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Abstract
The objective in this work is to study oscillation criteria for second-order quasi-linear
differential equations with an advanced argument. We establish new oscillation
criteria using both the comparison technique with first-order advanced differential
inequalities and the Riccati transformation. The established criteria improve, simplify
and complement results that have been published recently in the literature. We
illustrate the results by an example.
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1 Introduction
In this work, we study sufficient conditions for the oscillation of the solutions of second-
order nonlinear differential equations with an advanced argument of the form

(
r
(
u′)α)′(t) + p(t)f

(
u
(
g(t)

))
= 0, (1.1)

where we assume that the following conditions hold:
(H1) α and β are quotients of odd positive integers;
(H2) r ∈ C1([t0,∞), (0,∞)), satisfies

μ(t0) :=
∫ ∞

t0

1
r1/α(s)

ds < ∞;

(H3) g ∈ C1([t0,∞),R), and we suppose that, for all t ≥ t0, g(t) ≥ t, g ′(t) ≥ 0 and p ∈
C[t0,∞), [0,∞) does not vanish identically.

(H4) f ∈ (R,R) is such that uf (u) > 0 for u �= 0 and satisfies the following condition:

There exists a constant κ > 0 such that f (u) > κuβ for all u �= 0. (1.2)
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A solution of (1.1) is an x ∈ C([t0,∞), [0,∞)) with ta = min{τ (tb), g(tb)}, for some tb >
t0, which satisfies the property r(u′)α ∈ C1([ta,∞), [0,∞)) and moreover satisfies (1.1) on
[tb,∞). We consider the nontrivial solutions of (1.1) existing on some half-line [tb,∞) and
satisfying the condition

sup
{∣∣x(t)

∣∣ : tc ≤ t < ∞}
> 0 for any tc ≥ tb.

If x is neither positive nor negative eventually, then x(t) is called oscillatory. Otherwise, it
is a non-oscillatory solution.

Differential equations with advanced arguments are used in many applied problems
where the rate of development depends on the future, as well as on the present time.
In a delay equation, delays represent the retrospective memory of the past. In differen-
tial equations with an advanced argument, advances represent the prospective memory
of the future, accounting for the influence on the system of potential future actions, which
are available at the present time. For instance, population dynamics, economics problems,
or mechanical control engineering are typical fields where such phenomena are thought
to occur, see [14, 20].

The many applications of functional differential equations have been the motive behind
the active research movement in recent times, see [1–13, 22, 24–33] and [34, 35, 37]. In
recent decades, a great amount of work has been done on the oscillation theory of the
different order differential equations with delay and advanced argument [4–13, 15–21, 23]
and [24–33, 36].

This work aims at further developing the oscillation theory of second-order quasi-linear
equations with advanced argument. We use an approach that combines the comparison
with first-order advanced differential inequalities and the Riccati transformation. That en-
ables us to get various conditions, ensuring the oscillation of (1.1). In this paper, we sim-
plify and improve the results in [36, Theorem 1.7.8] and obtain a new criterion for ensur-
ing the oscillation of the solutions of (1.1). We illustrate the improvement obtained by the
results in this paper, through an example.

Lemma 1.1 ([7]) Let α ≥ 1 be a ratio of two odd numbers. Then

A(α+1)/α – (A – B)(α+1)/α ≤ 1
α

B1/α[
(1 + α)A – B

]
, AB ≥ 0 (1.3)

and

DV – CV (α+1)/α ≤ αα

(α + 1)α+1
Dα+1

Cα
, C > 0.

Lemma 1.2 ([33]) Let α,β > 0 and assume that u is an eventually non-increasing positive
solution of (1.1). Then, uβ–α(t) ≥ η(t) holds, where η(t) is defined by

η(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for α = β ;

a1 for α > β ;

a2μ
β–α(t) for α < β ,

and a, a2 are positive constants.
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2 Auxiliary lemmas
The proofs of our main results are essentially based on the following lemmas.

Lemma 2.1 Assume that (1.1) has an eventually positive solution u. If

∫ ∞

t0

p(s) ds = ∞, (2.1)

then

(P1) u is decreasing and
(
r
(
u′)α)′ is non-increasing, eventually.

