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Abstract
This paper deals with the existence of three positive periodic solutions for a class of
second order neutral functional differential equations involving the delayed
derivative term in nonlinearity
(x(t) – cx(t – δ))′′ + a(t)g(x(t))x(t) = λb(t)f (t, x(t), x(t – τ1(t)), x′(t – τ2(t))). By utilizing the
perturbation method of positive operator and Leggett–Williams fixed point theorem,
a group of sufficient conditions are established.
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1 Introduction
In the present work, we study the existence of three positive periodic solutions for the
second order neutral functional differential equation of the form

(
x(t) – cx(t – δ)

)′′ + a(t)g
(
x(t)

)
x(t) = λb(t)f

(
t, x(t), x

(
t – τ1(t)

)
, x′(t – τ2(t)

))
, (1)

where λ > 0 is a positive parameter, c, δ are constants, and |c| < 1. a(t), b(t) are nonnegative
ω-periodic continuous functions, τi(t), i = 1, 2, are continuous ω-periodic functions, f :
R × [0, +∞)2 ×R → [0, +∞) is a continuous function, and f (t, u, v, w) is ω-periodic with
respect to t, g ∈ C([0, +∞), [0, +∞)).

Neutral functional differential equations have a wide range of applications in the field
of physics, biology, economics, and so on, see [1–14] for more details. In [15], the authors
pointed out that the growth of single or multiple species was mainly affected by seasonal
changes (especially cyclical changes) and time lags. So it is important to study the peri-
odic solutions of such models. The issues of the existence of positive periodic solutions
of neutral functional differential equations have received more attention in recent years,
see [7–14]. The existence of positive periodic solutions for first order neutral functional
differential equations has been studied by many authors, see [7–12] and the references
therein. But the research results on the case of second order are more seldom.
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In [13], the authors studied the existence, multiplicity, and nonexistence of positive pe-
riodic solutions of second order neutral functional differential equations of the form

(
x(t) – cx(t – δ)

)′′ + a(t)x(t) = λb(t)f
(
x
(
t – τ (t)

))
,

where λ > 0 is a positive parameter, c, δ are constants, and |c| < 1, a(t), b(t) are nonnegative
ω-periodic continuous functions. But the nonlinear term does not contain the derivative
term.

Recently, Li [14] discussed the existence and nonexistence of positive ω-periodic solu-
tions of second order neutral functional differential equations with delayed derivative in
nonlinear term by using the positive operator perturbation method and the fixed point
index theory

(
x(t) – cx(t – δ)

)′′ + a(t)x(t) = f
(
t, x(t), x

(
t – τ (t)

)
, x′(t – γ (t)

))
,

where δ > 0, |c| < 1, a ∈ C(R,∞) is an ω periodic function, f : R × [0,∞)2 × R → [0,∞)
is continuous, and f (t, u, v, w) is ω-periodic with respect to t, τ ,γ ∈ C(R, [0,∞)) are ω-
periodic functions. But he did not consider the multiplicity of the positive periodic solu-
tions.

Motivated by the above mentioned results, in this work, by using a different method,
we mainly study the existence and multiplicity of positive periodic solutions for a class of
second order neutral nonlinear functional differential equations with delayed derivative
of the form (1).

Let Cω(R) be the Banach space of all continuous ω-periodic functions endowed with the
norm ‖x‖C = maxt∈[0,ω] |x(t)|, C1

ω(R) be the Banach space of all continuous differentiable
ω-periodic functions with the norm ‖x‖C1 = ‖x‖C +‖x′‖C . In general, for n ∈N, Cn

ω(R) rep-
resents the Banach space of all nth order continuous differentiable ω-periodic functions.
Let C+

ω(R) = Cω(R, [0,∞)) be a nonnegative function cone in Cω(R).
The main results of the present paper are summarized as follows:

(i) We establish the existence (and uniqueness) of ω-periodic solutions for the
corresponding linear second order neutral functional differential equation

(
x(t) – cx(t – δ)

)′′ + a(t)g
(
x(t)

)
x(t) = λh(t), t ∈R.

See Lemma 5.
(ii) We provide the strong positive estimate and C1-estimate of the periodic solution

operator by using the positive operator perturbation method, see Lemma 6.
(iii) Let

K =
{

x ∈ C1
ω(R) : x(t) ≥ σ‖x‖C ,

∣
∣x′(τ )

∣
∣ ≤ C0

∣
∣x(t)

∣
∣, τ , t ∈R

}
,

where σ and C0 will be specified later. We define an operator Qλ which maps K
into itself and prove that the operator Qλ has at least three positive fixed points by
using Leggett–Williams fixed point theorem, see Theorem 1.

