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Abstract
In this paper, our main purpose is to present an analytical solution for measles spread
model with three doses of vaccination using Caputo–Fabrizio fractional derivative
(CFFD). The presented solution is based on Laplace transform with Adomian
decomposition method (LADM), which is an effective technique to obtain a solution
for such type of problems. Our solution involves nonlinear differential equations of
fractional order (FODEs) with non-singular kernel. Also, we provide analysis to verify
the existence of a solution to the considered model using fixed point theory.
Numerical results are presented to verify the model building analysis, which proved to
be efficient in solving such problems.

Keywords: Fractional differential equation; Caputo–Fabrizio fractional derivative;
Laplace Adomian decomposition method (LADM); Measles spread model

1 Introduction
Measles virus is a paramyxo virus, genus morbilivirus. It transmits through person to per-
son with 90% secondary attack rates among susceptible persons. The virus initially infects
immune cells in lungs and spreads in the whole body. As it travels in blood, it infects the
capillaries in the skin, which results in red rashes on the skin. It is one of the primary
causes of serious and fatal complications including pneumonia, diarrhoea and encephali-
tis, blindness, deafness, and impaired vision. To control this disease, health institutions
recommend children to get measles vaccine. There are three types of vaccines that are
commonly used: MMR (measles, mumps, and rebulla), MR (measles and rebulla), and
MMRV (measles, mumps, rebulla, and varicella). All those vaccines consist of two doses.
According to Center Disease Control and Prevention (CDC), the vaccines are 95% effec-
tive against the disease [1–6]. Some mathematical models of the measles spread have been
introduced by several authors [5, 6]. The measles spread model with three vaccines is given

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02628-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02628-7&domain=pdf
mailto:hussam89@yahoo.com


Nazir et al. Advances in Difference Equations        (2020) 2020:171 Page 2 of 15

by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dt = Λ(1 – q) – γ v – μu – μ1u – βu(w + x) – φ1u,
dv
dt = Λ(q) + μ1u + φ1u – γ v – μv – ωv,
dw
dt = βu(w + x) – μw – αw – μ2w – φ2w,
dx
dt = αw – δx – μx – μ3x – φ2x,
dy
dt = μ2w + ωv + μ3x – μy + φ3x + φ2w,

(1)

where u represents susceptible, v represents vaccinated, w represents exposed, x repre-
sents infected, and y represents recovered individuals. φ1 is the first vaccine, φ2 is the
second, and φ3 is the third vaccine. Λ is the recruitment rate, β is the transmission rate,
μ is the natural death rate, γ is the vaccine wane rate, q is the proportion of new born,
α is the progression rate from exposed to infected individuals, ω is the rate at which vac-
cine works well, δ is the death rate induced by disease, μ1 is the vaccination rate, μ2 is the
measles therapy rate of exposed individuals, and μ3 is the recovery rate.

It has been evident that fractional calculus is increasingly used by for mathematical mod-
eling of different real-life problems. Normally, integer order derivative does not accurately
explore the dynamics as compared with fractional derivative. On the other hand, a vari-
ety of concepts have been introduced by different researchers to describe the aforesaid
derivatives. The most famous definitions have been given by Riemann and Liouville, Ca-
puto, Hadamard, etc. (see [7–10]).

Caputo and Fabrizio in 2015 introduced a new concept about fractional order derivatives
based on non-singular kernel [11, 12]. Some remarkable observations have been recorded,
Caputo–Fabrizio fractional integral is the fractional average of the function itself and its
fractional integral in Riemann–Liouville sense. Recently, existence results on the human
liver model have been investigated by using the definition of the Caputo–Fabrizio deriva-
tive. Also, mathematical models of tumor immune-surveillance using non-singular deriva-
tive have been discussed. Many different mathematical models for medical diseases (such
as models of dengue fever, diabetes, and tuberculosis) have been studied with the help of
Caputo–Fabrizio derivative [13–20]. In recent time, some significant work has been pro-
duced. The respective work has been carried out to investigate mainly the existence of a
solution, or series-type solutions, by using various tools of applied analysis, for details,
see [13, 21–23]. In an attempt to contribute to the existing literature on mathematical
tools to handle similar problems, we propose the use of LADM, which is used to find an-
alytical approximate solution to many nonlinear problems. This technique has been very
well explored for ordinary as well as for fractional differential equations [15, 24–28]. Re-
cently, a biological model of dengue fever has been investigated for qualitative theory by
using fixed point theory and for analytical study via LADM, see [29]. Therefore, we utilize
LADM for the series type solution of measles spread model (1) under CFFD to obtain a
satisfactory results. We consider model (1) and take the CFFD of the model of order σ
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such that σ ∈ (0, 1] as given below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CFDσ
t u = Λ(1 – q) – γ v – μu – μ1u – βu(w + x) – φ1u,

