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Abstract
In this paper, we investigate the existence of solutions for two nonlinear fractional
multi-term integro-differential inclusions in two hybrid and non-hybrid versions. The
boundary value conditions are in the form of three-point integral hybrid conditions.
In this way, we define a new operator based on the integral solution of the given
boundary value inclusion problem and then we use assumptions of a Dhage’s fixed
point result for this fractional operator in the hybrid case. Also, the approximate
endpoint property is applied for the corresponding set-valued maps in the
non-hybrid case. Finally, we provide two examples to illustrate our main results.
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1 Introduction
To design powerful computing software, we need strong mathematical tools. In other
words, if one can make exact patterns for natural phenomena and processes by using new
mathematical formulas and operators, then more flexible algorithms can be written in
the software programming based on such relations and formulas. This results in accu-
rate computer calculations with the least error in the shortest time. In this way, many
researchers are currently studying various types of advanced mathematical models using
fractional differential equations and related inclusion versions with more general bound-
ary value conditions [1–8]. Indeed, they try to model the processes such that they cover
many general cases and in this situation; mathematicians would like to solve a wide range
of these boundary value problems with advanced and complicated boundary conditions.
Recently, many papers have been published on the existence of solutions for different frac-
tional boundary value problems (see, for example, [9–34]). In the last few decades, frac-
tional hybrid differential equations and inclusions with hybrid or non-hybrid boundary
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value conditions have received a great deal of interest and attention of many researchers
(see, for example, [35–42]).

The starting point for this field is related to a joint work of Dhage and Lakshmikantham
in 2010. They introduced a new category of nonlinear differential equations, called or-
dinary hybrid differential equations, and studied the existence of extremal solutions for
this boundary value problem by establishing some fundamental differential inequalities
[43]. In 2012, Zhao et al. provided an extension for the Dhage’s work to fractional order
and considered a boundary value problem of fractional hybrid differential equations [44].
Later, many papers have been published by researchers, in which authors studied different
properties of solutions for fractional hybrid boundary value problems. In 2016, Ahmad et
al. studied the existence of solutions for the nonlocal boundary value problem of fractional
hybrid integro-differential inclusion

⎧
⎨

⎩

cDα
0 ( k(t)–

∑m
i=1 I

βi
0 hi(t,k(t))

g(t,k(t)) ) ∈ G(t, k(t)) = 0, t ∈ [0, 1],

k(0) = μ(x), k(1) = A ∈R,

where cDα
0 denotes the Caputo fractional derivative of order α ∈ (1, 2] and Iφ

0 is the
Riemann–Liouville fractional integral of order φ > 0 with φ ∈ {β1,β2, . . . ,βm} [45]. Next,
Baleanu et al. derived some existence results and a theorem on the dimension of the solu-
tion set for the fractional hybrid inclusion problem

cDν
0

(
k(t)

Λ(t, k(t),Iα1 k(t), . . . ,Iαn k(t))

)

∈ Ψ
(
t, k(t),Iβ1 k(t), . . . ,Iβm k(t)

)
,

for t ∈ [0, 1], supplemented with boundary value conditions k(0) = k∗
0 and k(1) = k∗

1 , where
ν ∈ (1, 2], cDν and Iγ denote the Caputo derivative operators of fractional order ν and the
Riemann–Liouville integral operator of fractional order γ ∈ {αi,βj} ⊂ (0,∞) for i = 1, . . . , n
and j = 1, . . . , m, respectively [46]. In 2019, Samei et al. discussed the existence of solutions
for the fractional hybrid Caputo–Hadamard differential inclusion

⎧
⎨

⎩

CHDα
1+ ( k(t)–f (t,k(t),Iβ1 h1(t,k(t)),...,Iβn hn(t,k(t)))

g(t,k(t),Iγ1 k(t),...,Iγm k(t)) ) ∈ K(t, k(t)),

k(1) = μ(t), k(e) = η(t),

for t ∈ [1, e], where α ∈ (1, 2], n, m ∈ N, βi > 0 for i = 1, 2, . . . , n, γi > 0 for i = 1, 2, . . . , m,
the functions g : J × R

m+1 → R \ {0}, f : J × R
n+1 → R and hi : J × R → R are contin-

uous, μ,η ∈ C(J ,R), K : J × R → P(R) is a set-valued map with certain conditions, and
the operators CHD(·)

1+ and I (·) denote the fractional Caputo–Hadamard derivative and the
fractional Hadamard integral of order (·), respectively [40].

By mixing ideas of the above works, we investigate the fractional hybrid multi-term Ca-
puto integro-differential inclusion

cDω
0

(
k(t)

ξ (t, k(t),ϕ1(k(t)), . . . ,ϕn(k(t)))

)

∈K
(
t, k(t),φ1

(
k(t)

)
, . . . ,φm

(
k(t)

))
, (1)
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with three-point integral hybrid boundary value conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1( k(t)
ξ (t,k(t),ϕ1(k(t)),...,ϕn(k(t))) )|t=0

+ λ2( k(t)
ξ (t,k(t),ϕ1(k(t)),...,ϕn(k(t))) )|t=1 = a,

λ3
cDβ

0 ( k(t)
ξ (t,k(t),ϕ1(k(t)),...,ϕn(k(t))) )|t=η

+ λ4
∫ 1

0
cDβ

0 ( k(s)
ξ (s,k(s),ϕ1(k(s)),...,ϕn(k(s))) ) ds = b,

(2)

where t ∈ J = [0, 1], ω ∈ (1, 2], β ∈ (0, 1], η ∈ (0, 1), λ1, λ2, λ3, λ4, a, b ∈ R
+ and cDγ

0 denotes
the fractional Caputo derivative of order γ ∈ {ω,β}. Also ξ : [0, 1] × R

n+1 → R \ {0} is a
continuous function and K : [0, 1] × R

m+1 → P(R) is a set-valued map via some certain
properties. For i = 1, 2, . . . , m, let

φi
(
k(t)

)
= I�i

0 k(t) =
∫ t

0

(t – s)�i–1

Γ (�i)
k(s) ds

and, for i = 1, 2, . . . , n, let

ϕi
(
k(t)

)
= I�i

0 k(t) =
∫ t

0

(t – s)�i–1

Γ (�i)
k(s) ds,

with �i,�i > 0 and m, n ∈ N. If we put ξ (t, k(t),ϕ1(k(t)), . . . ,ϕn(k(t))) = 1 and K(t, k(t),
φ1(k(t)), . . . ,φm(k(t))) = S(t, k(t)), then the fractional hybrid multi-term integro-
differential inclusion (1)–(2) reduces to the fractional non-hybrid inclusion problem

⎧
⎨

⎩

cDω
0 k(t) ∈ S(t, k(t)) (t ∈ J),

λ1k(0) + λ2k(1) = a, λ3
cDβ

0 k(η) + λ4
∫ 1

0
cDβ

0 k(s) ds = b.
(3)

We review the existence of solutions for two given fractional hybrid and non-hybrid in-
clusion problems. It is noted that the fractional hybrid multi-term integro-differential in-
clusion presented in this paper is new in the sense that the boundary value conditions are
stated as three-point mixed Caputo integro-derivative hybrid conditions. Also, this hybrid
boundary value problem is general and it involves many fractional dynamical systems as
special cases. In this way, we use the Dhage fixed point theorem for the hybrid case and
the approximate endpoint property for the non-hybrid case.