Proof Assume that there exists a t1 ≥ t0 such that equation (1.1) has a positive solution u
on [t1,∞]. Hence, from (H4), we obtain

(
r
(
u′)α)′(t) ≤ –κp(t)uβ

(
g(t)

)
. (2.2)

Thus, we get that u′ is of fixed sign, eventually. Now, we will prove that u′ < 0. To the
contrary, suppose there exists a t2 ≥ t1 such that u′ > 0 for t ≥ t2. Define a positive function
w by

w(t) =
r(t)(u′(t))α

uβ (t)
. (2.3)

Differentiating (2.3), we get

w′(t) =
(r(t)(u′(t))α)′

uβ (t)
– β

r(t)(u′(t))αu′(t)
uβ+1(t)

.

From (2.2) and g(t) ≥ t, it follows that

w′(t) ≤ –κp(t)
(

u(g(t))
u(t)

)β

– β
r(t)(u′(t))α

uβ (t)
u′(t)
u(t)

≤ –κp(t) – βw(t)
u′(t)
u(t)

.

Thus

w′(t) ≤ –κp(t). (2.4)

Integrating (2.4) from t2 to t, we get

w(t) ≤ w(t2) – κ

∫ t

t2

p(s) ds,

which yields a contradiction to w being positive. Hence, u′(t) < 0, therefore, the proof is
complete. �
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Lemma 2.2 If equation (1.1) has an eventually decreasing positive solution u, then

(P2)
u
μ

is non-decreasing, eventually.

Proof Assume that there exists a t1 ≥ t0 such that equation (1.1) has a positive solution u
on [t1,∞] and u′ < 0. Hence, from (H4), we get that (2.2) holds and therefore

r1/α(s)u′(s) ≤ r1/α(t)u′(t),

for all s ≥ t. Integrating this inequality from t to v yields

u(v) – u(t) ≤ r1/α(t)u′(t)
∫ v

t
r–1/α(s) ds, v ≥ t.

Letting v → ∞ in the above inequality, we see that

r–1/α(t)u(t) + u′(t)μ(t) ≥ 0, (2.5)

and consequently,

d
dt

(
u
μ

)
=

u′

μ
+

r–1/αu
μ2 ≥ 0.

Thus, the proof is complete. �

Lemma 2.3 Assume that equation (1.1) has an eventually positive solution u and

∫ ∞

t0

(
1

r(v)

∫ v

t0

p(s) ds
)1/α

dv = ∞. (2.6)

Then u satisfies (P1), and

(P3) lim
t→∞ u(t) = 0.

Proof Assume that there exists a t1 ≥ t0 such that u(t) > 0 for all t ≥ t1. From (2.6) and
(H2), we conclude that condition (2.1) holds. From Lemma 2.1, it follows that u satisfies
(P1).

Next, since u is a positive decreasing function, we get that limt→∞ u(t) = c ≥ 0. Suppose
that c > 0. Then, there exists t2 ≥ t1 such that u(g(t)) ≤ c, and so

–
(
r
(
u′)α)′(t) ≥ κp(t)uβ

(
g(t)

) ≥ κcβp(t),

for t ≥ t2. We integrate this inequality twice from t2 to t. Then, after the first integration,
we get

r(t2)
(
u′(t2)

)α – r(t)
(
u′(t)

)α ≥ κcβ

∫ t

t2

p(s) ds.
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Therefore,

u′(t) ≤ κcβ

(
1

r(t)

∫ t

t2

p(s) ds
) 1

α

. (2.7)

After the second integration, we obtain

u(t) – u(t2) ≤ –κcβ

∫ t

t2

(
1

r(v)

∫ v

t2

p(s) ds
) 1

α

dv.

This implies that limt→∞ u(t) = –∞, which contradicts c > 0. The proof of the lemma is
complete. �

Lemma 2.4 Assume that equation (1.1) has an eventually positive solution u and (2.6)
holds. Then, there exist positive constants δ1 and δ2 and tδ ≥ t1 such that

δ1μ(t) ≤ u(t)

≤ δ2 exp

(
–κ

1
α

∫ t

t0

(
1

r(s)η(s)

) 1
α
(

μ(g(s))
μ(s)

) β
α
(∫ s

t0

p(ζ ) dξ

) 1
α
)

, (2.8)

for t ≥ tδ .

Proof As in the proof of Lemma 2.3, we get that (P1), (P2) and (P3) hold. From (P2), there
exist t2 ≥ t1 and δ1 > 0 such that u(t)/μ(t) ≥ δ1 for all t ≥ t2. Next, by integrating (1.1) from
t2 to t, we get

–r(t)
(
u′(t)

)α ≥ –r(t2)
(
u′(t2)

)α + κ

∫ t

t2

p(s)uβ
(
g(s)

)
ds

≥ –r(t2)
(
u′(t2)

)α + κuβ
(
g(t)

)∫ t

t2

p(s) ds.