CFDσ
t v = Λ(q) + μ1u + φ1u – γ v – μv – ωv,

CFDσ
t w = βu(w + x) – μw – αw – μ2w – φ2w,

CFDσ
t x = αw – δx – μx – μ3x – φ3x,

CFDσ
t y = μ2w + ωv + μ3x – μy + φ3x + φ2w

(2)

subject to the conditions

u(0) ≥ 0, v(0) ≥ 0, w(0) ≥ 0, x(0) ≥ 0, y(0) ≥ 0.

We obtain the solution in the form of series for the considered problem. Also, we display
the results against different values of fractional order σ ∈ (0, 1] that are numerically solved.
Also, we provide results about the existence and uniqueness of solution for the concerned
model. Here, we remark that some qualitative work, which addresses existence of solution,
computation of series solutions, etc., has been framed in the last few years (see [30–33]).

The structure of the rest of the paper is as follows. In Sect. 2, we recall some definitions
and basic ideas of the Caputo–Fabrizio derivative. In Sect. 3, we present the results of
existence and uniqueness of the concerned model. In Sect. 4, we find the analytical solu-
tion of the model by using the Laplace Adomian decomposition method for the fractional
order. In Sect. 5, we present and discuss the numerical results. In Sect. 6, we discuss the
conclusions and some future directions.

2 Preliminaries
Definition 2.1 ([14]) Let ϕ ∈H1(0, a) be a space such that a > 0, σ ∈ (0, 1), then the CFFD
is recalled as follows:

CFDσ
t
(
ϕ(t)

)
=
M(σ )
1 – σ

∫ t

0
ϕ′(t) exp

[

–σ
t – ζ

1 – σ

]

dζ ,

M(σ ) is the normalization function with M(1) = M(0) = 1. If the function fails to exist
in H1(0, a), then the derivative can be redefined as

CFDσ
t
(
ϕ(t)

)
=

σM(σ )
1 – σ

∫ t

0

(
ϕ(t) – ϕ(ζ )

)
exp

[

–σ
t – ζ

1 – σ

]

dζ .

Definition 2.2 ([14]) Let σ ∈ ]0, 1[, then the integral of fractional order σ of function ϕ

is defined by

CF
a Iσ

t
[
ϕ(t)

]
=

(1 – σ )
M(σ )

ϕ(t) +
σ

M(σ )

∫ t

0
ϕ(ζ ) dζ , t ≥ 0.

Definition 2.3 The Laplace transform of CFFD CFDσ
t x(t) is given as

L
[CFDσ

t x(t)
]

=
sL[x(t)] – x(0)

s + σ (1 – s)
, s ≥ 0,σ ∈ (0, 1].
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3 Existence and uniqueness results for measles disease model of fractional
order

In this section, we investigate existence results for model (2) using the fixed point theorem
due to Banach. In this regard, applying the Caputo–Fabrizio fractional integral operator
on both sides of (2), we obtain the following:

u(t) – u(0) = CFIσ
t
[
Λ(1 – q) – γ v – μu – μ1u – βu(w + x) – φ1u

]
,

v(t) – v(0) = CFIσ
t
[
Λ(q) + μ1u + φ1u – γ v – μv – ωv

]
,

w(t) – w(0) = CFIσ
t
[
βu(w + x) – μw – αw – μ2w – φ2w

]
, (3)

x(t) – x(0) = CFIσ
t [αw – δx – μx – μ3x – φ3x],

y(t) – y(0) = CFIσ
t [μ2w + ωv + μ3x – μy + φ3x + φ2w].