The paper is organized as follows: In the next Sect. 2, some basic definitions and applied
results are presented. In Sect. 3, we state our main existence results and used techniques in
this direction. Finally, two illustrative examples about the corresponding existence results
are given in the last Sect. 4.

2 Preliminaries
In this section, we recall some definitions and theorems needed in the sequel. Let ω > 0.
The fractional Riemann–Liouville integral of a function k : [a, b] →R is defined by

Iω
0 k(t) =

∫ t

0

(t – s)ω–1

Γ (ω)
k(s) ds,
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provided that the right-hand side integral exists [47, 48]. Now, let n – 1 < ω < n and n =
[ω] + 1. The fractional Caputo derivative of a function k ∈ C(n)([a, b],R) is defined by

cDω
0 k(t) =

∫ t

0

(t – s)n–ω–1

Γ (n – ω)
k(n)(s) ds,

provided that the right-hand side integral exists [47, 48]. It has been proved that the general
solution for the homogeneous fractional differential equation cDω

0 k(t) = 0 is in the form
k(t) = m∗

0 + m∗
1t + m∗

2t2 + · · · + m∗
n–1tn–1 and we have

Iω
0
(cDω

0 k(t)
)

= k(t) +
n–1∑

j=0

m∗
j tj = k(t) + m∗

0 + m∗
1t + m∗

2t2 + · · · + m∗
n–1tn–1,

where m∗
0, . . . , m∗

n–1 are some real constants and n = [ω] + 1 [49].
Assume that (X ,‖ ·‖X ) is a normed space. The set of all subsets of X , the set of all closed

subsets of X , the set of all bounded subsets of X , the set of all compact subsets of X , and
the set of all convex subsets of X are represented by P(X ), Pcl(X ), Pb(X ), Pcp(X ), and
Pcv(X ), respectively. We say that k∗ ∈ X is a fixed point for the set-valued map K : X →
P(X ) if k∗ ∈ K(k∗) [50]. The set of all fixed points of the set-valued map K is denoted by
FIX (K) [50]. The Pompeiu–Hausdorff metric PHd : P(X )×P(X ) →R∪{∞} is defined
by

PHdX (A1, A2) = max
{

sup
a1∈A1

dX (a1, A2), sup
a2∈A2

dX (A1, a2)
}

,

where dX (A1, a2) = infa1∈A1 dX (a1, a2) and dX (a1, A2) = infa2∈A2 dX (a1, a2) [50]. A set-
valued map K : X → Pcl(X ) is said to be Lipschitz with a Lipschitz constant λ∗ > 0
whenever we have PHdX (K(k1),K(k2)) ≤ λ∗dX (k1, k2) for all k1, k2 ∈ X . A Lipschitz map
K is called a contraction whenever λ∗ ∈ (0, 1) [50]. We say that the set-valued map K
is completely continuous whenever the set K(W ) is relatively compact for every W ∈
Pb(X ). A set-valued map K : [0, 1] → Pcl(R) is said to be measurable if the function
t 
→ dX (υ,K(t)) is measurable for all υ ∈ R [50, 51]. We say that the set-valued map K
is an upper semi-continuous (u.s.c.) whenever for each k∗ ∈ X , the set K(k∗) belongs to
Pcl(X ) and for every open set V containing K(k∗), there exists an open neighborhood U∗

0

of k∗ such that K(U∗
0 ) ⊆ V [50]. A real-valued function k : R → R is called upper semi-

continuous whenever lim supn→∞ k(an) ≤ k(a) for all sequences {an}n≥1 with an → a [50].
The graph of the set-valued map K : X →Pcl(Y) is defined by

Graph(K) =
{

(k, s) ∈X ×Y : s ∈K(k)
}

.

We say that the graph ofK is a closed set if for each sequence {kn}n≥1 in X and {sn}n≥1 inY ,
kn → k0, sn → s0 and sn ∈ K(kn), we have s0 ∈ K(k0) [50, 51]. Suppose that the set-valued
map K : X →Pcl(Y) is upper semi-continuous. Then Graph(K) is a subset of the product
space X ×Y which is a closed set. Conversely, if the set-valued map K is completely con-
tinuous and has a closed graph, then K is upper semi-continuous [50, Proposition 2.1].
A set-valued map K is convex-valued if K(k) is a convex set for each element k ∈X . A set
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of selections of a set-valued map K at point k ∈ C([0, 1],R) is defined by

(SEL)K,k :=
{
ϑ ∈L1([0, 1],R

)
: ϑ(t) ∈K

(
t, k(t)

)}
,

for almost all t ∈ [0, 1] [50, 51]. If K is an arbitrary set-valued map, then for each function
k ∈ C([0, 1],X ), we have (SEL)K,k 
= ∅ whenever dimX < ∞ [50]. A set-valued map K :
[0, 1] ×R →P(R) is called Carathéodory whenever t 
→K(t, k) is a measurable mapping
for each function k ∈R and k 
→K(t, k) is an upper semi-continuous mapping for almost
all t ∈ [0, 1] [50, 51]. Moreover, a Carathéodory set-valued map K : [0, 1] × R → P(R) is
said to be L1-Carathéodory whenever for each constant μ > 0 there exists function φμ ∈
L1([0, 1],R+) such that

∥
∥K(t, k)

∥
∥ = sup

t∈[0,1]

{|q| : q ∈K(t, k)
}≤ φμ(t),

for all |k| ≤ μ and for almost all t ∈ [0, 1] [50, 51]. We say that u ∈ X is an endpoint of
the set-valued map K : X →P(X ) whenever we have K(k) = {k} [52]. Also, the set-valued
map K has an approximate endpoint property whenever infk∈X supk∗∈K(k) dX (k, k∗) = 0
[52]. We need the following results.

Theorem 1 ([53]) Suppose that X is a separable Banach space, K : [0, 1] ×X →Pcp,cv(X )
is an L1-Carathéodory set-valued map and Ξ : L1([0, 1],X ) → C([0, 1],X ) is a linear con-
tinuous mapping. Then the composition Ξ ◦ (SEL)K : C([0, 1],X ) → Pcp,cv(C([0, 1],X ))
is an operator in the product space C([0, 1],X ) × C([0, 1],X ) with action k 
→ (Ξ ◦
(SEL)K)(k) = Ξ ((SEL)K,k) having the closed graph property.

Theorem 2 ([54]) Let X be a Banach algebra. Assume that there exist a single-valued map
Φ : X →X and a set-valued map Υ : X →Pcp,cv(X ) such that

(i) Φ is a Lipschitz operator with a Lipschitz constant δ∗,
(ii) Υ is an upper semi-continuous operator with the compactness property,

(iii) 2δ∗�̂ < 1 is such that �̂ = ‖Υ (X )‖.
Then either there is a solution in X for the operator inclusion k ∈ (Φk)(Υ k) or the set O∗ =
{v∗ ∈X |λ∗v∗ ∈ (Φv∗)(Υ v∗),λ∗ > 1} is unbounded.

Theorem 3 ([52]) Let (X , dX ) be a complete metric space and ψ : [0,∞) → [0,∞) be
an upper semi-continuous function such that ψ(t) < t and lim inft→∞(t – ψ(t)) > 0 for
all t > 0. Suppose that K : X → Pcl,b(X ) is a set-valued map so that PHdX (Kk1,Kk2) ≤
ψ(dX (k1, k2)) for all k1, k2 ∈ X . Then K has a unique endpoint if and only if K has the
approximate endpoint property.

