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Abstract
In this paper, we are applying a novel analytical hybrid method to find the solution of
a fuzzy Volterra Abel’s integral equation of the second kind. The fuzzy number is used
in its parametric form under which the fuzzy Volterra Abel’s integral equation will be
converted into a system of integral equations as in a crisp case. Moreover, to solve the
general fuzzy Volterra integral equation with Abel’s type kernel, and to show that the
proposed method is efficient, a few accurate and simple examples are given for the
demonstration of our results.
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1 Introduction
There are many fields in real life which face uncertainty in data, like environmental sci-
ences, medical sciences, economics, social sciences, and so on. To study these problems,
the fuzzy set theory is one of the most important theories introduced by Zadeh in 1965
[1]. The fuzzy set theory has been used in various other fields, i.e., fuzzy fixed-point the-
ory, fuzzy topology, fuzzy control systems, fuzzy automata, etc. Chang and Zadeh further
extended the concept of a fuzzy set and introduced fuzzy mapping and control [2]. On
the basis of fuzzy mapping and control, many researchers generalized this concept to in-
troduce elementary fuzzy calculus [3–6]. Fuzzy logic has many applications in daily life,
like vacuum cleaner, washing machine, robotics, stock trading, etc. [7]. The contrast en-
hancement algorithm based on fuzzy contextual information of the images is discussed
by Parihar et al. in [8]. In the last few decades, fuzzy integral equations received consid-
erable interest in studying the field of physical sciences. Dobius and Prade were among
those who introduced the basic idea of fuzzy integral equations [6]. Further, extensions
of fuzzy integral equations were made by Matloka and Nanda [9, 10]. In applied sciences,
fuzzy integral equations have vast applications in geography, relational physics, biology,
medical sciences and many more. However, to deal with such types of problems, where
information is vague and imprecise rather than crisp, the parameters are represented by
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fuzzy numbers. Such problems can be modeled using fuzzy integral equations. Therefore,
many researchers worked on these models to investigate the solutions of fuzzy integral
equations.

Recently, many analytical and numerical approaches were proposed to solve fuzzy in-
tegral and differential equations, for example, Jafarian and Nia applied Taylor expansion
method for the system of fuzzy Volterra integral equations [11]. Ghanbari and Allahviran-
loo, and also Matinfar and Saeidy, proposed the Homotopy Perturbation Method (HPM)
and Homotopy Analysis Method (HAM) for solving fuzzy integral equations [12, 13]. For
the solution of fuzzy Fredholm integral equations of the second kind, Ezzati and Ziari dis-
cussed an approach which is based on Bernstein polynomials [14]. Similarly to generalized
differentiability of fuzzy differential equations, hybrid retarded delay differential equations
were solved numerically by Runge–Kutta method [15, 16]. For noninteger order, the in-
terval differential equations were solved in [17]. Numerical simulation of two viscoelas-
tic systems based on differential equations of noninteger order under uncertainty were
studied in [18]. The authors investigate fuzzy fractional differential equations and opti-
mal control of nonlocal evolution equations in [19]. Fuzzy linear integral equations were
further generalized to nonlinear fuzzy integral equations [20]. Shafiee et al. proposed a nu-
merical algorithm based on the predictor–corrector method for nonlinear fuzzy integral
equations [21]. The existence and uniqueness of solutions of fuzzy integral equations, es-
pecially, the solutions of fuzzy Volterra integro-differential equations of the second kind
with a fuzzy kernel and linear Fredholm fuzzy integral equations of the second kind in
artificial neural networks, were established by many researchers [22–25].

During the last decades, the subject of fractional calculus, and its potential applications,
have gained increasing importance, mainly because it has become a powerful tool with
accurate and successful results in modeling several complex phenomena in numerous
seemingly diverse and widespread fields of science and engineering [26–29]. Fractional
calculus is not only a productive and emerging field, it also represents a new philosophy
how to construct and apply a certain type of nonlocal operators to real world problems.
Those possessing both nonlocal effects as well as uncertainty behaviors represent interest-
ing phenomena. Abel’s singular integral equation is a particular type of singular integral
equation where in the range of integration the kernel has a singularity. Abel investigated
such equations for the first time during his study of mathematical physics [30, 31].