Further, we define the functions as follows:

k1(t, u) = Λ(1 – q) – γ v – μu – μ1u – βu(w + x) – φ1u,

k2(t, v) = Λ(q) + μ1u + φ1u – γ v – μv – ωv,

k3(t, w) = βu(w + x) – μw – αw – μ2w – φ2w, (4)

k4(t, x) = αw – δx – μx – μ3x – φ3x,

k5(t, y) = μ2w + ωv + μ3x – μy + φ3x + φ2w,

Φ(σ ) =
(1 – σ )
M(σ )

, Θ(σ ) =
(σ )

M(σ )
. (5)

We note here that the u, v, w, x, y are nonnegative bounded functions such that ‖u(t)‖ ≤ ρ1,
‖v(t)‖ ≤ ρ2, ‖w(t)‖ ≤ ρ3, ‖x(t)‖ ≤ ρ4, ‖y(t)‖ ≤ ρ5, where ρ1, ρ2, ρ3, ρ4, ρ5 are some positive
constants. Now, we define the following variables:

η1 = μ + μ1 + βρ3 + βρ4 + φ1, η2 = γ + μ + ω,

η3 = βρ1 + μ + α + μ2 + φ2, η4 = μ + φ3 + μ + δ, η5 = μ.
(6)

Applying the Caputo–Fabrizio fractional integral on (3), we get the following:

u(t) = u(0) + Φ(σ )k1(t, u) + Θ(σ )
∫ t

0
k1(ξ , u) dξ ,

v(t) = v(0) + Φ(σ )k2(t, v) + Θ(σ )
∫ t

0
k2(ξ , v) dξ ,

w(t) = w(0) + Φ(σ )k3(t, w) + Θ(σ )
∫ t

0
k3(ξ , w) dξ , (7)

x(t) = x(0) + Φ(σ )k4(t, x) + Θ(σ )
∫ t

0
k4(ξ , x) dξ ,

y(t) = y(0) + Φ(σ )k5(t, y) + Θ(σ )
∫ t

0
k5(ξ , y) dξ .
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Theorem 3.1 Under the condition M = max{η1,η2,η3,η4,η5} < 1, the functions k1, k2, k3,
k4, k5 satisfy Lipschitz conditions.

Proof We consider the function k1 and let u and u1 be the two functions

∥
∥k1(t, u) – k1(t, u1)

∥
∥ =

∥
∥–μ(u – u1) – μ1(u – u1)

– βw(u – u1) – βx(u – u1) – φ1(u – u1)
∥
∥

≤ ∥
∥μ(u – u1)

∥
∥ +

∥
∥μ1(u – u1)

∥
∥

+
∥
∥βw(u – u1)

∥
∥ +

∥
∥βx(u – u1)

∥
∥ +

∥
∥φ1(u – u1)

∥
∥

≤ (
μ + μ1 + β‖w‖ + β‖x‖ + φ1

)‖u – u1‖
≤ (

μ + μ1 + β‖ρ3‖ + β‖ρ4‖ + φ1
)‖u – u1‖

≤ η1‖u – u1‖. (8)

Similar results for k2, k3, k4, k5 can be obtained using {v, v1}, {w, w1}, {x, x1}, {y, y1}:

∥
∥k2(t, v) – k2(t, v1)

∥
∥ ≤ η2‖v – v1‖,

∥
∥k3(t, w) – k3(t, w1)

∥
∥ ≤ η3‖w – w1‖,

∥
∥k4(t, x) – k4(t, x1)

∥
∥ ≤ η4‖x – x1‖,

∥
∥k5(t, y) – k5(t, y1)

∥
∥ ≤ η5‖y – y1‖. �

Using (3), we introduce the following recursive formulas:

un(t) = Φ(σ )k1(t, un–1) + Θ(σ )
∫ t

0
k1(ξ , un–1) dξ ,

vn(t) = Φ(σ )k2(t, vn–1) + Θ(σ )
∫ t

0
k2(ξ , vn–1) dξ ,

wn(t) = Φ(σ )k3(t, wn–1) + Θ(σ )
∫ t

0
k3(ξ , wn–1) dξ , (9)

xn(t) = Φ(σ )k4(t, xn–1) + Θ(σ )
∫ t

0
k4(ξ , xn–1) dξ ,

yn(t) = Φ(σ )k5(t, yn–1) + Θ(σ )
∫ t

0
k5(ξ , yn–1) dξ .