3 Main results
Now, we investigate the existence of solutions for the fractional hybrid and non-hybrid
multi-term integro-differential inclusion problems (1)–(2) and (3). Consider the Banach
space

X =
{

k(t) : k(t) ∈ CR

(
[0, 1]

)}
,

with the norm ‖k‖X = supt∈[0,1] |k(t)|.
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Lemma 4 Let z ∈X . A function k∗
0 is a solution for the fractional hybrid equation

cDω
0

(
k(t)

ξ (t, k(t),ϕ1(k(t)), . . . ,ϕn(k(t)))

)

= z(t),
(
t ∈ [0, 1],ω ∈ (1, 2]

)
, (4)

with four-point integral hybrid boundary value conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1( k(t)
ξ (t,k(t),ϕ1(k(t)),...,ϕn(k(t))) )|t=0

+ λ2( k(t)
ξ (t,k(t),ϕ1(k(t)),...,ϕn(k(t))) )|t=1 = a,

λ3
cDβ

0 ( k(t)
ξ (t,k(t),ϕ1(k(t)),...,ϕn(k(t))) )|t=η

+ λ4
∫ 1

0
cDβ

0 ( k(s)
ξ (s,k(s),ϕ1(k(s)),...,ϕn(k(s))) ) ds = b,

(5)

if and only if k∗
0 is a solution for the fractional integral equation

k(t) = ξ
(
t, k(t),ϕ1

(
k(t)

)
, . . . ,ϕn

(
k(t)

))

×
[

a�1 + b�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1

+
1

Γ (ω)

∫ t

0
(t – s)ω–1z(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1z(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1z(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1z(τ ) dτ ds

]

, (6)

where �1 and �2 are positive real constants defined as follows:

�1 := λ3η
1–β(3 – β) + λ4Γ (2 – β) 
= 0, �2 := (3 – β)Γ (2 – β). (7)

Proof Assume that k∗
0 is a solution for the hybrid differential equation (4). Then, there

exist constants m∗
0, m∗

1 ∈R such that

k∗
0 (t)

ξ (t, k∗
0 (t),ϕ1(k∗

0 (t)), . . . ,ϕn(k∗
0 (t)))

= Iω
0 z(t) + m∗

0 + m∗
1t.

Then,

k∗
0 (t) = ξ

(
t, k∗

0 (t),ϕ1
(
k∗

0 (t)
)
, . . . ,ϕn

(
k∗

0 (t)
))
[∫ t

0

(t – s)ω–1

Γ (ω)
z(s) ds + m∗

0 + m∗
1t
]

, (8)

and so, for each β ∈ (0, 1], we get

cDβ
0

(
k∗

0 (t)
ξ (t, k∗

0 (t),ϕ1(k∗
0 (t)), . . . ,ϕn(k∗

0 (t)))

)

=
∫ t

0

(t – s)ω–β–1

Γ (ω – β)
z(s) ds + m∗

1
t1–β

Γ (2 – β)
,
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∫ 1

0

cDβ
0

(
k∗

0 (s)
ξ (s, k∗

0 (s),ϕ1(k∗
0 (s)), . . . ,ϕn(k∗

0 (s)))

)

ds

=
∫ 1

0

∫ s

0

(s – τ )ω–β–1

Γ (ω – β)
z(τ ) dτ ds + m∗

1
1

(3 – β)
.

By using three-point integral hybrid boundary value conditions, we obtain

m∗
0 =

a
(λ1 + λ2)

–
λ2b�2

(λ1 + λ2)�1
–

λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1z(s) ds

+
λ2λ3�2

(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1z(s) ds

+
λ2λ4�2

(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1z(τ ) dτ ds

and

m∗
1 =

b�2

�1
–

λ3�2

�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1z(s) ds

–
λ4�2

�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1z(τ ) dτ ds.

By substituting the values of m∗
0 and m∗

1 into (8), we get

k∗
0 (t) = ξ

(
t, k∗

0 (t),ϕ1
(
k∗

0 (t)
)
, . . . ,ϕn

(
k∗

0 (t)
))

×
[

a�1 + b�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1

+
1

Γ (ω)

∫ t

0
(t – s)ω–1z(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1z(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1z(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1z(τ ) dτ ds

]

.

This shows that the function k∗
0 is a solution for the fractional integral equation (6). Con-

versely, one can easily prove that k∗
0 is a solution for the boundary value problem (4)–(5)

whenever k∗
0 is a solution function for the fractional integral equation (6). �

Definition 5 An absolutely continuous function k : [0, 1] → R is a solution for the frac-
tional hybrid multi-term inclusion problem (1)–(2) whenever there exists an integrable
function ϑ ∈L1([0, 1],R) with ϑ(t) ∈K(t, k(t),φ1(k(t)), . . . ,φm(k(t))) for almost all t ∈ [0, 1]
satisfying three-point integral hybrid boundary value conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1( k(t)
ξ (t,k(t),ϕ1(k(t)),...,ϕn(k(t))) )|t=0

+ λ2( k(t)
ξ (t,k(t),ϕ1(k(t)),...,ϕn(k(t))) )|t=1 = a,

λ3
cDβ

0 ( k(t)
ξ (t,k(t),ϕ1(k(t)),...,ϕn(k(t))) )|t=η

+ λ4
∫ 1

0
cDβ

0 ( k(s)
ξ (s,k(s),ϕ1(k(s)),...,ϕn(k(s))) ) ds = b
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and

k(t) = ξ
(
t, k(t),ϕ1

(
k(t)

)
, . . . ,ϕn

(
k(t)

))

×
[

a�1 + b�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1

+
1

Γ (ω)

∫ t

0
(t – s)ω–1z(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1z(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1z(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1z(τ ) dτ ds

]

,

for all t ∈ [0, 1].

Now, we prove our first result about the inclusion problem (1)–(2).

Theorem 6 Suppose that K : [0, 1] × R
m+1 → Pcp,cv(R) is a set-valued mapping and ξ :

[0, 1] ×R
n+1 →R \ {0} is a continuous function. Assume that

(C1) there is a bounded mapping A : [0, 1] →R
+ so that for each k1, . . . , kn+1, k′

1, . . . , k′
n+1 ∈

R and for all t ∈ [0, 1], we have

∣
∣ξ
(
t, k1(t), . . . , kn+1(t)

)
– ξ

(
t, k′

1(t), . . . , k′
n+1(t)

)∣
∣≤ A(t)

n+1∑

i=1

∣
∣ki(t) – k′

i(t)
∣
∣,

(C2) the set-valued map K : [0, 1]×R
m+1 →Pcp,cv(R) has the L1-Carathéodory property,

(C3) there is a positive mapping Θ(t) ∈L1([0, 1],R+) such that

∥
∥K(t, k1, k2, . . . , km+1)

∥
∥ = sup

{|ϑ | : ϑ ∈K
(
t, k1(t), k2(t), . . . , km+1(t)

)}

≤ Θ(t),

for all k1, . . . , km+1 ∈R and for almost all t ∈ [0, 1],
(C4) there is a positive real number r̃ ∈R such that

r̃ >
ξ ∗Λ∗‖Θ‖L1

1 – A∗[1 + 1
Γ (�1+1) + 1

Γ (�2+1) + · · · + 1
Γ (�n+1) ]Λ∗‖Θ‖L1

, (9)

where ‖Θ‖L1 =
∫ 1

0 |Θ(s)|ds,

ξ ∗ = sup
t∈[0,1]