Therefore,

–r(t)
(
u′(t)

)
– κuβ

(
g(t)

)∫ t

t0

p(s) ds ≥ –r(t2)
(
u′(t2)

)α – κuβ
(
g(t)

)∫ t2

t0

p(s) ds.

From (P3), there exists a t3 ≥ t2 such that the left-hand side of this inequality is positive
for t ≥ t3, and thus

–r(t)
(
u′(t)

)α ≥ κuβ
(
g(t)

)∫ t

t0

p(s) ds,

for t ≥ t3. By Lemma 2.2, the last inequality gives

–r(t)
(
u′(t)

)α ≥ κ
uβ (g(t))
μβ (g(t))

(
μβ

(
g(t)

))∫ t

t0

p(s) ds

≥ κ
uβ (t)
μβ (t)

μβ
(
g(t)

)∫ t

t0

p(s) ds.
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Hence,

(u′(t))α

uβ (t)
≤ –κ

r(t)

(
μ(g(t))
μ(t)

)β ∫ t

t0

p(s) ds.

From Lemma 1.2, we obtain

(
u′(t)
u(t)

)α

η(t) ≤ –κ

r(t)

(
μ(g(t))
μ(t)

)β ∫ t

t0

p(s) ds.

Then

u′(t)
u(t)

≤ –
(

κ

η(t)r(t)

) 1
α
(

μ(g(t))
μ(t)

) β
α
(∫ t

t0

p(s) ds
) 1

α

. (2.9)

Integrating (2.9) from t3 to t, we have

u(t) ≤ u(t3) exp

(
–

∫ t

t3

(
μ(g(v))
μ(v)

) β
α
(

κ

η(v)r(v)

∫ v

t0

p(s) ds
) 1

α

dv
)

≤ δ2 exp

(
–

∫ t

t0

(
μ(g(v))
μ(v)

) β
α
(

κ

η(v)r(v)

∫ v

t0

p(s) ds
) 1

α

dv
)

,

where

δ2 = u(t3) exp

(
–

∫ t3

t0

(
μ(g(v))
μ(v)

) β
α
(

κ

η(v)r(v)

∫ v

t0

p(s) ds
) 1

α

dv
)

> 0.

The proof is complete. �

Lemma 2.5 Assume that (2.1) holds and (1.1) has a positive solution u on [t1,∞). Let there
exist constants γ and δ such that γ + δ ∈ [0, 1),

p(t)μα
(
g(t)

)
μ(t)η

(
g(t)

)
r

1
α (t) ≥ γ

κ
(2.10)

and

η–1/α(t)μ1–β/α(t)μβ/α(
g(t)

)
(∫ t

t0

p(s) ds
)1/α

≥ δ

κ1/α . (2.11)

Then, there exists a t2 ≥ t1 such that

u
μ1–γ

and
u
μδ

are non-decreasing and non-increasing, respectively,

for t ≥ t2.

Proof From (2.1) and Lemma 2.1, we get that (P1) holds, and hence

d
dt

(
–r(t)

(
u′(t)α

)
μγ (t)

)
=

(
–r(t)

(
u′(t)

)α)′
μγ (t)

+ γ
(
r(t)

(
u′(t)

)α)
μγ –1(t)r–1/α(t).
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Using (2.10), we obtain

d
dt

(
–r(t)

(
u′(t)

)α
μγ (t)

)

≥ –κp(t)uα
(
g(t)

)
η
(
g(t)

)
μγ (t) + γ r

(
u′(t)

)α μγ –1(t)
r1/α(t)

≥ –κp(t)r(t)
(
u′(t)

)α
η
(
g(t)

)
μα

(
g(t)

)
μγ (t) + γ r

(
u′(t)

)α μγ –1(t)
r1/α(t)

= –r(t)
(
u′(t)

)α
μγ (t)

(
κp(t)μα

(
g(t)

)
η
(
g(t)

)
–

γ

μ(t)r1/α(t)

)
≥ 0.

Hence, –r(u′)αμγ is non-decreasing, and thus there exists a t2 ≥ t1 such that

u(t) ≥ –r1/α(t)u′(t)μγ (t)
∫ ∞

t

μ–γ (s)
r1/α(s)

ds

= –
1

1 – γ
r1/α(t)μ(t)u′(t).