Abel’s singular integral equations occur in various areas of scientific fields, such as seis-
mology, microscopy, radio astronomy, electron emission, radar ranging, atomic scatter-
ing, plasma diagnostics, optical fiber evaluation, and X-ray radiography [32, 33]. In the
biomedical branch, Abel’s equations are mostly used in X-ray CT (computerized tomog-
raphy), which has revolutionized diagnostic radiology since its introduction [34]. Abel’s
type kernel integral equations are very important for several models in solid mechanics,
physics, and applied sciences which rely on this type of integral equation.

Thus, there are many techniques already in the literature which are a little bit compli-
cated and in the solution an error term is produced. This motivates us to solve Abel’s
singular integral equation by an alternative method in order to overcome such difficulties.
Therefore, the method of LADM is used to find the solution with more accuracy and to
reduce the error term as much as possible.

In HAM the convergence of a series solution depends upon four factors, i.e., the ini-
tial guess, auxiliary linear operator, auxiliary function which we define for homotopy, and
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auxiliary parameter �. Further, if we select � = –1, and the auxiliary function also equal to
1, we get HPM. Hence HPM is a spacial case of HAM whose convergence [35] is only de-
pendent upon two factors, the auxiliary linear operator and the initial guess. So, given the
initial guess and the auxiliary linear operator, HPM approach cannot provide other ways
to ensure that the solution is convergent. On the other hand, LADM solutions for both
linear and nonlinear problems are obtained in series form showing higher convergence
order of the method. Among all other analytical methods, LADM is an efficient analyti-
cal method to solve nonlinear problems with differential or integral equations. This is a
hybrid method form employing a combination of two powerful methods, Laplace trans-
form and Adomian decomposition method. The mentioned method does not need any
discretization or linearization. It also does not need a predefined parameter as in HAM
which controls this method. Therefore LADM [36] is considered as an efficient analytical
technique for treating those equations that represent nonlinear models. Here we remark
that LADM without initial condition converges towards a particular solution [37].

This paper is organized as follows: In Sect. 2, some basic results and definitions are
presented. In Sect. 3, we establish a scheme for solving a general fuzzy Volterra singu-
lar integral equation with Able’s type kernel. Several examples are given in Sect. 4, and
conclusions are drawn in Sect. 5.

2 Preliminaries
We recall some definitions needed through the paper.

Definition 1 ([38]) Let f (x) be acontinuous fuzzy-valued function and suppose e–px � f (x)
is improperly fuzzy Riemann integrable on [0,∞), then

∫ ∞
0 e–px � f (x) dx is said to be a

fuzzy Laplace transform, denoted as

L
[
f (x)

]
=

∫ ∞

0
e–px � f (x) dx (p > 0 and is an integer). (1)

Definition 2 ([31]) Adomian Decomposition Method is defined for the unknown func-
tion u(x, t) by an infinite series as u(x, t) =

∑∞
i=0 ui(x, t) where the components ui(x, t) will

be determined recursively.

Definition 3 ([39]) Let g1 and g2 be two fuzzy-valued functions. Then the fuzzy convolu-
tion is defined for x > 0 by

(g1 ∗ g2)(x) =
∫ x

0
g1(τ ) · g2(x – τ ) dτ (2)

which exists if g1 and g2 are, say, piecewise continuous. Putting v = x – τ gives

(g1 ∗ g2)(x) =
∫ x

0
g2(v) · g1(x – v) dv = (g2 ∗ g1)(x), (3)

that is, the fuzzy convolution is commutative.

Definition 4 ([40]) The Mittag-Leffler function Eα(z) with one parameter is defined as

Eα(z) =
∞∑

n=0

zn

Γ (αn + 1)
(4)
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where α > 0, z is a complex number, and Γ is the gamma function which is defined for
Re z > 0 as

Γ (z) =
∫ ∞

0
xz–1ex dx.

Definition 5 ([4]) A mapping ν : R → [0, 1] is said to be a fuzzy number if the following
conditions are satisfied:

(i) ν is upper semi-continuous;
(ii) ν {μ(y1) + μ(y2)} ≥ min{ν(y1),ν(y2)};

(iii) there exist y0 ∈R such that ν(y0) = 1, i.e., ν is normal;
(iv) cl{y ∈R,ν(y) > 0} is compact.

