the Taylor series expansion of In+1

vi , In
vi+1 and In

vi–1, in (3.15) and sim-
plifying, we get

(
∂Iv

∂t
+

τ

2!
∂2Iv

∂t2 +
τ 2

3!
∂3Iv

∂t3 + · · ·
)(

1 + 2
dIvτ

h2 + τμv

)

= 2dIv

(
1
2!

∂2Iv

∂x2 +
h2

4!
∂4Iv

∂x4 + · · ·
)

– μvIn
vi + αvXn

vi. (3.31)

Putting τ = h3 and letting h → 0, equation (3.31) becomes (3.5).
The consistency of the proposed implicit scheme (3.16)–(3.20) by applying Taylor series

expansion and after simplification is given as:

£s = (1 + 2R1)Sn+1
i – R1

(
Sn+1

i–1 + Sn+1
i+1

)
– Sn

i – τμh + τβh

(
C
μh

)
Sn+1

i In
vi + τμhSn+1

i

= τ

(
∂S
∂t

+
τ

2!
∂2S
∂t2 +

τ 2

3!
∂3S
∂t3 +

τ 3

4!
∂4S
∂t4 + · · ·

)(
1 + 2R1 – R1 + τβh

(
C
μh

)
In

vi + τμh

)

– h2
(

dS

12
∂4S
∂x4 + · · ·

)

→ 0, as h → 0, τ → 0,

£X = (1 + 2R2)Xn+1
i – R2

(
Xn+1

i–1 + Xn+1
i+1

)
– Xn

i – τβhSn
i In

vi

(
C
μh

)
+ τ (μh + αh)Xn+1

i

= τ

(
∂X
∂t

+
τ

2!
∂2X
∂t2 +

τ 2

3!
∂3X
∂t3 +

τ 3

4!
∂4X
∂t4 + · · ·

)
(
1 + 2R2 – R2 + τ (μh + αh)

)

– h2
(

dX

12
∂4X
∂x4 + · · ·

)

→ 0, as h → 0, τ → 0,

£I = (1 + 2R3)In+1
i – R3

(
In+1

i–1 + In+1
i+1

)
– In

i – ταhXn
i + τ (r + μh)In+1

i

= τ

(
∂I
∂t

+
τ

2!
∂2I
∂t2 +

τ 2

3!
∂3I
∂t3 +

τ 3

4!
∂4I
∂t4 + · · ·

)(
1 + 2R3 – R3 + τ (r + μh)

)

– h2
(

dI

12
∂4I
∂x4 + · · ·

)

→ 0, as h → 0, τ → 0,

£XV = (1 + 2R4)Xn+1
vi – R4

(
Xn+1

vi–1 + Xn+1
vi+1

)
– Xn

vi – τβvNtIn
i
(
1 – Xn+1

vi – In
vi
)

+ τ (αv + μv)Xn+1
vi

= τ

(
∂XV

∂t
+

τ

2!
∂2XV

∂t2 +
τ 2

3!
∂3XV

∂t3 +
τ 3

4!
∂4XV

∂t4 + · · ·
)

× (
1 + 2R4 – R4 + τβvNtIn

i + τ (αv + μv)
)

– h2
(

dI

12
∂4XV

∂x4 + · · ·
)
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→ 0, as h → 0, τ → 0,

£IV = (1 + 2R5)In+1
vi – R5

(
In+1

vi–1 + In+1
vi+1

)
– In

vi – ταvXn
vi + τμvIn+1

vi

= τ

(
∂IV

∂t
+

τ

2!
∂2IV

∂t2 +
τ 2

3!
∂3IV

∂t3 +
τ 3

4!
∂4IV

∂t4 + · · ·
)

(1 + 2R5 – R5 + τμv)

– h2
(

dI

12
∂4IV

∂x4 + · · ·
)

→ 0, as h → 0, τ → 0.