Thus,

d
dt

(
1

μ1–γ (t)
u(t)

)
=

1
(1 – γ )r 1

α (t)μ2–γ (t)

(
u +

1
1 – γ

r1/α(t)μ(t)u′(t)
)

≥ 0.

Proceeding as in the proof of Lemma 2.4, we obtain that (2.9) holds, and so

u(t)
μδ+1(t)r1/α(t)

≤ –
u′(t)

μδ+1(t)

(
η(t)
κ

)1/α(
μ(t)

μ(g(t))

)β/α(∫ t

t0

p(s) ds
)–1/α

. (2.12)

Therefore, we arrive at

d
dt

(
u(t)
μδ(t)

)
=

u′(t)
μδ(t)

+
δu(t)

μδ+1(t)r1/α(t)

≤ u′(t)
μδ(t)

(
1 –

δ

μ(t)

(
η(t)
κ

)1/α(
μ(t)

μ(g(t))

)β/α(∫ t

t0

p(s) ds
)–1/α)

≤ 0.

The proof is complete. �

3 Main results
In this section, we shall establish some oscillation criteria for (1.1). Let us define

μ̂(t) :=
(

μ(t) +
κ

α

∫ ∞

t
μ(s)μα

(
g(s)

)
p(s) ds

)
.

We are now ready to state and prove the main theorems.
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Theorem 3.1 If

∫ ∞

t0

(
1

r(t)

∫ s

t0

p(s)μβ
(
g(s)

)
ds

)1/α

dt = ∞, (3.1)

then every solution of (1.1) is oscillatory.

Proof Suppose, against the theorem’s statement, that equation (1.1) has a non-oscillatory
solution u on [t0,∞). Without loss of generality, we may assume that u(t) > 0, u(g(t)) > 0
for t ≥ t1 ≥ t0. Now, a necessary result to satisfy Condition (3.1) is that

∫ ∞
t0

p(s)μβ (g(s)) ds
is unbounded. Thus, from (H2) and μ′(t) < 0, it is easy to note that (2.1) is valid. So, by
Lemmas 2.1 and 2.2, we get that (P1) and (P2) hold. Therefore, there exist a > 0 and t2 ≥ t1

such that u(t) ≥ aμ(t) for t ≥ t1, and then

–
(
r
(
u′)α)′(t) ≥ κp(t)uβ

(
g(t)

)

≥ κaβp(t)μβ
(
g(t)

)
. (3.2)

Integrating (3.2) from t2 to t, we get

–r(t)
(
u′(t)

)α ≥ r(t2)
(
u′(t2)

)α + κaβ

∫ t

t2

p(s)μβ
(
g(s)

)
ds,

i.e.,

–u′(t) ≥ (
κaβ

) 1
α

(
1

r(t)

∫ t

t2

p(s)μβ
(
g(s)

)
ds

) 1
α

.

Integrating this inequality from t2 to t, letting t → ∞, and using (3.1), we get a contradic-
tion to u being positive. The proof is complete. �

Theorem 3.2 If

lim sup
t→∞

Φ(t, t1) > 1, (3.3)

for any t1 ∈ [t0,∞), where

Φ(t, s) := κη
(
g(t)

)
μα

(
g(t)

)∫ t

s
p(v) dv,

then (1.1) is oscillatory. Moreover, if (2.6) holds and

lim sup
t→∞

Φ(t, t0) > 1, (3.4)

then (1.1) is oscillatory.

Proof Suppose, against the theorem’s statement, that equation (1.1) has a non-oscillatory
solution u on [t0,∞). Without loss of generality, we may assume that u(t) > 0, u(g(t)) > 0
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for t ≥ t1 ≥ t0. We can see that (3.3) and (H2) imply (2.1). Thus, Lemma 2.1 is valid for
t > t1. Integrating (1.1) from t1 to t, we obtain

–r(t)
(
u′(t)

)α ≥ –r(t1)
(
u′(t1)

)α + κ

∫ t

t1

p(s)uβ
(
g(s)

)
ds

≥ –r(t1)
(
u′(t1)

)α + κuβ
(
g(t)

)∫ t

t1

p(s) ds

≥ –r(t1)
(
u′(t1)

)α + κuβ–α
(
g(t)

)
uα

(
g(t)

)∫ t

t1

p(s) ds

≥ –r(t1)
(
u′(t1)

)α + κη
(
g(t)