Here we denote the set of all fuzzy numbers by E.

Definition 6 ([41]) The parametric form of a fuzzy number can be written in the form of
an ordered pair as (ν(κ),ν(κ)) such that 0 ≤ κ ≤ 1 and the following conditions hold:

(i) ν(κ) is a bounded left-continuous nondecreasing function on [0, 1];
(ii) ν(κ) is bounded right-continuous nonincreasing function on [0, 1];

(iii) ν(κ) ≤ ν(κ).
Also κ is called a crisp number if ν(κ) = ν(κ) = κ .

Definition 7 ([42]) Let φ̃ : [θ1, θ2] → E be a fuzzy-valued function, for every partition
Q = {y0, y1, . . . , ym} of [θ1, θ2], and for every η� ∈ [yj–1, yj], 1 ≤ � ≤ m, we define

Sq =
m∑

j=0

φ̃(η�)(yj – yj–1).

Now let 	j = max |yj – yj–1|, j = 1, 2, . . . , m, then for φ̃(y), the definite integral over [θ1, θ2]
can be written as

lim

j→0

Sq =
∫ θ2

θ1

φ̃(y) dy,

and the parametric form can be written as

∫ θ2

θ1

φ̃(y) dy =
(∫ θ2

θ1

φ̃(y,κ) dy,
∫ θ2

θ1

φ̃(y,κ) dy
)

. (5)

Theorem 1 (Fuzzy convolution theorem, [39]) Let ψ and φ be fuzzy-valued functions on
[0,∞), where ψ and φ are piecewise continuous and of exponential order q, then

L
[
(ψ ∗ φ)(x)

]
= L

[
ψ(x)

] · L
[
φ(x)

]
, (6)

where L represents the Laplace transform.

3 Fuzzy Volterra singular integral equation with Abel’s type kernel
The standard form of a Volterra linear integral equation, where the integration has a vari-
able limit rather than a constant, is of the form

ρ(y)ψ(y) = φ(y) + λ

∫ y

0
K(y, t)ψ(t) dt, (7)
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where φ(y), k(y, t) are known functions and ψ(y) is an unknown to be determined and
enters linearly. If ρ(y) = 0 then Eq. (7) is said to be a Volterra integral equation of the first
kind, and when ρ(y) = 1 then Eq. (7) is said to be a Volterra integral equation of the second
kind and has been studied widely in [31].

Here we discuss the singular fuzzy Volterra linear integral equation with Abel’s type
kernel which can be written in a general form as

ψ(y) = φ(y) +
∫ y

0

ψ(t)√
y – t

dt, (8)

where φ(y) is a fuzzy-valued function which is predefined on the interval [θ1, θ2] and we
seek to find a fuzzy solution ψ(y), which is unknown, and (y – t)–1/2 is said to be the kernel
of Abel’s integral equation. We can rewrite Eq. (8) as follows:

⎧
⎨

⎩

ψ(y,κ) = φ(y,κ) +
∫ y

0
ψ(t,κ)√

y–t dt,

ψ(y,κ) = φ(y,κ) +
∫ y

0
ψ(t,κ)√

y–t dt,
(9)

where κ , y ∈ [0, 1].
In the following, we provide a basic idea of LADM to solve Eq. (8) in its parametric form

given in Eq. (9).
To solve Eq. (8), applying Laplace transform to both sides of Eq. (9), we have

⎧
⎨

⎩

L[ψ(y,κ)] = L[φ(y,κ)] + L[
∫ y

0
ψ(t,κ)√

y–t dt],

L[ψ(y,κ)] = L[φ(y,κ)] + L[
∫ y

0
ψ(t,κ)√

y–t dt].
(10)

In view of Theorem 1, Eq. (10) yields

⎧
⎨

⎩

L[ψ(y,κ)] = L[φ(y,κ)] + L[y–1/2] · L[ψ(y,κ)],

L[ψ(y,κ)] = L[φ(y,κ)] + L[y–1/2] · L[ψ(y,κ)],
⎧
⎨

⎩

L[ψ(y,κ)] = L[φ(y,κ)] +
√

π
t L[ψ(y,κ)],

L[ψ(y,κ)] = L[φ(y,κ)] +
√

π
t L[ψ(y,κ)].