The initial components of the above recursive formulas are determined by the given initial
conditions as follows:

u0(t) = u(0), v0(t) = v(0), w0(t) = w(0),

x0(t) = x(0), y0(t) = y(0),
(10)

θn(t) = un(t) – un–1(t) = Φ(σ )k1(t, un–1) + Θ(σ )
∫ t

0
k1(ξ , un–1) dξ ,

ψn(t) = vn(t) – vn–1(t) = Φ(σ )k2(t, vn–1) + Θ(σ )
∫ t

0
k2(ξ , vn–1) dξ ,
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ϑn(t) = wn(t) – wn–1(t) = Φ(σ )k3(t, wn–1) + Θ(σ )
∫ t

0
k3(ξ , wn–1) dξ , (11)

χn(t) = xn(t) – xn–1(t) = Φ(σ )k4(t, xn–1) + Θ(σ )
∫ t

0
k4(ξ , xn–1) dξ ,

ζn(t) = yn(t) – yn–1(z) = Φ(σ )k5(t, yn–1) + Θ(σ )
∫ t

0
k5(ξ , yn–1) dξ ,

un(t) =
n∑

i=1

θn(t), vn(t) =
n∑

i=1

ψn(t), wn(t) =
n∑

i=1

ϑn(t),

xn(t) =
n∑

i=1

χn(t), yn(t) =
n∑

i=1

ζn(t).

(12)

Next, we formulate the recursive inequalities for the differences

∥
∥θn(t)

∥
∥ =

∥
∥un(t) – un–1(t)

∥
∥

=
∥
∥
∥
∥Φ(σ )

(
k1(t, un–1) – k1(t, un–2)

)

+ Θ(σ )
∫ t

0

(
k1(ξ , un–1) – k1(ξ , un–2)

)
dξ

∥
∥
∥
∥

≤ Φ(σ )
∥
∥
(
k1(t, un–1) – k1(t, un–2)

)∥
∥

+ Θ(σ )
∫ t

0

∥
∥
(
k1(ξ , un–1) – k1(ξ , un–2)

)
dξ

∥
∥, (13)

∥
∥θn(t)

∥
∥ ≤ Φ(σ )η1

∥
∥θn–1(t)

∥
∥ + η1Θ(σ )

∫ t

0

∥
∥θn–1(ξ )

∥
∥dξ .

In a similar manner, we get

∥
∥ψn(t)

∥
∥ ≤ Φ(σ )η2

∥
∥ψn–1(t)

∥
∥ + η2Θ(σ )

∫ t

0

∥
∥ψn–1(ξ )

∥
∥dξ ,

∥
∥ϑn(t)

∥
∥ ≤ Φ(σ )η3

∥
∥ϑn–1(t)

∥
∥ + η3Θ(σ )

∫ t

0

∥
∥ϑn–1(ξ )

∥
∥dξ , (14)

∥
∥χn(t)

∥
∥ ≤ Φ(σ )η4

∥
∥χn–1(t)

∥
∥ + η4Θ(σ )

∫ t

0

∥
∥χn–1(ξ )

∥
∥dξ ,

∥
∥ζn(t)

∥
∥ ≤ Φ(σ )η5

∥
∥ζn–1(t)

∥
∥ + η5Θ(σ )

∫ t

0

∥
∥ζn–1(ξ )

∥
∥dξ . (15)

For existence of a solution, we give the following result.

Theorem 3.2 If there exists a time t0 > 0 such that the following inequality holds:

Φ(σ )ηi + Θ(σ )ηit0 < 1 for i = 1, 2, . . . 5, (16)

then the considered fractional order measles spread model with vaccination has a
solution.

Proof Since functions u(t), v(t), w(t), x(t), y(t) are assumed to be bounded and each func-
tion satisfies a Lipschitz condition, the following relation can be obtained using equations
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(13), (14) recursively:

∥
∥θn(t)

∥
∥ ≤ ∥

∥u(0)
∥
∥
[
Φ(σ )η1 + η1Θ(σ )t

]n,
∥
∥ψn(t)

∥
∥ ≤ ∥

∥v(0)
∥
∥
[
Φ(σ )η2 + η2Θ(σ )t

]n,
∥
∥ϑn(t)

∥
∥ ≤ ∥

∥w(0)
∥
∥
[
Φ(σ )η3 + η3Θ(σ )t

]n, (17)
∥
∥χn(t)

∥
∥ ≤ ∥

∥x(0)
∥
∥
[
Φ(σ )η4 + η4Θ(σ )t

]n,
∥
∥ζn(t)

∥
∥ ≤ ∥

∥y(0)
∥
∥
[
Φ(σ )η5 + η5Θ(σ )t

]n.