Hence the given implicit scheme is consistent.
The accuracy depends upon the numerical design. In the present scenario, the proposed

implicit method has an order of accuracy O(h2 + τ ) and the stability is unconditional. It
is independent of the step size but implicit in nature. On the other hand, the proposed
explicit scheme is a modification of the forward Euler technique. The consistency of the
scheme can be observed when τ = h3. The forward Euler design also has the order of
accuracy O(h2 + τ ).

3.3 Positivity
This section is devoted to the positivity analysis of both proposed techniques.

Lemma 1 Expressions (3.11)–(3.15) have the non-negativity property associated with aux-
iliary data.

Proof The proof smoothly follows from the non-negativity properties that appear on the
right-hand side of expressions (3.11)–(3.15). This fact, along with the non-negative initial
conditions, yields the required proof. �

Next we furnish the matrix representation of the designed implicit scheme (3.16)–(3.20).
System (3.16)–(3.20) can be arranged as

ASn+1 = L, (3.32)

BXn+1 = M, (3.33)

CIn+1 = N , (3.34)

DXn+1
v = O, (3.35)

EIn+1
v = P. (3.36)

Here A, B, C, D, E are square matrices of dimension (N + 1) × (N + 1); L, M, N , O, P are
block matrices:

A =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

a3 a1 0
a2 a3 a2

0 a2 a3

· · ·
0 0 0
0 0 0
0 0 0

...
. . .

...
0 0 0
0 0 0
0 0 0

· · ·
a3 a2 0
a2 a3 a2

0 a1 a3

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

,
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B =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

b3 b1 0
b2 b3 b2

0 b2 b3

· · ·
0 0 0
0 0 0
0 0 0

...
. . .

...
0 0 0
0 0 0
0 0 0

· · ·
b3 b2 0
b2 b3 a2

0 b1 b3

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

C =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

c3 c1 0
c2 c3 c2

0 c2 c3

· · ·
0 0 0
0 0 0
0 0 0

...
. . .

...
0 0 0
0 0 0
0 0 0

· · ·
c3 c2 0
c2 c3 c2

0 c1 c3

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

,

D =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

d3 d1 0
d2 d3 d2

0 d2 d3

· · ·
0 0 0
0 0 0
0 0 0

...
. . .

...
0 0 0
0 0 0
0 0 0

· · ·
d3 d2 0
d2 d3 a2

0 d1 d3

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

,

E =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

e3 e1 0
e2 e3 e2

0 e2 e3

· · ·
0 0 0
0 0 0
0 0 0

...
. . .

...
0 0 0
0 0 0
0 0 0

· · ·
e3 e2 0
e2 e3 e2

0 e1 e3

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

In these matrices the entries are a1 = –2R1, a2 = R1, a3 = (1 + 2R1 + τβh( C
μh

)In
vi + τμh),

b1 = –2R2, b2 = –R2, b3 = 1 + 2R2 + τ (μh + αh), c1 = –2R3, c2 = –R3, c3 = 1 + 2R4 + τ (r + μh),
d1 = –2R4, d2 = –R4, d3 = 1 + 2η1 + τβvNtIn

i + τ (αv + μv), e1 = 2R5, e2 = –R5, e3 = 1 + 2R5 +
τμv.

Definition 1 A real matrix is called an M-matrix, if it is
• A square matrix with strictly dominant diagonal;
• Diagonal entries are positive;
• Off-diagonal entries are non-positive.

Lemma 2 The matrices A, B, C, D and E possess all the properties of M-matrices.

Proof At the initial stage, observe that all R1, R2, R3, R4 and R5 are positive. It may be
noted further that A, B, C, D and E are strictly diagonally-dominant matrices. The other
properties of M-matrices are also fulfilled by the entries of the matrices A, B, C, D and
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E as their diagonal and off-diagonal entries satisfy the definition of the M-matrix. Thus
ultimately, we arrive at the logical result. �

Theorem 1 ([21]) For every positive h and τ , the system has positive solution, i.e. Sn, Xn,
In, Xn

v and In
v are positive for all n ∈ {0, 1, 2, . . .}.