(11)

Upon using inverse the Laplace transform on both sides of Eq. (11), we obtain

⎧
⎨

⎩

ψ(y,κ) = φ(y,κ) + L–1[
√

π
t L[ψ(y,κ)]],

ψ(y,κ) = φ(y,κ) + L–1[
√

π
t L[ψ(y,κ)]].

(12)

Let the solution of Eq. (12) be in the form of an infinite series as

⎧
⎨

⎩

ψ(y,κ) =
∑∞

j=0 uj(y,κ),

ψ(y,κ) =
∑∞

j=0 uj(y,κ),
(13)

where (uj, uj),∀j = 0, 1, 2, . . . are unknown functions to be determined.
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Putting Eq. (13) into Eq. (12), we have

⎧
⎨

⎩

∑∞
j=0 uj(y,κ) = φ(y,κ) + L–1[

√
π
t L[

∑∞
j=0 uj(y,κ)]],

∑∞
j=0 uj(y,κ) = φ(y,κ) + L–1[

√
π
t L[

∑∞
j=0 uj(y,κ)]].

(14)

Comparing termwise both sides of Eq. (14), we get

⎧
⎨

⎩

u0(y,κ) = φ(y,κ),

u0(y,κ) = φ(y,κ),
⎧
⎨

⎩

u1(y,κ) = L–1[
√

π
t L[u0(y,κ)]],

u1(y,κ) = L–1[
√

π
t L[u0(y,κ)]],

...
⎧
⎨

⎩

un+1(y,κ) = L–1[
√

π
t L[un(y,κ)]],

un+1(y,κ) = L–1[
√

π
t L[un(y,κ)]],

(15)

where n ≥ 0. Putting all the values of lower and upper term solution into Eq. (13), we get
the solution of the fuzzy Abel’s singular integral equation in Eq. (8) in parametric form.

In the above iterative scheme the initial guess u0(y,κ) is very important since the initial
guess either gives the exact solution directly by producing noise terms or gives the solution
in closed form which shows the simplicity and accuracy of the said scheme.

4 Numerical examples
A few examples are solved in this section by applying the proposed method to show the
simplicity, accuracy of the method, and why the given scheme is more applicable.

Example 1 ([43]) Let the fuzzy singular Volterra integral equation of the second kind with
Abel’s type kernel in parametric form be given by

⎧
⎨

⎩

ψ(y,κ) = φ(y,κ) +
∫ y

0
ψ(t,κ)√

y–t dt,

ψ(y,κ) = φ(y,κ) +
∫ y

0
ψ(t,κ)√

y–t dt,
(16)

where the lower and upper nonhomogenous terms are

⎧
⎨

⎩

φ(y,κ) = κ
15 (15y2 + 16y5/2),

φ(y,κ) = 1
15 ((2 – κ)y2 – (32 – 16κ)y5/2),

and the exact solution is (κy2, (2 – κ)y2).
To solve the given example using LADM proceed as follows:
First, we solve for the lower limit solution of Eq. (16) such that

ψ(y,κ) = φ(y,κ) –
∫ y

0

ψ(t,κ)√
y – t

dt, (17)
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where

φ(y,κ) =
κ

15
(
15y2 + 16y5/2).

Applying Laplace transform and Theorem 1 and then using the inverse Laplace transform
on Eq. (17), we have

ψ(y,κ) = φ(y,κ) – L–1
[√

π

t
L
[
ψ(y,κ)

]
]

, (18)

the solution of Eq. (18) will be in the form of an infinite series. So let

ψ(y,κ) =
∞∑

j=o

uj(y,κ). (19)

Putting Eq. (19) in Eq. (18), we get

∞∑

j=o

uj(y,κ) = φ(y,κ) – L–1

[√
π

t
L

[ ∞∑

j=0

uj(y,κ)

]]

,

u0(y,κ) + u1(y,κ) + · · · =
κ

15
(
15y2 + 16y5/2) – L–1

[√
π

t
L
[
u0(y,κ)

]
]

– · · · .