)
uα

(
g(t)

)∫ t

t1

p(s) ds. (3.5)

The last inequality, together with (2.5), implies that

–r(t)
(
u′(t)

)α ≥ –κη
(
g(t)

)
r
(
g(t)

)
μα

(
g(t)

)(
u′(g(t)

))α

∫ t

t1

p(s) ds. (3.6)

Since r(t)(u′(t))α is non-increasing and g(t) ≥ t, we get

Φ(t, t1) = κη
(
g(t)

)
μα

(
g(t)

)∫ t

t1

p(s) ds ≤ r(t)(u′(t))α

r(g(t))(u′(g(t)))α
≤ 1, (3.7)

which contradicts (3.3).
On the other hand, let (2.6) hold. From the definition of η, we note that η(t) is bounded.

Thus, from Lemma 2.3, we get that limt→∞ u(t) = 0, and hence there exists a t2 ∈ [t1,∞)
large enough, such that

κη
(
g(t)

)
uα

(
g(t)

)∫ t1

t0

p(s) ds < –r(t1)
(
u′(t1)

)α

for all t ≥ t2. Therefore, from (3.5), we obtain

–r(t)
(
u′(t)

)α ≥ –r(t1)
(
u′(t1)

)α + κη
(
g(t)

)
uα

(
g(t)

)∫ t

t0

p(s) ds

– κη
(
g(t)

)
uα

(
g(t)

)∫ t1

t0

p(s) ds

≥ κη
(
g(t)

)
uα

(
g(t)

)∫ t

t0

p(s) ds.

As in (3.6) and (3.7), we get a contradiction to (3.4). The proof of the theorem is com-
plete. �

Theorem 3.3 Assume that

lim inf
t→∞

∫ g(t)

t
p(s)μα

(
g(s)

)
ds >

1
κe

if α = β , (3.8)
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or

lim
t→∞

∫ t

t0

p(s)μα
(
g(s)

)
ds = ∞ if α < β . (3.9)

Then (1.1) is oscillatory.

Proof Suppose, against the theorem’s statement, that equation (1.1) has a non-oscillatory
solution u on [t0,∞). Without loss of generality, we may assume that u(t) > 0, u(g(t)) > 0
for t ≥ t1 ≥ t0. We note that the following condition is necessary for (3.8) to be valid:

∫ ∞

t0

p(s)μα
(
g(s)

)
ds = ∞. (3.10)

Moreover, (3.10) with (H2) ensure (2.1). From Lemma 2.1 and 2.2, we have that (P1) and
(2.5) hold. It follows from (1.1) and (2.5) that

–
(
r(t)

(
u′(t)

)α)′ + κp(t)rβ/α(
g(t)

)
μβ

(
g(t)

)(
u′(g(t)

))β ≥ 0.

This implies that ϕ := –r(u′)α is a positive solution of the first-order advanced differential
inequality

ϕ′(t) – κp(t)μβ
(
g(t)

)
ϕβ/α(

g(t)
) ≥ 0. (3.11)

In view of [24, Theorem 2.4.1] and [23, Theorem 1], conditions (3.8) and (3.9) imply that
the advanced inequality (3.11) has no positive solutions when α = β and α < β , respec-
tively. This contradiction completes the proof. �

Theorem 3.4 Assume that

lim inf
t→∞

∫ g(t)

t
p(s)μ̂α

(
g(s)

)
ds >

1
κe

if α = β , (3.12)

or

lim
t→∞

∫ t

t0

p(s)μ̂α
(
g(s)

)
ds = ∞ if α < β , (3.13)

where

μ̂(t) := μ(t) +
κ

α

∫ ∞

t
μ(s)μα

(
g(s)

)
p(s)η

(
g(s)

)
ds.

Then (1.1) is oscillatory.

Proof Proceeding as in the proof of Theorem 3.3, we obtain that (3.10), together with
(H2), implies (2.1). Then, from Lemma 2.1 and 2.2, we get that (P1) and (2.5) hold. Now,
let ϕ := r(u′)α and

w := u + μϕ1/α > 0. (3.14)
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Then,

w′(t) = u′(t) – r–1/α(t)ϕ1/α(t) +
1
α

μ(t)ϕ(1/α)–1(t)ϕ′(t)

=
1
α

μ(t)ϕ(1/α)–1(t)ϕ′(t)

which, together with (1.1), implies that

w′(t) ≤ –
κ

α
μ(t)p(t)ϕ(1/α)–1(t)uβ

(
g(t)

)
< 0. (3.15)

Integrating (3.15) from t to ∞, we get

w(t) ≥ κ

α

∫ ∞

t
μ(s)p(s)ϕ(1/α)–1(s)uβ

(
g(s)

)
ds

≥ κ

α

∫ ∞

t
μ(s)p(s)ϕ(1/α)–1(s)η

(
g(s)

)
uα

(
g(s)

)
ds.