∣
∣ξ
(
t,

(n+1)
︷ ︸︸ ︷
0, 0, . . . , 0

)∣
∣,

A∗ = supt∈[0,1] |A(t)|, �i > 0 for i = 1, 2, . . . , n and

Λ∗ =
1

Γ (ω + 1)
+

|λ2|
(|λ1| + |λ2|)Γ (ω + 1)

+
|λ3||�2|[|λ1| + 2|λ2|]ηω–β

(|λ1| + |λ2|)|�1|Γ (ω – β + 1)
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+
|λ4||�2|[|λ1| + 2|λ2|]

(|λ1| + |λ2|)|�1|Γ (ω – β + 2)

+
(|a||�1| + |b||�2|)[|λ1| + 2|λ2|]

(|λ1| + |λ2|)|�1| . (10)

If

A∗
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+ · · · +
1

Γ (�n + 1)

]

Λ∗‖Θ‖L1 <
1
2

,

then the hybrid multi-term inclusion problem (1)–(2) has a solution.

Proof For every k ∈X , define the set of selections of the operator K by

(SEL)K,k =
{
ϑ ∈L1([0, 1]

)
: ϑ(t) ∈K

(
t, k(t),φ1

(
k(t)

)
, . . . ,φm

(
k(t)

))}

for almost all t ∈ [0, 1]. Consider the set-valued map H : X →P(X ) defined by

H(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈X :

h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ (t, k(t),ϕ1(k(t)), . . . ,ϕn(k(t)))

×[ a�1+b�2[t(λ1+λ2)–λ2]
(λ1+λ2)�1

+ 1
Γ (ω)

∫ t
0 (t – s)ω–1ϑ(s) ds

– λ2
(λ1+λ2)Γ (ω)

∫ 1
0 (1 – s)ω–1ϑ(s) ds

– λ3�2[t(λ1+λ2)–λ2]
(λ1+λ2)�1Γ (ω–β)

× ∫ η

0 (η – s)ω–β–1ϑ(s) ds

– λ4�2[t(λ1+λ2)–λ2]
(λ1+λ2)�1Γ (ω–β)

× ∫ 1
0
∫ s

0 (s – τ )ω–β–1ϑ(τ ) dτ ds], ϑ ∈ (SEL)K,k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

for all t ∈ [0, 1]. It is obvious that the function h0 is a solution for the hybrid multi-term
inclusion problem (1)–(2) if and only if h0 is a fixed point of the operator H. Now, define
the single-valued mapping Φ : X →X by

(Φk)(t) = ξ
(
t, k(t),ϕ1

(
k(t)

)
, . . . ,ϕn

(
k(t)

))

and the set-valued map Υ : X →P(X ) by

(Υ k)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ ∈X :

ζ (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ (ω)

∫ t
0 (t – s)ω–1ϑ(s) ds

– λ2
(λ1+λ2)Γ (ω)

∫ 1
0 (1 – s)ω–1ϑ(s) ds

– λ3�2[t(λ1+λ2)–λ2]
(λ1+λ2)�1Γ (ω–β)

∫ η

0 (η – s)ω–β–1ϑ(s) ds

– λ4�2[t(λ1+λ2)–λ2]
(λ1+λ2)�1Γ (ω–β)

× ∫ 1
0
∫ s

0 (s – τ )ω–β–1ϑ(τ ) dτ ds

+ a�1+b�2[t(λ1+λ2)–λ2]
(λ1+λ2)�1

, ϑ ∈ (SEL)K,k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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for all t ∈ [0, 1]. Then, we obtain H(k) = (Φk)(Υ k). We show that both operators Φ and
Υ satisfy assumptions of Theorem 2. We first prove that the operator Φ is Lipschitz. Let
k1, k2 ∈X . Since for i = 1, 2, . . . , n, we have ϕi(k(t)) =

∫ t
0

(t–s)�i–1

Γ (�i)
k(s) ds, thus assumption (C1)

implies that

∣
∣(Φk1)(t) – (Φk2)(t)

∣
∣ =

∣
∣ξ
(
t, k1(t),ϕ1

(
k1(t)

)
, . . . ,ϕn

(
k1(t)

))

– ξ
(
t, k2(t),ϕ1

(
k2(t)

)
, . . . ,ϕn

(
k2(t)

))∣
∣

=
∣
∣ξ
(
t, k1(t),I�1

0 k1(t), . . . ,I�n
0 k1(t)

)

– ξ
(
t, k2(t),I�1

0 k2(t), . . . ,I�n
0 k2(t)

)∣
∣

≤ A(t)
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+ · · · +
1

Γ (�n + 1)

]

× ∣
∣k1(t) – k2(t)

∣
∣

for all t ∈ [0, 1]. Hence, we get

‖Φk1 – Φk2‖X ≤ A∗
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+ · · · +
1

Γ (�n + 1)

]

‖k1 – k2‖X

for all k1, k2 ∈X . This shows that operator Φ is Lipschitz with a Lipschitz constant

A∗
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+ · · · +
1

Γ (�n + 1)

]

> 0.

In this step, we prove that the set-valued map Υ has convex values. Let k1, k2 ∈ Υ k. Choose
ϑ1,ϑ2 ∈ (SEL)K,k such that

kj(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑj(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑj(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑj(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑj(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for j = 1, 2 and for almost all t ∈ [0, 1]. Let μ ∈ (0, 1). Then, we have

μk1(t) + (1 – μ)k2(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1[μϑ1(s) + (1 – μ)ϑ2(s)

]
ds

–
λ2

(λ1 + λ2)Γ (ω)

×
∫ 1

0
(1 – s)ω–1[μϑ1(s) + (1 – μ)ϑ2(s)

]
ds
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–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

×
∫ η

0
(η – s)ω–β–1[μϑ1(s) + (1 – μ)ϑ2(s)

]
ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

×
∫ 1

0

∫ s

0
(s – τ )ω–β–1[μϑ1(τ ) + (1 – μ)ϑ2(τ )

]
dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for almost all t ∈ [0, 1]. Since K has convex values, (SEL)K,k is convex-valued. This follows
that μϑ1(t)+(1–μ)ϑ2(t) ∈ (SEL)K,k for all t ∈ [0, 1] and so Υ k is a convex set for all k ∈X .
Now, we prove that the operator Υ is completely continuous. In order to do this, we have
to prove two equicontinuity and uniform boundedness properties for the set Υ (X ). First,
we show that Υ maps all bounded sets into bounded subsets of X . For a positive number
ε∗ ∈R, consider the bounded ballVε∗ = {k ∈X : ‖k‖X ≤ ε∗}. For every k ∈ Vε∗ and ζ ∈ Υ k,
there exists a function ϑ ∈ (SEL)K,k such that

ζ (t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑ(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for all t ∈ [0, 1]. Then, we have

∣
∣ζ (t)

∣
∣≤ 1

Γ (ω)

∫ t

0
(t – s)ω–1∣∣ϑ(s)

∣
∣ds

+
|λ2|

|(λ1 + λ2)|Γ (ω)

∫ 1

0
(1 – s)ω–1∣∣ϑ(s)

∣
∣ds

+
|λ3�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)