Equation (16) shows the existence and smoothness of the functions defined in (12). To
complete the proof, we prove that the function un(t), vn(t), wn(t), xn(t), yn(t) converges to
a system of solutions of (3). We define Bn(t), Cn(t), Dn(t), En(t), and Fn(t) as the remainder
terms after n iterations, i.e.,

u(t) – u(0) = un(t) – Bn(t),

v(t) – v(0) = vn(t) – Cn(t),

w(t) – w(0) = wn(t) – Dn(t), (18)

x(t) – x(0) = xn(t) – En(t),

y(t) – y(0) = yn(t) – Fn(t).

Then, using the Lipschitz condition for the k1, we have

∥
∥Bn(t)

∥
∥ =

∥
∥
∥
∥Φ(σ )

(
k1(t, u) – k1(t, un–1)

)
+ Θ(σ )

∫ t

0

(
k1(ξ , u) – k1(ξ , un–1)

)
∥
∥
∥
∥dξ

≤ Φ(σ )
∥
∥
(
k1(t, u) – k1(t, un–1)

)∥
∥ + Θ(σ )

∫ t

0

∥
∥
(
k1(ξ , u) – k1(ξ , un–1)

)∥
∥dξ

≤ Φ(σ )η1‖u – un–1‖ + η1Θ(σ )‖u – un–1‖t,

applying the process recursively, we get

∥
∥Bn(t)

∥
∥ ≤ [

Φ(σ )η1 + η1Θ(σ )t
]n+1

ρ1. (19)

Then at t0 we obtain

∥
∥Bn(t)

∥
∥ ≤ [

Φ(σ )η1 + η1Θ(σ )t0
]n+1

ρ1. (20)

Taking the limit on equation (20) as n → ∞ and then using condition (16), we obtain
‖Bn(t)‖ → 0. Using the same process as described above, we have the following relations:

∥
∥Cn(t)

∥
∥ ≤ [

Φ(σ )η2 + η2Θ(σ )t0
]n+1

ρ2,
∥
∥Dn(t)

∥
∥ ≤ [

Φ(σ )η3 + η3Θ(σ )t0
]n+1

ρ3,
∥
∥En(t)

∥
∥ ≤ [

Φ(σ )η4 + η4Θ(σ )t0
]n+1

ρ4,
∥
∥Fn(t)

∥
∥ ≤ [

Φ(σ )η5 + η5Θ(σ )t0
]n+1

ρ5.

(21)
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Similarly, taking the limit on (21) as n → ∞ and then using condition (16), we have
‖Cn(t)‖ → 0, ‖Bn(t)‖ → 0, ‖En(t)‖ → 0, ‖Fn(t)‖ → 0. Therefore, the existence of the
system of solutions is proved. We now give conditions for the system of solutions to be
unique. �

Theorem 3.3 System along with initial conditions has a unique system of solutions if the
following conditions hold:

(1 – Φ(σ )ηi – ηiΘ(σ )t > 0 for i = 1, 2, . . . , 5. (22)

Proof Assume that {u1(t), v1(t), w1(t), x1(t), y1(t)} is another set of solutions of model (3) in
addition to the solution set {u(t), v(t), w(t), x(t), y(t)} proved to exist in the above theorems.

u(t) – u1(t) = Φ(σ )
(
k1(t, u) – k1(t, un–1)

)
+ Θ(σ )

∫ t

0

(
k1(ξ , u) – k1(ξ , un–1)

)
dξ ,

∥
∥u(t) – u1(t)

∥
∥ =

∥
∥
∥
∥Φ(σ )

(
k1(t, u) – k1(t, un–1)

)

+ Θ(σ )
∫ t

0

(
k1(ξ , u) – k1(ξ , un–1)

)
∥
∥
∥
∥dξ

≤ Φ(σ )
∥
∥
(
k1(t, u) – k1(t, un–1)

)∥
∥

+ Θ(σ )
∫ t

0

∥
∥
(
k1(ξ , u) – k1(ξ , un–1)

)∥
∥dξ

≤ Φ(σ )η1‖u – un–1‖ + η1Θ(σ )‖u – un–1‖t. (23)

Rearranging equations (23), we get

∥
∥u(t) – u1(t)

∥
∥
(
1 – Φ(σ )η1 – η1Θ(σ )t

) ≤ 0, (24)
∥
∥u(t) – u1(t)