Using (2.5) in last inequality, we have

w(t) ≥ –
κ

α

∫ ∞

t
μ(s)μα

(
g(s)

)
p(s)ϕ(1/α)–1(s)η

(
g(s)

)
ϕ
(
g(s)

)
ds

≥ –
κ

α

∫ ∞

t
μ(s)μα

(
g(s)

)
p(s)η

(
g(s)

)
ϕ1/α(s) ds

≥ –
κ

α
ϕ1/α(t)

∫ ∞

t
μ(s)μα

(
g(s)

)
p(s)η

(
g(s)

)
ds.

From (3.14), we arrive at

u(t) ≥ –
(

μ(t) +
κ

α

∫ ∞

t
μ(s)μα

(
g(s)

)
p(s)η

(
g(s)

)
ds

)
ϕ1/α(t)

= –μ̂(t)ϕ1/α(t). (3.16)

Using (3.16) and (1.1) yields

ϕ̂′(t) – κp(t)μ̂β
(
g(t)

)
ϕ̂β/α(

g(t)
) ≥ 0,

where ϕ̂ := –ϕ. The rest of proof is similar to that of Theorem 3.3, and therefore we omit
it. �

Theorem 3.5 Assume that (2.1) holds. If there exists a ρ ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

{
μα(t)
ρ(t)

∫ t

T

(
κρ(s)p(s)

(
μ(g(s))
μ(s)

)β

η(s) –
r(s)(ρ ′(s))α+1

(α + 1)α+1ρα(s)

)
ds

}
> 1,

for any T ∈ [t0,∞), then (1.1) is oscillatory.

Proof Suppose to the contrary of the theorem’s statement that equation (1.1) has a non-
oscillatory solution u on [t0,∞). Without loss of generality, we can assume that u(t) > 0,
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u(g(t)) > 0 for t ≥ t1 ≥ t0. By Lemma 2.1 and 2.2, we have (P1) and (P2) hold for t > t1.
Equation (1.1), together with (P2), leads to

(r(t)(u′(t))α)′

uα(t)
≤ –κp(t)

uβ (g(t))
uα(t)

≤ –κp(t)
uβ (g(t))

uβ (t)
uβ–α(t)

≤ –κp(t)
(

μ(g(t))
μ(t)

)β

η(t). (3.17)

Now, let us make the positive generalized Riccati substitution:

ω(t) = ρ(t)
[

r(t)(u′(t))α

uα(t)
+

1
μα(t)

]
, for all t ≥ t2. (3.18)

Differentiating (3.18), we get

ω′(t) =
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(u′(t))α)′

uα(t)
– αρ(t)r(t)

(
u′(t)
u(t)

)α+1

+
αρ

r 1
α (t)μα+1(t)

=
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(u′(t))α)′

uα(t)
+

αρ

r 1
α (t)μα+1(t)

– αρ(t)r(t)
(

ω(t)
ρ(t)r(t)

–
1

r(t)μα(t)

) α+1
α

. (3.19)

From (3.19) and (3.17), we have

ω′(t) ≤ ρ ′(t)
ρ(t)

ω(t) – ρ(t)κp(t)
(

μ(g(t))
μ(t)

)β

η(t) +
αρ

r 1
α (t)μα+1(t)

–
α

(ρ(t)r(t)) 1
α

(
ω(t) –

ρ(t)
μα(t)

) α+1
α

.