For detailed proof of the above theorem, we refer to [21].

4 Experiment and simulations
The parametric values [1, 11] used in this experiment are presented in Table 1.

4.1 Experiment
In the experiment, we take the following initial conditions:

S(x, 0) = 0.1,

X(x, 0) = 0.0001,

I(x, 0) = 0.0001,

Xv(x, 0) = 0.001,

Iv(x, 0) = 0.001.

The values of the diffusion coefficients in this experiment are dS = dX = dI = dXv = dIv =
0.0001.

4.1.1 Disease-free equilibrium
Now we present simulations for DFE (disease-free equilibrium) using all methods. For
the DFE, we use C = 3 (R0 < 1). DFE graph for the forward Euler explicit FD scheme is
presented in Fig. 1, and DFE graph for Crank–Nicolson implicit FD scheme is presented
in Fig. 2.

Figures 1–2 represent the graphs of exposed population by using the forward Euler and
Crank–Nicolson methods. The graphs clearly show that both methods fail to retain posi-
tive solution, which is the main feature of the continuous model as we deal with the pop-
ulation dynamics. Now we present the graphs of DFE using the proposed implicit scheme
in Figs. 3–7.

Figures 3–7 clearly show that the proposed implicit scheme converges to disease-free
equilibrium point E0(1, 0, 0, 0, 0) and preserves the positivity property.

Next the simulations by using the proposed explicit positive scheme are presented at
same equilibrium point as above.

Table 1 Parametric values

Parameters DFE values Endemic values

NT 5000 5000
αh 1/5 1/5
βh 0.00005 0.00005
μh 0.0000391 0.0000391
αv 1/10 1/10
μv 1/14 1/14
r 1/14 1/14
C 3 300
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Figure 1 Graph representing the exposed humans for DFE implementing forward Euler approach with
h = 0.1, R2 = 0.0800007

Figure 2 Graph representing the exposed humans for DFE using Crank–Nicolson approach with h = 0.1,
R2 = 0.0800007

Figure 3 Graph representing the infected humans for DFE using the proposed implicit approach with h = 0.1,
R3 = 0.0800007
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Figure 4 Graph representing the exposed vectors for DFE using the proposed implicit approach with h = 0.1,
R4 = 0.0800007

Figure 5 Graph representing the infected vectors for DFE using the proposed implicit approach with h = 0.1,
R5 = 0.0800007

Figure 6 Graph representing the exposed vectors for DFE using the proposed implicit approach with h = 0.1,
R4 = 0.0800007
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Figure 7 Graph representing the infected vectors for DFE using the proposed implicit approach with h = 0.1,
R5 = 0.0800007

Figure 8 Graph representing the susceptible humans for DFE using the proposed FD scheme with h = 0.1,
R1 = 0.0800007

Figures 8–12 represent the graphs using the proposed FD scheme. These graphs show
the disease-free equilibrium. Graphs clearly show that the proposed FD scheme converges
to the disease-free equilibrium point E0(1, 0, 0, 0, 0) and preserves the positivity property.

4.1.2 Endemic equilibrium
The graphs of EE (endemic equilibrium) are presented using four finite difference
schemes: forward Euler FD scheme, Crank–Nicolson FD scheme, the proposed implicit
scheme and the proposed positive explicit FD scheme.

For the endemic equilibrium, we use C = 300 (R0 > 1).
Figures 13–14 represent the graphical behavior of susceptible individuals at EE for the

forward Euler and Crank–Nicolson methods. Graphs clearly show that both schemes
demonstrate nonphysical behavior and do not converge to the EE.