In this paper, we always assume that
(H1) f ∈ C(R× [0,∞)2 ×R, [0,∞)), f (t, u, v, w) is nondecreasing with respect to u, v, w

and ω-periodic in t; g ∈ C([0,∞), [0,∞));
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(H2) a, b ∈ C+
ω(R), b := 1

ω

∫ ω

0 b(s) ds > 0, and τi ∈ Cω(R), i = 1, 2;
(H3) there exist two positive constants d and D satisfying 0 < d ≤ a(t)g(x(t)) ≤ D < ( π

ω
)2

for any t ∈ [0,ω], x ∈ C+
ω(R).

2 Preliminaries
Firstly, let 0 < M < ( π

ω
)2. We consider the second order linear ordinary differential equation

x′′(t) + Mx(t) = λh(t), h ∈ Cω(R). (2)

By Lemma 2.1 of [14], the following lemma is obtained.

Lemma 1 For ∀h ∈ Cω(R), linear equation (2) has a unique ω-periodic solution x ∈ C2
ω(R)

expressed by

x(t) = λ

∫ t

t–ω

U(t – s)h(s) ds := Tλ(h)(t), t ∈ R, (3)

where

U(t) =
cos

√
M(t – ω

2 )

2
√

M sin
√

Mω
2

, 0 ≤ t ≤ ω. (4)

And the operator Tλ : Cω(R) → C1
ω(R) is a linear completely continuous operator.

For the sake of brevity, let β =
√

M and denote

L = max
t∈[0,ω]

U(t) =
1

2β sin βω

2

, l = min
t∈[0,ω]

U(t) =
cos βω

2

2β sin βω

2

,

L1 = max
t∈[0,ω]

∣∣U ′(t)
∣∣ = max

t∈[0,ω]

| sinβ(t – ω
2 )|

2β sin βω

2

=
1
2

,

σ =
l
L

= cos
βω

2
, C0 =

L1

l
= β tan

βω

2
.

Then

0 < σ < 1, 0 < l ≤ U(t) ≤ L.

Clearly, if h ∈ C+
ω(R), the solution x ∈ C2

ω(R) of (2) is positive.
Define a cone K in C1

ω(R) by

K =
{

x ∈ C1
ω(R) : x(t) ≥ σ‖x‖C ,

∣∣x′(τ )
∣∣ ≤ C0

∣∣x(t)
∣∣, τ , t ∈ R

}
. (5)

Lemma 2 Tλ(C+
ω(R)) ⊂ K and ‖Tλ‖ ≤ λ

M .

Proof Let h ∈ C+
ω(R). By (3) and (4), we have

x(t) = λ

∫ t

t–ω

U(t – s)h(s) ds ≤ λL
∫ t

t–ω

h(s) ds = λL
∫ ω

0
h(s) ds, ∀t ∈R.
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That is, ‖x‖C ≤ λL
∫ ω

0 h(s) ds. Hence we have

x(t) ≥ λl
∫ t

t–ω

h(s) ds = λl
∫ ω

0
h(s) ds ≥ σ‖x‖C , ∀t ∈ R.

For ∀τ ∈R, noticing that x′(τ ) = λ
∫ τ

τ–ω
U ′(τ – s)h(s) ds, we have

∣
∣x′(τ )

∣
∣ ≤ λ

∫ τ

τ–ω

∣
∣U ′(τ – s)

∣
∣h(s) ds

≤ λL1

∫ τ

τ–ω

h(s) ds

= λL1

∫ ω

0
h(s) ds

≤ C0x(t).

Consequently, by (5), Tλ(C+
ω(R)) ⊂ K . In addition, for h ∈ C+

ω(R), the inequality

∣
∣Tλh(t)

∣
∣ ≤ λ

∫ t

t–ω

U(t – s) ds‖h‖C =
λ

M
‖h‖C

implies that ‖Tλ‖ ≤ λ
M and the proof is complete. �

In order to prove the existence of ω-periodic solutions of equation (1), we consider the
corresponding linear neutral functional differential equation

(
x(t) – cx(t – δ)

)′′ + a(t)g
(
x(t)

)
x(t) = λh(t), h ∈ Cω(R). (6)

Define a linear operator A : Cω(R) → Cω(R) by

Ax(t) = x(t) – cx(t – δ), t ∈R, x ∈ Cω(R). (7)

Then A : Cω(R) → Cω(R) is bounded.

Lemma 3 ([11, 12, 14]) If |c| �= 1, then the operator A, defined by (7), has a linear bounded
inverse operator A–1 on Cω(R) given by

(
A–1y

)
(t) =

{∑
j≥0 cjy(t – jδ), |c| < 1,

–
∑

j≥1 c–jy(t + jδ), |c| > 1,

and

∥
∥A–1y

∥
∥

C ≤ ‖y‖C

|1 – |c|| .