∥
∥ = 0, (25)

and therefore u(t) = u1(t). Repeating the similar procedure to each of the following pairs
(v(t), v1(t)), (w(t), w1(t)), (x(t), x1(t)), and (y(t), y1(t)) with inequality (22) for i = 2, 3, 4, 5,
respectively, we obtain

v(t) = v1(t), w(t) = w1(t), x(t) = x1(t), y(t) = y1(t). (26)

Thus, the uniqueness of the system of solutions of the fractional order system is proved.
In summary, the existence of the solutions of the model described in system (3) can be
obtained by requiring that M = max{η1,η2,η3,η4,η5} < 1, where η1, η2, η3, η4, η5 are the
Lipschitz constants of the functions k1, k2, k3, k4, k5, respectively. Moreover, the unique-
ness of the solutions of the considered system can be established using the inequalities in
equations (22). �
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4 Analytical solution of measles spread model (2) by Laplace Adomian
decomposition method

In this section, we compute a series solution for the suggested problem. To achieve this
goal, taking Laplace transform of (11), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[u(t)] = u(0)
s + s+σ (1–s)

s L[Λ(1 – q) – γ v – μu – μ1u – βu(w + x) – φ1u],

L[v(t)] = v(0)
s + s+σ (1–s)

s L[Λ(q) + μ1u + φ1u – γ v – μv – ωv],

L[w(t)] = w(0)
s + s+σ (1–s)

s L[βu(w + x) – μw – αw – μ2w – φ2w],

L[x(t)] = x(0)
s + s+σ (1–s)

s L[αw – δx – μx – μ3x – φ3x],

L[y(t)] = y(0)
s + s+σ (1–s)

s L[μ2w + ωv + μ3x – μy + φ3x + φ2w].

(27)

Now, assume the solution in the series form as follows:

u(t) =
∞∑

p=0

up(t), v(t) =
∞∑

p=0

vp(t), w(t) =
∞∑

p=0

wp(t),

x(t) =
∞∑

p=0

xp(t), y(t) =
∞∑

p=0

yp(t).

(28)

Furthermore, decompose the nonlinear terms u(t)w(t), u(t)x(t), etc. in terms of Adomian
polynomials as follows:

u(t)w(t) =
∞∑

p=0

Ap(u, w), u(t)x(t) =
∞∑

p=0

Bp(u, x), (29)

where the Adomian polynomial Ap(u, w) can be defined as

Ap(u, w) =
1
p!

dp

dλp

[ p∑

i=0

λiui(t)
p∑

i=0

λiwi(t)

]∣
∣
∣
∣
∣
λ=0

.

In a similar way, the other polynomials Bp can be defined.
Hence, in view of (28) and (29), system (27) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[
∑∞

p=0 up(t)] = u(0)
s + s+σ (1–s)

s L[Λ(1 – q) – γ
∑∞

p=0 vp – (μ + μ1 + φ1)
∑∞

p=0 up

– β
∑∞

p=0 Ap(u, w) – β
∑∞

p=0 Bp(u, x)],

L[
∑∞

p=0 vp(t)] = v(0)
s + s+σ (1–s)

s L[Λ(q) + (μ1 + φ1)
∑∞

p=0 up – (γ + μ + ω)
∑∞

p=0 vp],

L[
∑∞

p=0 wp(t)] = w(0)
s + s+σ (1–s)

s L[β
∑∞

p=0 Ap(u, w) + β
∑∞

p=0 Bp(u, x)

– (μ + α + μ2 + φ2)
∑∞

p=0 wp],

L[
∑∞

p=0 xp(t)] = x(0)
s + s+σ (1–s)

s L[α
∑∞

p=0 wp – (δ + μ3 + μ + φ3)
∑∞

p=0 xp],

L[
∑∞

p=0 Yp(t)] = y(0)
s + s+σ (1–s)

s L[ω
∑∞

p=0 vp

+ (μ2 + φ2)
∑∞

p=0 wp + (φ3 + μ3)
∑∞

p=0 xp – μ
∑∞

p=0 yp].