Using Lemma 1.1, with

C =
ρ ′(t)
ρ(t)

, D =
α

(ρ(t)r(t)) 1
α

, andV =
ρ(t)
μα(t)

,

we obtain

ω′(t) ≤ –κρ(t)p(t)
(

μ(g(t))
μ(t)

)β

η(t) +
ρ ′(t)
μα(t)

+
r(t)(ρ ′(t))α+1

(α + 1)α+1ρα(t)

+
αρ

r 1
α (t)μα+1(t)

≤ –κρ(t)p(t)
(

μ(g(t))
μ(t)

)β

η(t) +
(

ρ(t)
μα(t)

)′

+
r(t)(ρ ′(t))α+1

(α + 1)α+1ρα(t)
. (3.20)
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We can write inequality (2.5) in the form

–
ρ(t)
μα(t)

≤ ρ(t)
r(t)(u′(t))α

uα(t)
≤ 0. (3.21)

Integrating (3.20) from t2 to t, we get

∫ t

t2

(
κρ(t)p(t)

(
μ(g(t))
μ(t)

)β

η(t) –
r(t)(ρ ′(t))α+1

(α + 1)α+1ρα(t)

)
ds

≤ ω(t2) – ω(t) +
ρ(s)
μα(s)

+
ρ(t2)
μα(t2)

.

In view of the definition of ω(t), we get

∫ t

t2

(
κρ(t)p(t)

(
μ(g(t))
μ(t)

)β

η(t) –
r(t)(ρ ′(t))α+1

(α + 1)α+1ρα(t)

)
ds

≤ ρ(t2)
r(t2)(u′(t2))α

uα(t2)
– ρ(t)

r(t)(u′(t))α

uα(t)
. (3.22)

Using inequality (3.21) into (3.22), we are led to

μα(t)
ρ(t)

∫ t

t2

(
κρ(t)p(t)

(
μ(g(t))
μ(t)

)β

η(t) –
r(t)(ρ ′(t))α+1

(α + 1)α+1ρα(t)

)
ds ≤ 1.

Taking the limit superior of both sides of the inequality, we get a contradiction. This com-
pletes the proof. �

4 Discussion and examples
By using Lemma 2.5, we further improve the established oscillation criteria in Theorems
3.2, 3.3, and 3.5.

Corollary 4.1 Assume that there exist constants γ and δ such that γ + δ ∈ [0, 1) and (2.10)
and (2.11) hold. If

lim sup
t→∞

μγ (t)μ1–γ –δ
(
g(s)

)α
∫ t

t1

μδα
(
g(s)

)
p(s)η

(
g(s)

)
ds >

(1 – γ )α

κ
,

then (1.1) is oscillatory.

Proof Suppose to the contrary of the corollary’s statement that equation (1.1) has a non-
oscillatory solution u on [t0,∞). Without loss of generality, we may assume that u(t) > 0,
u(g(t)) > 0 for t ≥ t1 ≥ t0. From (H2), as t → ∞, we get

μγ (t)μ1–γ –δ
(
g(t)

) ≤ μ(t)1–δ → 0.

Then, we see that
∫ t

t1
μδα(g(t))p(s) ds and

∫ t
t0

p(s) ds are unbounded. Hence, (2.1) is neces-
sary for (3.1) to be valid. From Lemma 2.1, (P1) is satisfied for t ≥ t1. By (1.1), we obtain

–r(t)
(
u′(t)

)α ≥ –r(t1)
(
u′(t1)

)α +
∫ t

t1

κp(s)uβ
(
g(s)

)
ds.
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Using Lemma 2.5, we get

–r(t)
(
u′(t)

)α ≥
(

u(g(s))
μδ(g(s))

)α ∫ t

t1

kμδα
(
g(s)

)
p(s)η

(
g(s)

)
ds

=
(

u(t)μ1–γ –δ(g(s))
μ1–γ (t)

)α ∫ t

t1

kμδα
(
g(s)

)
p(s)η

(
g(s)

)
ds

=
(

u(t)μ1–γ –δ(g(s))
μ1–γ (t)

)α ∫ t

t1

kμδα
(
g(s)

)
p(s)η

(
g(s)

)
ds. (4.1)

Moreover,

u(t)
μ1–γ (t)

≥ –(r(t)) 1
α u′(t)μ(t)

(1 – γ )μ(1–γ )(t)

≥ –r 1
α (t)u′(t)μ(t)

(1 – γ )
.

Therefore, (4.1) becomes

–r(t)
(
u′(t)

)α ≥
(

–r 1
α (t)u′(t)μγ (t)μ1–γ –δ(g(s))

(1 – γ )

)α ∫ t

t1

kμδα
(
g(s)

)
p(s)η

(
g(s)

)
ds

≥ –r(t)
(
u′(t)

)α

(
μγ (t)μ1–γ –δ(g(s))

(1 – γ )

)α ∫ t

t1

kμδα
(
g(s)

)
p(s)η

(
g(s)

)
ds.