(20)

Comparing Eq. (20) termwise and then solving, we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uo(y,κ) = κ
15 (15y2 + 16y5/2),

u1(y,κ) = –L–1[
√

π
t L[u0(y,κ)]] = – κ

15 [16y5/2 + 5πy3],

u2(y,κ) = L–1[
√

π
t L[u1(y,κ)]] = κ

15 [5πy3 + 32
7 πy7/2],

u3(y,κ) = –L–1[
√

π
t L[u2(y,κ)]] = – κ

15 [ 32
7 πy7/2 + 5

4π2y4],

u4(y,κ) = –L–1[
√

π
t L[u3(y,κ)]] = κ

15 [ 5
4π2y4 + 64

63π2y9/2],

u5(y,κ) = –L–1[
√

π
t L[u4(y,κ)]] = – κ

15 [ 64
63π2y9/2 + 1

4π3y5],
...

(21)

then putting Eq. (21) termwise into Eq. (19) on the right-hand side, which produces noise
term, by cancelation we get

ψ(y,κ) = κy2.

Now for the upper limit solution, applying Laplace transform, Theorem 1, and the inverse
Laplace transform on upper limit equation in Eq. (16), we get

ψ(y,κ) = φ(y,κ) – L–1
[√

π

t
L
[
ψ(y,κ)

]
]

. (22)

Let the solution of Eq. (22) be in the form of an infinite series as

ψ(y,κ) =
∞∑

j=0

uj(y,κ). (23)
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Putting Eq. (23) in Eq. (22), we have

∞∑

j=o

uj(y,κ) = φ(y,κ) – L–1

[√
π

t
L

[ ∞∑

j=0

uj(y,κ)

]]

,

u0(y,κ) + u1(y,κ) + · · ·

=
1

15
(
(2 – κ)y2 – (32 – 16κ)y5/2) – L–1

[√
π

t
L
[
u0(y,κ)

]
]

– · · · .

(24)

Comparing Eq. (24) termwise and then solving, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(y,κ) = 1
15 ((2 – κ)y2 – (32 – 16κ)y5/2),

u1(y,κ) = –L–1[
√

π
t L[u0(y,κ)]] = –(2 – κ)[ 16

15 y5/2 + 1
3πy3],

u2(y,κ) = –L–1[
√

π
t L[u1(y,κ)]] = (2 – κ)[ 1

3πy3 + 32
105πy7/2],

u3(y,κ) = –L–1[
√

π
t L[u2(y,κ)]] = –(2 – κ)[ 32

105πy7/2 + 1
12π2y4],

u4(y,κ) = –L–1[
√

π
t L[u3(y,κ)]] = (2 – κ)[ 1

12π2y4 + 64
945π2y9/2],

u5(y,κ) = –L–1[
√

π
t L[u4(y,κ)]] = –(2 – κ)[ 64

945π2y9/2 + 1
60π3y5],

...

(25)

then putting Eq. (25) termwise into Eq. (23) on the right-hand side and canceling the noise
terms, we get

ψ(y,κ) = (2 – κ)y2.

Thus the lower and upper limit solution of Eq. (16) is

(
ψ(y,κ),ψ(y,κ)

)
=

(
κy2, (2 – κ)y2),

which is the exact solution. Here we remark that the solution we obtain via LADM is
in complete agreement with the solution in [34] by HPM and modified HPM. Here we
claim that LADM is simple and needs no extra parameter on which the convergence of
the solution depends.

Example 2 ([43]) Consider the fuzzy singular integral equation with Abel’s type kernel in
parametric form given by

⎧
⎨

⎩

ψ(y,κ) = (y + 4
3 y3/2)(4 + κ) –

∫ y
0

f (t,κ)√
y–t dt,

ψ(y,κ) = (y + 4
3 y5/2)(6 – κ) –

∫ y
0

ψ(t,κ)√
y–t dt,

(26)

where the exact solution is

(
(4 + κ)y, (6 – κ)y

)
.
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Applying Laplace transform, Theorem 1, and the inverse Laplace transform of Eq. (26) to
the lower limit equation, we get

ψ(y,κ) =
(

y +
4
3

y3/2
)