∫ η

0
(η – s)ω–β–1∣∣ϑ(s)

∣
∣ds

+
|λ4�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1∣∣ϑ(τ )

∣
∣dτ ds

+
|a�1 + b�2[t(λ1 + λ2) – λ2]|

|(λ1 + λ2)�1|

≤ 1
Γ (ω)

∫ t

0
(t – s)ω–1Θ(s) ds

+
|λ2|

|(λ1 + λ2)|Γ (ω)

∫ 1

0
(1 – s)ω–1Θ(s) ds
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+
|λ3�2|[|(λ1 + λ2)| + |λ2|]
|(λ1 + λ2)�1|Γ (ω – β)

∫ η

0
(η – s)ω–β–1Θ(s) ds

+
|λ4�2|[|(λ1 + λ2)| + |λ2|]
|(λ1 + λ2)�1|Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1Θ(τ ) dτ ds

+
|a�1| + |b�2|[|(λ1 + λ2)| + |λ2|]

|(λ1 + λ2)�1|

≤
[

1
Γ (ω + 1)

+
|λ2|

(|λ1| + |λ2|)Γ (ω + 1)

+
|λ3||�2|[|λ1| + 2|λ2|]ηω–β

(|λ1| + |λ2|)|�1|Γ (ω – β + 1)

+
|λ4||�2|[|λ1| + 2|λ2|]

(|λ1| + |λ2|)|�1|Γ (ω – β + 2)

+
(|a||�1| + |b||�2|)[|λ1| + 2|λ2|]

(|λ1| + |λ2|)|�1|
]

‖Θ‖L1

= Λ∗‖Θ‖L1 ,

where Λ∗ is given in (10). Thus, ‖ζ‖ ≤ Λ∗‖Θ‖L1 and this means that the set Υ (X ) is
uniformly bounded. Now, we prove that the operator Υ maps bounded sets into equicon-
tinuous sets. Let k ∈ Vε∗ and ζ ∈ Υ k. Choose ϑ ∈ (SEL)K,k such that

ζ (t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑ(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for all t ∈ [0, 1]. Assume that t1, t2 ∈ [0, 1] with t1 < t2. Then, we have

∣
∣ζ (t2) – ζ (t1)

∣
∣≤ 1

Γ (ω)

∫ t1

0

[
(t2 – s)ω–1 – (t1 – s)ω–1]∣∣ϑ(s)

∣
∣ds

+
1

Γ (ω)

∫ t2

t1

(t2 – s)ω–1∣∣ϑ(s)
∣
∣ds

+
|λ3�2(t2 – t1)(λ1 + λ2)|
|(λ1 + λ2)�1|Γ (ω – β)

∫ η

0
(η – s)ω–β–1∣∣ϑ(s)

∣
∣ds

+
|λ4�2(t2 – t1)(λ1 + λ2)|
|(λ1 + λ2)�1|Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1∣∣ϑ(τ )

∣
∣dτ ds

+
|b�2(t2 – t1)(λ1 + λ2)|

|(λ1 + λ2)�1|

≤ 1
Γ (ω)

∫ t1

0

[
(t2 – s)ω–1 – (t1 – s)ω–1]Θ(s) ds
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+
1

Γ (ω)

∫ t2

t1

(t2 – s)ω–1Θ(s) ds

+
|λ3||�2|(t2 – t1)(|λ1| + |λ2|)
(|λ1| + |λ2|)|�1|Γ (ω – β)

∫ η

0
(η – s)ω–β–1Θ(s) ds

+
|λ4||�2|(t2 – t1)(|λ1| + |λ2|)
(|λ1| + |λ2|)|�1|Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1Θ(τ ) dτ ds

+
|b||�2|(t2 – t1)(|λ1| + |λ2|)

(|λ1| + |λ2|)|�1| .

Notice that the right-hand side tends to zero independently of k ∈ Vε∗ as t2 → t1. By using
the Arzelà–Ascoli theorem, the complete continuity of Υ : C([0, 1],R) → P(C([0, 1],R))
is deduced. In the following, we prove that Υ has a closed graph and this implies the upper
semi-continuity of the operator Υ . Assume that kn ∈ Vε∗ and ζn ∈ (Υ kn) with kn → k∗ and
ζn → ζ ∗. We claim that ζ ∗ ∈ (Υ k∗). For every n ≥ 1 and ζn ∈ (Υ kn), choose ϑn ∈ (SEL)K,kn

such that

ζn(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑn(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑn(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑn(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑn(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for all t ∈ [0, 1]. It is sufficient to show that there exists a function ϑ∗ ∈ (SEL)K,k∗ such
that

ζ ∗(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑ∗(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ∗(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ∗(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ∗(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for all t ∈ [0, 1]. Define the continuous linear operator Ξ : L1([0, 1],R) → X = C([0, 1],R)
by

Ξ (ϑ)(t) = k(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑ(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ(s) ds
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–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for all t ∈ [0, 1]. Hence,

∥
∥ζn(t) – ζ ∗(t)

∥
∥ =

∥
∥
∥
∥

1
Γ (ω)

∫ t

0
(t – s)ω–1(ϑn(s) – ϑ∗(s)

)
ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1(ϑn(s) – ϑ∗(s)

)
ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

×
∫ η

0
(η – s)ω–β–1(ϑn(s) – ϑ∗(s)

)
ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

×
∫ 1

0

∫ s

0
(s – τ )ω–β–1(ϑn(τ ) – ϑ∗(τ )

)
dτ ds

∥
∥
∥
∥

→ 0.

Thus, by using Theorem 1, it is deduced that the operator Ξ ◦ (SEL)S has a closed graph.
Also, since ζn ∈ Ξ ((SEL)K,kn ) and kn → k∗, so there exists ϑ∗ ∈ (SEL)K,k∗ such that

ζ ∗(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑ∗(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ∗(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ∗(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ∗(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for all t ∈ [0, 1]. Hence, ζ ∗ ∈ (Υ k∗) and so Υ has a closed graph. This means that the op-
erator Υ is upper semi-continuous. On the other hand, since the operator Υ has compact
values, so Υ is a compact and upper semi-continuous operator. By using assumption (C3),
we have

�̂ =
∥
∥Υ (X )

∥
∥ = sup

t∈[0,1]

{|Υ k| : k ∈X
}

=
[

1
Γ (ω + 1)

+
|λ2|

(|λ1| + |λ2|)Γ (ω + 1)
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+
|λ3||�2|[|λ1| + 2|λ2|]ηω–β

(|λ1| + |λ2|)|�1|Γ (ω – β + 1)

+
|λ4||�2|[|λ1| + 2|λ2|]

(|λ1| + |λ2|)|�1|Γ (ω – β + 2)

+
(|a||�1| + |b||�2|)[|λ1| + 2|λ2|]

(|λ1| + |λ2|)|�1|
]

‖Θ‖L1

= Λ∗‖Θ‖L1 .

Put

δ∗ = A∗
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+ · · · +
1

Γ (�n + 1)

]

.