Then
(

μγ (t)μ1–γ –δ(g(s))
(1 – γ )

)α ∫ t

t1

kμδα
(
g(s)

)
p(s)η

(
g(s)

)
ds ≤ 1.

This completes the proof. �

Corollary 4.2 Assume that γ is a constant satisfying (3.4) and 0 ≤ γ < 1. If α = β and

lim inf
t→∞

∫ g(t)

t
p(s)μ̂α

(
g(s)

)
ds >

(1 – γ )β

κe
,

then (1.1) is oscillatory.

Corollary 4.3 Assume that (2.1) holds. If there exists a function ρ ∈ C1([t0,∞), (0,∞))
such that

lim sup
t→∞

{
μα(t)
ρ(t)

∫ t

T

(
κρ(t)η(s)p(s) –

r(s)(ρ ′(s))α+1

(α + 1)α+1ρα(s)

)
ds

}
> 1,

where

p(s) = p(t)
(

μ(g(t))
μ(t)

)β(1–γ )

, (4.2)

then (1.1) is oscillatory.
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For an appropriate choice of the function ρ (1 or μ(t), or μα(t)), Theorem 3.5 and Corol-
lary 4.1 can be used to study the oscillation of (1.1) in a wide range of applications. Hence,
by choosing ρ(t) = μα(t), we get the following results:

Corollary 4.4 Assume that (2.1) holds. If

lim sup
t→∞

∫ t

T

(
κp(s)η(s)

μβ (g(s))
μβ–α(s)

–
αα+1

(α + 1)α+1r1/α(s)μ(s)

)
ds > 1,

for any T ∈ [t0,∞), then (1.1) is oscillatory.

Corollary 4.5 Assume that (2.1) holds and p is defined as in (4.2). If

lim sup
t→∞

∫ t

T

(
κη(s)μα(t)p(s) –

αα+1

(α + 1)α+1r1/α(s)μ(s)

)
ds > 1,

then (1.1) is oscillatory.

Example 4.1 Consider the equation

(
t2α

(
u′)α)′ + p0tυ–1uβ (λt) = 0, (4.3)

where λ ≥ 1 and

υ =

⎧
⎨

⎩
α + 1, for α > β ;

β , for α ≤ β .

We note that κ = 1, r(t) := t2α , p(t) := p0tυ–1, g(t) := λt, and f (v) := vβ . Thus, we see that
μ(t) = 1/t and

∫ ∞

t0

(
1

v2α

∫ v

t0

sυ–1 ds
)1/α

dv = ∞ (i.e., (2.6) holds).

First, let α < β . We see that (3.1) is not satisfied and therefore, Theorem 3.1 does not
apply. Also, since (3.4), namely κa2p0 > βλβ , for any a2, Theorem 3.2 does not apply in
this example. On the other hand, by Theorem 3.3, we see that

lim
t→∞

p0

λα

∫ t

t0

sβ–α–1 ds = ∞,

and thus (4.3) is oscillatory.
Assume that α > β . Using Theorem 3.2, we get that (4.3) is oscillatory.
Finally, let α = β . From Lemma 2.3 and 2.4, any positive solution u of (4.3) satisfies

limt→∞ u(t) = ∞ and there exist positive constants δ1 and δ2 and tδ ≥ t1 such that

δ1

t
≤ u(t) ≤ δ2

tη
,
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where

η =
(

1
λ

) β
α
(

p0

α

)1/α

,

for t ≥ tδ . The following list shows the conditions that have resulted from our theorems:

Theorem 3.1 : cannot be applied;

Theorem 3.3 : (c1)
p0

λα
lnλ >

1
e

;

Theorem 3.4 : (c2) p0

(
1 +

p0

α
λ(1–α)

)α

lnλ >
λα

e
;

Corollary 4.1 : (c3) p0(λ)α(γ –1) > α(1 – γ )α(1 – δ);

Corollary 4.2 : (c4) p0

(
1 +

p0

α
λ(1–α)

)α

lnλ >
λα(1 – γ )α

e
;

Corollary 4.4 : (c5)
p0

λα
>

(
α

α + 1

)α+1

;

Corollary 4.5 : (c6)
p0

λα(1–γ ) >
(

α

α + 1

)α+1

,

where γ := p0λ
–α and δ := p1/α

0 /(λα1/α). We note that Theorem 3.4 improves Theorem 3.3,
Corollary 4.2 improves Theorem 3.4, and Corollary 4.5 improves Corollary 4.4.
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