(4 + κ) – L–1
[√

π

t
L
[
ψ(y,κ)

]
]

. (27)

Consider the lower limit solution of Eq. (27) in the form of an infinite series as

ψ(y,κ) =
∞∑

j=0

uj(y,κ). (28)

Putting Eq. (28) into Eq. (27), we have

∞∑

j=0

uj(y,κ) =
(

y +
4
3

y3/2
)

(4 + κ) – L–1

[√
π

t
L

[ ∞∑

j=0

uj(y,κ)

]]

. (29)

Comparing Eq. (29) termwise and solving, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(y,κ) = (4 + κ)[y + 4
3 y3/2],

u1(y,κ) = –L–1[
√

π
t L[u0(y,κ)]] = –(4 + κ)[ 4

3 y3/2 + 1
2πy2],

u2(y,κ) = –L–1[
√

π
t L[u1(y,κ)]] = (4 + κ)[ 1

2πy2 + 8
15πy5/2],

u3(y,κ) = –L–1[
√

π
t L[u2(y,κ)]] = –(4 + κ)[ 8

15πy5/2 + 1
6π2y3],

...

(30)

then putting all the values of Eq. (30) termwise into Eq. (28) on the right-hand side and
simplifying, we obtain

ψ(y,κ) = (4 + κ)y.

Then for the upper limit solution, take the upper limit equation of Eq. (26) and have

ψ(y,κ) =
(

y +
4
3

y5/2
)

(6 – κ) –
∫ y

0

ψ(t,κ)√
y – t

dt. (31)

Applying Laplace transform, Theorem 1, and the inverse Laplace transform, we get

ψ(y,κ) =
(

y +
4
3

y5/2
)

(6 – κ) – L–1
[√

π

t
L
[
ψ(y,κ)

]
]

. (32)

Let the solution of Eq. (32) be in the form of an infinite series as

ψ(y,κ) =
∞∑

j=0

uj(y,κ). (33)

Putting Eq. (33) into Eq. (32) gives

∞∑

j=0

uj(y,κ) =
(

y +
4
3

y5/2
)

(6 – κ) – L–1

[√
π

t
L

[ ∞∑

j=0

uj(y,κ)

]]

. (34)
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Now comparing Eq. (34) termwise and solving, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(y,κ) = (6 – κ)[y + 4
3 y5/2],

u1(y,κ) = –L–1[
√

π
t L[u0(y,κ)]] = –(6 – κ)[ 4

3 y3/2 + 1
2πy2],

u2(y,κ) = –L–1[
√

π
t L[u1(y,κ)]] = (6 – κ)[ 1

2πy2 + 8
15πy5/2],

u3(y,κ) = –L–1[
√

π
t L[u2(y,κ)]] = –(6 – κ)[ 8

15πy5/2 + 1
6π2y3],

...

(35)

then putting all the values of Eq. (35) termwise on the right-hand side into Eq. (33) and
canceling all the noise terms, we get

ψ(y,κ) = (6 – κ)y,

thus the parametric solution of Eq. (26) is

(ψ(y,κ),ψ(y,κ) =
(
(4 + κ)y, (6 – κ)y

)
,

which is the exact solution. Hence the solution is in close agreement with the solution
computed in [34] by HPM and modified HPM.

Example 3 ([43]) Considered the fuzzy singular Volterra integral equation with Abel’s
type kernel

ψ(y,κ) =
(
2
√

y(κ – 1), 2
√

y(1 – κ)
)

–
∫ y

0

ψ(t,κ),ψ(t,κ)√
y – t

dt, (36)

whose exact solution is ((1 – (exp)πyerfc√πy)(κ – 1), (1 – (exp)πyerfc√πy)(1 – κ)).
The parametric form of Eq. (36) is written as

⎧
⎨

⎩

ψ(y,κ) = 2√y(κ – 1) –
∫ y

0
ψ(t,κ)√

y–t dt,

ψ(y,κ) = 2√y(1 – κ)) –
∫ y

0
ψ(t,κ)√

y–t dt.
(37)

For the lower limit solution, taking the lower limit equation of Eq. (37) and applying
Laplace transform, Theorem 1, and the inverse Laplace transform, we obtain