Then, �̂δ∗ < 1
2 . Now by using Theorem 2 for Υ , we get that one of the conditions, (a) or (b),

holds. We first investigate condition (b). By considering Theorem 2 and assumption (C4),
assume that k is an arbitrary member of O∗ with ‖k‖ = r̃. Then, λ∗k(t) ∈ (Φk)(t)(Υ k)(t)
for all λ∗ > 1. Choose the related function ϑ ∈ (SEL)K,k . Then for each λ∗ > 1, we have

k(t) =
1
λ∗

ξ
(
t, k(t),ϕ1

(
k(t)

)
, . . . ,ϕn

(
k(t)

))

×
[

a�1 + b�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1

+
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑ(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ(τ ) dτ ds

]

for all t ∈ [0, 1]. Thus, one can write

∣
∣k(t)

∣
∣ =

1
λ∗

∣
∣ξ
(
t, k(t),ϕ1

(
k(t)

)
, . . . ,ϕn

(
k(t)

))∣
∣

×
[ |a�1 + b�2[t(λ1 + λ2) – λ2]|

|(λ1 + λ2)�1| +
1

Γ (ω)

∫ t

0
(t – s)ω–1∣∣ϑ(s)

∣
∣ds

+
|λ2|

|(λ1 + λ2)|Γ (ω)

∫ 1

0
(1 – s)ω–1∣∣ϑ(s)

∣
∣ds

+
|λ3�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)

∫ η

0
(η – s)ω–β–1∣∣ϑ(s)

∣
∣ds

+
|λ4�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1∣∣ϑ(τ )

∣
∣dτ ds

]

=
1
λ∗

[∣
∣ξ
(
t, k(t),ϕ1

(
k(t)

)
, . . . ,ϕn

(
k(t)

))
– ξ (t, 0, 0, . . . , 0)

∣
∣

+
∣
∣ξ (t, 0, 0, . . . , 0)

∣
∣
]

×
[ |a�1 + b�2[t(λ1 + λ2) – λ2]|

|(λ1 + λ2)�1| +
1

Γ (ω)

∫ t

0
(t – s)ω–1∣∣ϑ(s)

∣
∣ds
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+
|λ2|

|(λ1 + λ2)|Γ (ω)

∫ 1

0
(1 – s)ω–1∣∣ϑ(s)

∣
∣ds

+
|λ3�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)

∫ η

0
(η – s)ω–β–1∣∣ϑ(s)

∣
∣ds

+
|λ4�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1∣∣ϑ(τ )

∣
∣dτ ds

]

≤
[

A∗
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+ · · · +
1

Γ (�n + 1)

]

‖k‖ + ξ ∗
]

×
[ |a�1 + b�2[t(λ1 + λ2) – λ2]|

|(λ1 + λ2)�1| +
1

Γ (ω)

∫ t

0
(t – s)ω–1Θ(s) ds

+
|λ2|

|(λ1 + λ2)|Γ (ω)

∫ 1

0
(1 – s)ω–1Θ(s) ds

+
|λ3�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)

∫ η

0
(η – s)ω–β–1Θ(s) ds

+
|λ4�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1Θ(τ ) dτ ds

]

≤
[

A∗
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+ · · · +
1

Γ (�n + 1)

]

r̃ + ξ ∗
]

Λ∗‖Θ‖L1 ,

for all t ∈ [0, 1]. Hence, we get

r̃ ≤ ξ ∗Λ∗‖Θ‖L1

1 – A∗[1 + 1
Γ (�1+1) + 1

Γ (�2+1) + · · · + 1
Γ (�n+1) ]Λ∗‖Θ‖L1

.

According to condition (9), we see that condition (b) of Theorem 2 is impossible. Thus, k ∈
(Φk)(Υ k). Hence, the operator H has a fixed point and so the hybrid multi-term inclusion
problem (1)–(2) has a solution. �

Here, we investigate the existence of solutions for the non-hybrid inclusion problem (3).

Definition 7 An absolutely continuous function k : [0, 1] → R is a solution for the frac-
tional inclusion problem (3) whenever there exists an integrable function ϑ ∈L1([0, 1],R)
with ϑ(t) ∈ S(t, k(t)) for almost all t ∈ [0, 1] satisfying three-point integral boundary value
conditions

λ1k(0) + λ2k(1) = a, λ3
cDβ

0 k(η) + λ4

∫ 1

0

cDβ
0 k(s) ds = b

and

k(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑ(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ(s) ds
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–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for all t ∈ [0, 1].

For k ∈X , the set of selections of S is defined by

(SEL)S ,k =
{
ϑ ∈L1([0, 1]

)
: ϑ(t) ∈ S

(
t, k(t)

)}
,

for almost all t ∈ [0, 1]. Define the operator N : X →P(X ) by

N (k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈X :

h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ (ω)

∫ t
0 (t – s)ω–1ϑ(s) ds

– λ2
(λ1+λ2)Γ (ω)

∫ 1
0 (1 – s)ω–1ϑ(s) ds

– λ3�2[t(λ1+λ2)–λ2]
(λ1+λ2)�1Γ (ω–β)

× ∫ η

0 (η – s)ω–β–1ϑ(s) ds

– λ4�2[t(λ1+λ2)–λ2]
(λ1+λ2)�1Γ (ω–β)

× ∫ 1
0
∫ s

0 (s – τ )ω–β–1ϑ(τ ) dτ ds

+ a�1+b�2[t(λ1+λ2)–λ2]
(λ1+λ2)�1

, ϑ ∈ (SEL)S ,k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (11)

Now, we prove next result by using the approximate endpoint property for the set-valued
map N which is defined in (11).

Theorem 8 Let S : [0, 1] ×R →Pcp(R) be a set-valued map. Assume that
(C5) The nondecreasing function ψ : [0,∞) → [0,∞) is upper semi-continuous such that

lim inft→∞(t – ψ(t)) > 0 and ψ(t) < t for all t > 0.
(C6) The operator S : [0, 1] × R → Pcp(R) is an integrable bounded set-valued map so

that S(·, k) : [0, 1] →Pcp(R) is measurable for all k ∈R.
(C7) There exists a non-negative function σ ∈ C([0, 1], [0,∞)) such that

PHdX
(
S
(
t, k1(t)

)
,S
(
t, k′

1(t)
))≤ σ (t)ψ

(∣
∣k1(t) – k′

1(t)
∣
∣
) 1
Λ∗∗ ,

for all t ∈ [0, 1] and k1, k′
1 ∈R, where supt∈[0,1] |σ (t)| = ‖σ‖ and

Λ∗∗ = ‖σ‖
[

1
Γ (ω + 1)

+
|λ2|

(|λ1| + |λ2|)Γ (ω + 1)

+
|λ3||�2|[|λ1| + 2|λ2|]ηω–β

(|λ1| + |λ2|)|�1|Γ (ω – β + 1)

+
|λ4||�2|[|λ1| + 2|λ2|]

(|λ1| + |λ2|)|�1|Γ (ω – β + 2)

]

. (12)

(C8) The operator N has the approximate endpoint property, where N is given in (11).
Then the fractional non-hybrid inclusion problem (3) has a solution.
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Proof We show that the set-valued map N : X → P(X ) has an endpoint. In this way, we
first prove that N (k) is a closed set for all k ∈X . First of all, by using assumption (C6), the
set-valued map t 
→ S(t, k(t)) is measurable and it has closed values for all k ∈X . Thus, S
has measurable selection and the set (SEL)S ,k is nonempty. Now, we show that N (k) is a
closed subset of X for all k ∈X . Let {kn}n≥1 be a sequence in N (k) with kn → u. For each
n, there exists ϑn ∈ (SEL)S ,k such that

kn(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑn(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑn(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑn(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑn(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for almost all t ∈ [0, 1]. Since S is compact set-valued map, we pass into a subsequence (if
necessary) to obtain that a subsequence {ϑn}n≥1 converges to some ϑ ∈L1([0, 1]). Hence,
we have ϑ ∈ (SEL)S ,k and

lim
n→∞ kn(t) =

1
Γ (ω)