(30)
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Now equating terms on both sides of (30), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[u0(t)] = u0
s , L[v0(t)] = v0

s , L[w0(t)] = w0
s ,

L[x0(t)] = x0
s , L[y0(t)] = y0

s ,
L[u1(t)] = s+σ (1–s)

s L[Λ(1 – q) – γ v0 – (μ + μ1 + φ1)u0 – βA0(u, w) – βB0(u, x)],
L[v1(t)] = s+σ (1–s)

s L[Λ(q) + (μ1 + φ1)u0 – (γ + μ + ω)v0],
L[w1(t)] = s+σ (1–s)

s L[βA0(u, w) + βB0(u, x) – (μ + α + μ2 + φ2)w0],
L[x1(t)] = s+σ (1–s)

s L[αw0 – (δ + μ3 + μ + φ3)x0],
L[y1(t)] = s+σ (1–s)

s L[ωv0 + (μ2 + φ2)w0 + (μ3 + φ3)x0 – μy0],
L[u2(t)] = s+σ (1–s)

s L[Λ(1 – q) – γ v1 – (μ + μ1 + φ1)u1 – βA1(u, w) – βB1(u, x)],
L[v2(t)] = s+σ (1–s)

s L[Λ(q) + (μ1 + φ1)u1 – (γ + μ + ω)v1],
L[w2(t)] = s+σ (1–s)

s L[βA – 1(u, w) + βB1(u, x) – (μ + α + μ2 + φ2)w1],
L[x2(t)] = s+σ (1–s)

s L[αw1 – (δ + μ3 + μ + φ3)x1],
L[y2(t)] = s+σ (1–s)

s L[ωv1 + (μ2 + φ2)w1 + (μ3 + φ3)x1 – μy1],
...
L[up+1(t)] = s+σ (1–s)

s L[Λ(1 – q) – γ vp – (μ + μ1 + φ1)up – βAp(u, w) – βBp(u, x)],
L[vp+1(t)] = s+σ (1–s)

s L[Λ(q) + (μ1 + φ1)up – (γ + μ + ω)vp],
L[wp+1(t)] = s+σ (1–s)

s L[βAp(u, w) + βBp(u, x) – (μ + α + μ2 + φ2)wp],
L[xp+1(t)] = s+σ (1–s)

s L[αwp – (δ + μ3 + μ + μ3)xp],
L[yp+1(t)] = s+σ (1–s)

s L[ωvp + (μ2 + φ2)wp + ωvp + (μ3φ3)xp – μyp], p ≥ 0.

(31)

Evaluating the Laplace transform in (31), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(t) = u0, v0(t) = v0, w0(t) = w0, x0(t) = x0, y0(t) = z0,
u1(t) = [Λ(1 – q) – γ v0 – (μ + μ1 + φ1 + βw0 + βx0)u0](1 + σ (t – 1)),
v1(t) = 1 + σ (z – 1)[Λ(q) + (μ1 + φ1)u0 – (γ + μ + ω)],
w1(t) = [(βu0 – (μ + α + μ2 + φ2))w0 + βu0x0](1 + σ (t – 1)),
x1(t) = [αw0 – (δ + μ3 + μ + φ3)x0](1 + σ (t – 1)),
y1(t) = [ωv0 + (μ2 + φ2)w0 + (μ3 + φ3)x0 – μy0](1 + σ (t – 1)),
u2(t) = (1 + σ (t – 1))Λ(1 – q) – [γ (Λ(q) + (μ1 + φ2)u0 – (γ + μ + ω))v0)

+ (μ + μ1 – βw0 – βx0 + φ1)(Λ(q) – γ v0 – (μ1 – βw0 – βx0 + φ))u0

– βu0(βu0 – (μ + α + μ2 + φ2))w0 + βu0x0 + αw0 – (δ + μ3 + μ + φ3)x0]
(1 + σ 2(t – 1)),

v2(t) = (1 + σ (t – 1))Λ(q) + [(μ1 + φ2)(Λ(1 – q) – (μ + μ1 + βw0 + βx0 + φ1)u0

– (γ + μ + ω)(Λ(q) + (μ1 + φ2)u0 – (γ + μ + ω)v0)](1 + σ 2(t – 1)),
w2(t) = (1 + σ 2(t – 1))[(βu0 – (μ + α + μ2 + φ2))((βu0 – (μ + α + μ2 + φ2))w0 + βu0x0)

β(w0 + x0)(Λ(1 – q) – γ v0 – (μ + μ1 + φ1 + βw0 + βx0))u0

+ βu0(αw0 – (δ + μ3 + μ + φ3)x0)],
x2(t) = (1 + σ 2(t – 1))[α((βu0 – (μ + α + μ2 + φ3))w0 + βu0x0)