Figures 15–24 represent the graphs of the endemic point by implementing the proposed
implicit numerical method and the proposed FD scheme. Graphs clearly show that the
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Figure 9 Graph representing the exposed humans for DFE using the proposed FD scheme with h = 0.1,
R2 = 0.0800007

Figure 10 Graph representing the infected humans for DFE using the proposed FD scheme with h = 0.1,
R3 = 0.0800007

Figure 11 Graph representing the exposed vectors for DFE using the proposed explicit approach with
h = 0.1, R4 = 0.0800007
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Figure 12 Graph representing the infected vectors for DFE using the proposed explicit approach with
h = 0.1, R5 = 0.0800007

Figure 13 Graph representing the susceptible humans for EE implementing the forward Euler approach with
h = 0.1, R1 = 0.0800007

Figure 14 Graph representing the susceptible humans for EE using Crank–Nicolson approach with h = 0.1,
R1 = 0.0800007
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Figure 15 Graph representing the infected humans for EE using the proposed implicit approach with h = 0.1,
R3 = 0.0800007

Figure 16 Graph representing the exposed vectors for EE using the proposed implicit approach with h = 0.1,
R4 = 0.0800007

Figure 17 Graph representing the infected vectors for EE using the proposed implicit approach with h = 0.1,
R5 = 0.0800007
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Figure 18 Graph representing the exposed vectors for EE using the proposed implicit approach with h = 0.1,
R4 = 0.0800007

Figure 19 Graph representing the infected vectors for EE using the proposed implicit approach with h = 0.1,
R5 = 0.0800007

Figure 20 Graph representing the susceptible humans for EE using the proposed explicit approach with
h = 0.1, R1 = 0.0800007
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Figure 21 Graph representing the exposed humans for EE using the proposed explicit approach with h = 0.1,
R2 = 0.0800007

Figure 22 Graph representing the infected humans for EE using the proposed explicit approach with h = 0.1,
R3 = 0.0800007

Figure 23 Graph representing the exposed vectors for EE using the proposed explicit approach with h = 0.1,
R4 = 0.0800007
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Figure 24 Graph representing the infected vectors for EE using the proposed explicit approach with h = 0.1,
R5 = 0.0800007

Table 2 Comparison of time efficiency between proposed methods

Proposed numerical schemes Execution time (in seconds) with h = 0.1,
R1 = R2 = R3 = R4 = R5 = 0.08

Proposed positive explicit scheme 6.113
Proposed positive implicit scheme 2.067

proposed schemes converge to the endemic equilibrium point E1(S∗, X∗, I∗, X∗
v , I∗

v ) and sus-
tain the positive solution.

Now we present the time efficiency at disease-free equilibrium point which is discussed
in Table 2.

Table 2 demonstrates that the positive explicit method is time efficient as compared to
the positive implicit method. The implicit method takes more than double execution time
than the explicit method. This efficiency is shown in the reaction–diffusion model in one
space dimension. As far as the complicated situation of two and three space dimensions
is concerned, the implication of the proposed implicit scheme is very difficult. We have to
observe the long-term behaviour of such a model, therefore time efficiency is crucial for
the numerical scheme in a multidimensional space; for the details, see [29].

5 Conclusion
In this paper, we proposed two positive FD schemes to solve a reaction–diffusion dengue
epidemic model with incubation period of the virus. We used four FD schemes to solve
numerically the reaction–diffusion dengue epidemic model. These schemes were the for-
ward Euler FD scheme, Crank–Nicolson scheme, the proposed implicit FD and the pro-
posed explicit FD schemes. Both existing schemes fail to preserve the positivity prop-
erty, show nonphysical behavior and converge to false steady states, whereas the proposed
FD schemes converge towards the true steady states of the continuous model. The pro-
posed FD schemes are unconditionally dynamically consistent with the positivity property,
which is necessary as negative values of a subpopulation are meaningless. Simulations of a
test problem were presented in this paper. These simulations show that the proposed im-
plicit and explicit FD schemes converge to all the steady states of the system and preserve
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the positivity property. The proposed explicit method is time efficient as compared to the
implicit method. In the future the proposed explicit scheme will be an important tool to
solve many other infectious disease reaction–diffusion mathematical models in multiple
space dimensions because of its time efficiency. Our future plans include spatio-temporal
numerical analysis of a stochastic dengue epidemic model [31] and fractional order dy-
namical systems [32, 33].
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