∫ t

0
(t – s)ω–1ϑ(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1

= k(t),

for all t ∈ [0, 1]. This implies that k ∈ N (k), and so operator N is closed-valued. Also,
N (k) is a bounded set for all k ∈X because S is a compact set-valued map. Finally, we are
going to prove that PHdX (N (k),N (k′)) ≤ ψ(‖k – k′‖) holds. Let k, k′ ∈ X and z1 ∈ N (k′).
Choose ϑ1 ∈ (SEL)S ,k′ such that

z1(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑ1(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ1(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ1(s) ds
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–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ1(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for almost all t ∈ [0, 1]. Since

PHdX
(
S
(
t, k(t)

)
,S
(
t, k′(t)

))≤ σ (t)ψ
(∣
∣k(t) – k′(t)

∣
∣
) 1
Λ∗∗ ,

for all t ∈ [0, 1], there exists h∗ ∈ S(t, k(t)) such that

∣
∣ϑ1(t) – h∗∣∣≤ σ (t)ψ

(∣
∣k(t) – k′(t)

∣
∣
) 1
Λ∗∗ ,

for all t ∈ [0, 1]. Consider a set-valued map B : [0, 1] →P(X ) which is given by

B(t) =
{

h∗ ∈X :
∣
∣ϑ1(t) – h∗∣∣≤ σ (t)ψ

(∣
∣k(t) – k′(t)

∣
∣
) 1
Λ∗∗

}

.

Since ϑ1 and � = σψ(|k – k′|) 1
Λ∗∗ are measurable, one can easily check that the set-valued

map B(·) ∩ S(·, k(·)) is measurable. Now, choose ϑ2(t) ∈K(t, k(t)) such that

∣
∣ϑ1(t) – ϑ2(t)

∣
∣≤ σ (t)ψ

(∣
∣k(t) – k′(t)

∣
∣
) 1
Λ∗∗

for all t ∈ [0, 1]. We select z2 ∈N (k) such that

z2(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1ϑ2(s) ds

–
λ2

(λ1 + λ2)Γ (ω)

∫ 1

0
(1 – s)ω–1ϑ2(s) ds

–
λ3�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ η

0
(η – s)ω–β–1ϑ2(s) ds

–
λ4�2[t(λ1 + λ2) – λ2]
(λ1 + λ2)�1Γ (ω – β)

∫ 1

0

∫ s

0
(s – τ )ω–β–1ϑ2(τ ) dτ ds

+
a�1 + b�2[t(λ1 + λ2) – λ2]

(λ1 + λ2)�1
,

for all t ∈ [0, 1]. Hence, one can get

∣
∣z1(t) – z2(t)

∣
∣≤ 1

Γ (ω)

∫ t

0
(t – s)ω–1∣∣ϑ1(s) – ϑ2(s)

∣
∣ds

+
|λ2|

|(λ1 + λ2)|Γ (ω)

∫ 1

0
(1 – s)ω–1∣∣ϑ1(s) – ϑ2(s)

∣
∣ds

+
|λ3�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)

×
∫ η

0
(η – s)ω–β–1∣∣ϑ1(s) – ϑ2(s)

∣
∣ds

+
|λ4�2[t(λ1 + λ2) – λ2]|
|(λ1 + λ2)�1|Γ (ω – β)
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×
∫ 1

0

∫ s

0
(s – τ )ω–β–1∣∣ϑ1(τ ) – ϑ2(τ )

∣
∣dτ ds

≤ 1
Γ (ω + 1)

‖σ‖ψ(∥∥k – k′∥∥) 1
Λ∗∗

+
|λ2|

(|λ1| + |λ2|)Γ (ω + 1)
‖σ‖ψ(∥∥k – k′∥∥) 1

Λ∗∗

+
|λ3||�2|[|λ1| + 2|λ2|]ηω–β

(|λ1| + |λ2|)|�1|Γ (ω – β + 1)
‖σ‖ψ(∥∥k – k′∥∥) 1

Λ∗∗

+
|λ4||�2|[|λ1| + 2|λ2|]

(|λ1| + |λ2|)|�1|Γ (ω – β + 2)
‖σ‖ψ(∥∥k – k′∥∥) 1

Λ∗∗

=
[

1
Γ (ω + 1)

+
|λ2|

(|λ1| + |λ2|)Γ (ω + 1)

+
|λ3||�2|[|λ1| + 2|λ2|]ηω–β

(|λ1| + |λ2|)|�1|Γ (ω – β + 1)

+
|λ4||�2|[|λ1| + 2|λ2|]

(|λ1| + |λ2|)|�1|Γ (ω – β + 2)

]

‖σ‖ψ(∥∥k – k′∥∥) 1
Λ∗∗

= Λ∗∗ψ
(∥
∥k – k′∥∥) 1

Λ∗∗ = ψ
(∥
∥k – k′∥∥).

Thus, we obtain ‖z1 – z2‖ ≤ ψ(‖k – k′‖). It follows that PHdX (N (k),N (k′)) ≤ ψ(‖k – k′‖)
holds for all k, k′ ∈ X . Since the set-valued map N has approximate endpoint property
(C8), Theorem 3 implies that operatorN has a unique endpoint, that is, there exists k∗ ∈X
such that N (k∗) = {k∗}. Thus, k∗ is a solution for the fractional inclusion problem (3). �

4 Examples
Here, we provide two examples to illustrate our main results.

Example 1 Consider the fractional hybrid multi-term inclusion problem

cD1.64
0

(
k(t)

t
2097 (k(t) + |I0.71k(t)|

1+|I0.71k(t)| + arctan(I0.65k(t)) + sin(I0.32k(t))) + 0.002

)

∈
[

–5,
(
t3 + 3

)
sin k(t) + cos

(
I0.15k(t)

)

+
2
5

sin
(
I0.26k(t)

)
+ sin2(I0.31k(t)

)
+

27
5

]

, (13)

with the integral hybrid boundary value conditions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.11( k(t)
t

2097 (Σ(t))+0.002 )|t=0

+ 0.17( k(t)
t

2097 (Σ(t))+0.002 )|t=1 = 0.23,

0.82cD0.27
0 ( k(t)

t
2097 (Σ(t))+0.002 )|t=0.59

+ 0.54
∫ 1

0
cD0.27

0 ( k(s)
s

2097 (Σ(s))+0.002 ) ds = 0.19,

(14)
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for t ∈ [0, 1] where

Σ(t) = k(t) +
|I0.71k(t)|

1 + |I0.71k(t)| + arctan
(
I0.65k(t)

)
+ sin

(
I0.32k(t)

)
.