+ (δ + μ + μ3 + φ3)(αw0 + (δ + μ + μ3 + φ3))x0],
y2(t) = 1 + σ 2(t – 1)[(μ2 + φ2)(βu0 – (μ + α + μ2 + φ2))w0 + βu0x0

+ ω(Λq + (μ + φ)u0 – (γ + μ + ω)v0) + (μ3 + φ3)(αw0 – (δ + μ + μ3 + φ3)x0)
– μ(ωv0 + (μ2 + φ2)w0 + (μ3 + φ3v0 – μy0))]
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and so on. Therefore, we get the required solution as given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = u0 + u1(t) + u2(t) + u3(t) + · · · ,

v(t) = v0 + v1(t) + v2(t) + v3(t) + · · · ,

w(t) = w0 + w1(t) + w2(t) + w3(t) + · · · ,

x(t) = x0 + x1(t) + x2(t) + x3(t) + · · · ,

y(t) = y0 + y1(t) + y2(t) + y3(t) + · · · .

5 Results and discussion
This part of the manuscript is devoted to providing numerical results and some discus-
sions about approximate solution of the considered problem. For this purpose, we use the
aforesaid technique for numerical simulation to compute the model with three param-
eters of vaccination. Here, we take some suitable values for the parameters as u0 = 120,
v0 = 60, w0 = 70, x0 = 50, y0 = 10, Λ = 0.00001, β = 0.000009, γ = 0.00009; α = 0.000125;
μ = 0.000875, μ1 = 0.0002, μ2 = 0.01, μ3 = 0.0014286, ω = 0.00009, q = 0.500000, η =
0.030000, φ1 = 0.007, φ2 = 0.00009, and φ3 = 0.0003. In view of these values, we get the
series solutions after three terms as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = 120 – 0.3480(1 + σ (t – 1)) + 6.1656(1 + σ 2(t – 1)),

v(t) = 60 + 0.0447(1 + σ (z – 1)) + –3.6035(1 + σ 2(t – 1)),

w(t) = 70 – 0.6467(1 + σ (t – 1)) + 0.0053(1 + σ 2(t – 1)),

x(t) = 50 – 1.6214(1 + σ (t – 1)) + 0.0528(1 + σ 2(t – 1))

y(t) = 10 + 0.7894(1 + σ (t – 1)) – 0.0100(1 + σ 2(t – 1)).

(32)

Next, we plot the solutions after three terms as given in (32) in the following Figs. 1, 2, 3,
4, 5 corresponding to different fractional order.

From Figs. 1, 2, 3, 4, 5, we plot the different classes of the model for different fractional
values of σ . We plot the series solutions given in (32) corresponding to different fractional

Figure 1 Plot of the susceptible class for different fractional values of σ
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Figure 2 Plot of the vaccinated class of different fractional values for σ

Figure 3 Plot of the exposed class of different fractional values for σ

order in Figs. 1, 2, 3, 4, 5 using Matlab. Figures 1, 2, 3, 4, 5 show the plots for the changes of
susceptible, vaccinated, exposed, infected, and recovered for different fractional order σ .
As can be seen, when increasing the value of σ , the solutions tend to the integer order so-
lution. Further on the passage of time with proper vaccination, the density of susceptible
class decreases with respect to time in days. The decay process varies at different frac-
tional orders, while the vaccinated population increases at a given time in days. Figures 3,
4, 5 show that the exposed and infected population decreases with time as well as the re-
covered population is increasing with passage of time. This growth is different at different
fractional order. It can be observed that at different values of σ , the different trajectories
are shown in Figs. 1, 2, 3, 4, 5. At small fractional order, the growth or decay process is
slightly faster compared to greater fractional order. From this observation, we conclude
that for short memory, fractional order model is better than integer order.
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Figure 4 Plot of the infected class of different fractional values for σ

Figure 5 Plot of the recovered class of different fractional values for σ

6 Conclusion
We have developed LADM for mathematical modeling of measles spread with optimal
control strategy involving CFFD. Also, some results about existence and uniqueness of
solution have been developed. To the best of our knowledge, the aforesaid techniques
are very rarely used to handle the analytical solutions of FODEs involving non-singular
derivative of Caputo–Fabrizio type. Furthermore, the numerical results have been dis-
played via graphs, which indicate that the established technique can be used to handle
semi-analytical solution of those FODEs involving CFFD. In the future, the mentioned
method can be utilized to investigate more nonlinear problems of FODEs involving CFFD.
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