ψ(y,κ) = 2
√

y(κ – 1) – L–1
[√

π

t
L
[
ψ(y,κ)

]
]

. (38)

Let the solution of Eq. (38) be in the form of an infinite series as

ψ(y,κ) =
∞∑

j=0

uj(y,κ). (39)

Putting Eq. (39) into Eq. (38), we get

∞∑

j=0

uj(y,κ) = 2
√

y(κ – 1) – L–1

[√
π

t
L

[ ∞∑

j=0

ψ(y,κ)

]]

. (40)
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Now comparing Eq. (40) termwise and solving, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(y,κ) = 2√y(κ – 1),

u1(y,κ) = –L–1[
√

π
t L[u0(y,κ)]] = –πy(κ – 1),

u2(y,κ) = –L–1[
√

π
t L[u1(y,κ)]] = 4

3πy3/2(κ – 1),

u3(y,κ) = –L–1[
√

π
t L[u2(y,κ)]] = – 1

2π2y2(κ – 1),
...

(41)

then putting Eq. (41) into Eq. (39) on right-hand side and simplifying, as well as using the
Mittag-Leffler function defined in Eq. (4), we get

ψ(y,κ) = (κ – 1)
∑∞

j=0(–1)j–1(π3y)
j
2

Γ (j/2 + 1)

= 1 – E1/2
(
–
√

πy(κ – 1)
)

=
(
1 – (exp)πyerfc

√
πy

)
(κ – 1).

Now for the upper limit solution, taking the upper limit equation of Eq. (36), we have

ψ(y,κ) = 2
√

y(1 – κ) – L–1
[√

π

t
L
[
ψ(y,κ)

]
]

. (42)

Let the solution of Eq. (42) be in the form of an infinite series as

ψ(y,κ) =
∞∑

j=0

uj(y,κ). (43)

Putting Eq. (43) into Eq. (42), we get

∞∑

j=0

ψ j(y,κ) = 2
√

y(1 – κ) – L–1

[√
π

t
L

[ ∞∑

j=0

ψ j(y,κ)

]]

. (44)

Comparing Eq. (44) termwise and simplifying, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(y,κ) = 2√y(1 – κ),

u1(y,κ) = –L–1[
√

π
t L[u0(y,κ)]] = –πy(1 – κ),

u2(y,κ) = –L–1[
√

π
t L[u1(y,κ)]] = 4

3πy3/2(1 – κ),

u3(y,κ) = –L–1[
√

π
t L[u2(y,κ)]] = – 1

2π2y2(1 – κ),
...

(45)

then putting all the values of Eq. (45) termwise into Eq. (43) into the right-hand side and
simplifying, using the Mittag-Leffler function defined in Eq. (4), we obtain

ψ(y,κ) = (1 – κ)
∑∞

j=0(–1)j–1(π3y)
j
2

Γ (j/2 + 1)
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= 1 – E1/2(–
√

πy)(1 – κ)

= 1 –
(
(exp)πyerfc

√
πy

)
(1 – κ).

Thus the parametric solution of Eq. (36) is given by

(
ψ(y,κ),ψ(y,κ)

)
=

((
1 – (exp)πyerfc

√
πy

)
(κ – 1),

(
1 – (exp)πyerfc

√
πy

)
(1 – κ)

)
.

Clearly, the solution is the same as computed by HPM in [34].

5 Conclusion
In the present research, the main purpose is to establish an efficient algorithm for solv-
ing fuzzy convolution Volterra integral equation with Abel’s type kernel by applying the
LADM. The proposed algorithm is a combination of the Laplace transformation and the
ADM. First, we apply the Laplace transformation and then, by expanding the unknown
function in a series, we find the solution of the given problem. Further the efficiency, sim-
plicity, and accuracy of the proposed algorithm are illustrated by giving some numerical
examples which show the exactness of the proposed method. In the literature, the exist-
ing methods, like HPM, depend upon parameters and give approximate solutions while
LADM is easier and more convenient. For a future work, we will investigate an efficient
algorithm to solve both linear and nonlinear fuzzy Volterra integral equations and fuzzy
Fredholm integral equation with separable type kernel using the LADM.
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