Put ω = 1.64, β = 0.27, η = 0.59, a = 0.23, b = 0.19, λ1 = 0.11, λ2 = 0.17, λ3 = 0.82, and
λ4 = 0.54. For n = 3, consider a continuous map ξ : [0, 1] ×R

3+1 → R \ {0} defined by

ξ
(
t, k(t),I�1 k(t),I�2 k(t),I�3 k(t)

)
=
(

k(t)
t

2097 (Σ(t)) + 0.002

)

,

where for i = 1, 2, 3, we put ϕi(k(t)) = I�i k(t) with �1 = 0.71, �2 = 0.65, and �3 = 0.32. Note
that ξ ∗ = supt∈[0,1] |ξ (t, 0, 0, 0, 0)| = 0.002. Since the single-valued map ξ is Lipschitz, for
each k, k′ ∈ R, we have

∣
∣ξ
(
t, k(t),I�1 k(t),I�2 k(t),I�3 k(t)

)

– ξ
(
t, k′(t),I�1 k′(t),I�2 k′(t),I�3 k′(t)

)∣
∣

≤ A(t)
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+
1

Γ (�3 + 1)

]
∣
∣k(t) – k′(t)

∣
∣

=
t

2097

[

1 +
1

Γ (1.71)
+

1
Γ (1.65)

+
1

Γ (1.32)

]
∣
∣k(t) – k′(t)

∣
∣

� 4.3269
2097

t
∣
∣k(t) – k′(t)

∣
∣.

Note that

A∗
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+
1

Γ (�3 + 1)

]

� 0.00206.

For m = 3, consider a set-valued map K : [0, 1] ×R
3+1 →P(R) by

K
(
t, k(t),I�1 k(t),I�2 k(t),I�3 k(t)

)

=
[

–5,
(
t3 + 3

)
sin k(t) + cos

(
I0.15k(t)

)

+
2
5

sin
(
I0.26k(t)

)
+ sin2(I0.31k(t)

)
+

27
5

]

,

where, for i = 1, 2, 3, we put φi(k(t)) = I�i k(t) with �1 = 0.15, �2 = 0.26, and �3 = 0.31.
Since

|ζ | ≤ max

[

–5,
(
t3 + 3

)
sin k(t) + cos

(
I0.15k(t)

)

+
2
5

sin
(
I0.26k(t)

)
+ sin2(I0.31k(t)

)
+

27
5

]

≤ t3 + 10.8,
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for all ζ ∈K(t, k(t),I�1 k(t),I�2 k(t),I�3 k(t)), we find

∥
∥K

(
t, k(t),I�1 k(t),I�2 k(t),I�3 k(t)

)∥
∥

= sup
{|ϑ | : ϑ ∈K

(
t, k(t),I�1 k(t),I�2 k(t),I�3 k(t)

)}

≤ Θ(t) = t3 + 10.8.

Put Θ(t) = t3 + 10.8 for all t ∈ [0, 1]. Then, ‖Θ‖L1 =
∫ 1

0 |Θ(s)|ds � 11.05. Hence, we get
Λ∗ � 2.86. Now, choose r̃ > 0 with r̃ > 0.0676074. Then, we have

A∗
[

1 +
1

Γ (�1 + 1)
+

1
Γ (�2 + 1)

+
1

Γ (�3 + 1)

]

Λ∗‖Θ‖L1 � 0.06510218 <
1
2

.

Now by using Theorem 6, the hybrid multi-term inclusion problem (13)–(14) has a solu-
tion.

Example 2 Consider the fractional non-hybrid differential inclusion

cD1.37
0 k(t) ∈

[

0,
0.0007

2(0.8 + t)

(
k2(t) + |k(t)|

1 + |k(t)|
)]

, (15)

for t ∈ [0, 1], with three-point integral boundary value conditions

0.8k(0) + 0.08k(1) = 0.21,

0.76cD0.54
0 k(0.81) + 0.26

∫ 1

0

cD0.54
0 k(s) ds = 0.18,

(16)

where cD1.37
0 denotes the fractional Caputo derivative of order ω = 1.37. Put β = 0.54, η =

0.81, a = 0.21, b = 0.18, λ1 = 0.8, λ2 = 0.08, λ3 = 0.76, and λ4 = 0.26. Consider the Banach
space X = {k(t) : k(t) ∈ C([0, 1],R)} with the norm ‖k‖X = supt∈[0,1] |k(t)|. Also, define a
set-valued map S : [0, 1] ×X →P(X ) by

S
(
t, k(t)

)
=
[

0,
0.0007

2(0.8 + t)

(
k2(t) + |k(t)|

1 + |k(t)|
)]

for all t ∈ [0, 1]. Consider a function σ ∈ C([0, 1], [0,∞)) defined by σ (t) = 0.0007
0.8+t for all

t with ‖σ‖ = 0.0007
0.8 = 0.000875. Also, consider a non-negative and nondecreasing upper

semi-continuous function ψ : [0,∞) → [0,∞) defined by ψ(t) = t
2 for all t > 0. It is clear

that lim inft→∞(t – ψ(t)) > 0 and ψ(t) < t for all t > 0. Now, for each k1, k′
1 ∈X , we have

PHdX
(
S
(
t, k1(t)

)
,S
(
t, k′

1(t)
))≤ 0.0007

0.8 + t
.
1
2
(∣
∣k1 – k′

1
∣
∣
)

=
0.0007
0.8 + t

ψ
(∣
∣k1 – k′

1
∣
∣
)

≤ σ (t)ψ
(∣
∣k1 – k′

1
∣
∣
) 1
Λ∗∗ ,

where Λ∗∗ � 0.00145. Finally, consider an operator N : X →P(X ) defined by

N (k) =
{

h ∈X : there exists ϑ ∈ (SEL)S ,k such that h(t) = z(t) for all t ∈ [0, 1]
}

,
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where

z(t) =
1

Γ (1.37)

∫ t

0
(t – s)0.37ϑ(s) ds

–
0.08

0.88Γ (1.37)

∫ 1

0
(1 – s)0.37ϑ(s) ds

–
0.76 × 2.1785[0.88t – 0.08]

0.88 × 2.5824Γ (0.83)

∫ 0.81

0
(η – s)0.83–1ϑ(s) ds

–
0.26 × 2.1785[0.88t – 0.08]

0.88 × 2.5824Γ (0.83)

∫ 1

0

∫ s

0
(s – τ )0.83–1ϑ(τ ) dτ ds

+
(0.21 × 2.5824) + (0.18 × 2.1758)[0.88t – 0.08]

0.88 × 2.5824
.

Now by using Theorem 8, the fractional non-hybrid inclusion problem (15) with three-
point integral boundary value conditions (16) has a solution.

5 Conclusion
It is known that a lot of natural phenomena and processes in the world are modeled by
different types of fractional differential equations and inclusions. This diversity factor in
studying complicate fractional differential equations and inclusions increases our ability
for exact modeling of more phenomena. This is useful in making modern software which
allow for more cost-free testing and less material consumption. In this work, we investigate
the existence of solutions for two fractional hybrid and non-hybrid multi-term integro-
differential inclusions with integral hybrid boundary value conditions. In this work, we
investigate the existence of solutions for two fractional hybrid and non-hybrid multi-term
integro-differential inclusions with integral hybrid boundary value conditions. It is noted
that the fractional hybrid multi-term integro-differential inclusion presented in this paper
is new in the sense that the boundary value conditions are stated as three-point mixed
Caputo integro-derivative hybrid conditions. Also, this hybrid boundary value problem
is general and it involves many fractional dynamical systems as special cases. In this way,
we use the Dhage’s fixed point result and approximate endpoint property for a set-valued
map in our proofs. Finally, we give two examples to illustrate our main results. This topic
can be used in mathematical modeling of applied problems in science, engineering, and
the real-world phenomena [4, 28].
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