Lemma 4 If |c| < σ , then for any y ∈ K , we have

A–1y(t) ≥ σ – |c|
1 – c2 ‖y‖C , ∀t ∈R.
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Proof For any y ∈ K , by virtue of Lemma 3, we have

A–1y(t) =
∑

j≥0

cjy(t – jδ) =
∑

j≥0

|c|2jy(t – 2jδ) –
∑

j≥1

|c|2j–1y
(
t – (2j – 1)δ

)

≥
∑

j≥0

|c|2jσ‖y‖C –
∑

j≥1

|c|2j–1‖y‖C

≥
(

σ – |c|
1 – c2

)
‖y‖C .

Then the proof of Lemma 4 is complete. �

Let y = Ax. Then by (7), equation (6) can be rewritten as

y′′ + a(t)g
((

A–1y
)
(t)

)(
A–1y

)
(t) = λh(t), t ∈R. (8)

It is available from Lemma 3 that when y ∈ C1
ω(R), A–1y ∈ C1

ω(R), and (A–1y)′ = A–1y′, when
y ∈ C2

ω(R), A–1y ∈ C2
ω(R), and (A–1y)′′ = A–1y′′. Therefore, x ∈ C2

ω(R) is an ω-periodic solu-
tion of equation (6) if and only if y = Ax ∈ C2

ω(R) is an ω-periodic solution of equation (8).

Lemma 5 If |c| < d
D+d , equation (8) has a unique ω-periodic solution y ∈ C2

ω(R) for any
h ∈ Cω(R). When h ∈ C+

ω(R) and |c| < min{ d
D+d , σ (M–D)

σ (M–D)+D }, the ω-periodic solution y ∈ K .

Proof Define an operator Bλ : Cω(R) → Cω(R) by

Bλy(t) =
1
λ

[(
M – a(t)g

((
A–1y

)
(t)

))
y(t) – G

(
y(t)

)]
, t ∈R, (9)

where G(y(t)) = ca(t)g((A–1y)(t))(A–1y)(t – δ). Then equation (8) can be rewritten as

y′′(t) + My(t) = λBλy(t) + λh(t), t ∈R. (10)

By Lemma 1, we have

(I – TλBλ)y(t) = Tλh(t), t ∈R. (11)

It follows from (9) that

∣∣Bλy(t)
∣∣ =

∣
∣∣
∣

1
λ

[(
M – a(t)g

((
A–1y

)
(t)

))
y(t) – ca(t)g

((
A–1y

)
(t)

)(
A–1y

)
(t – δ)

]
∣
∣∣
∣

≤ 1
λ

[
(M – d)‖y‖C + |c|D ‖y‖C

1 – |c|
]

=
1
λ

(
M – d +

|c|D
1 – |c|

)
‖y‖C .

Consequently,

‖Bλ‖ ≤ 1
λ

(
M – d +

|c|D
1 – |c|

)
.
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Combining this fact with ‖Tλ‖ ≤ λ
M , we have

‖TλBλ‖ ≤ ‖Tλ‖‖Bλ‖ ≤ 1
M

(
M – d +

|c|D
1 – |c|

)
.

Then ‖TλBλ‖ < 1 because of |c| < d
D+d . Hence the operator I – TλBλ has a bounded inverse

operator (I – TλBλ)–1 which can be expressed by

(I – TλBλ)–1 =
∞∑

n=0

(TλBλ)n.

Therefore, operator equation (11) has a unique ω-periodic solution y ∈ C2
ω(R) expressed

by

y = (I – TλBλ)–1Tλh =
∞∑

n=0

(TλBλ)nTλh. (12)

Let z = Tλh for any h ∈ C+
ω(R). By Lemma 2, we get z ∈ K . Then we have

Bλz(t) =
1
λ

[(
M – a(t)g

((
A–1z

)
(t)

))
z(t) – ca(t)g

((
A–1z

)
(t)

)(
A–1z

)
(t – δ)

]

≥ 1
λ

[
(M – D)z(t) – |c|D∥∥A–1z

∥∥
C

]

≥ 1
λ

[
(M – D)σ‖z‖C –

|c|D
1 – |c| ‖z‖C

]

=
1
λ

[
(M – D)σ –

|c|D
1 – |c|

]
‖z‖C .

Since |c| < σ (M–D)
σ (M–D)+D , it follows that

(M – D)σ –
|c|D

1 – |c| > 0.

Hence Bλz(t) ≥ 0 for any t ∈ R, that is, Bλz ∈ C+
ω(R). Then applying Lemma 2 again,

(TλBλ)z = TλBλz ∈ K . Consequently, (TλBλ)nz ∈ K for ∀n ∈ N. By boundedness of the lin-
ear operator Tλ : Cω(R) → C1

ω(R),
∑∞

n=1(TλBλ)nz is convergence in C1
ω(R). Since the cone

K ⊂ C1
ω(R) is closed, then by (12), we have

y =
∞∑

n=0

(TλBλ)nTλh =
∞∑

n=0

(TλBλ)nz ∈ K . (13)

This completes the proof of Lemma 5. �

Lemma 6 Let h ∈ C+
ω(R) and |c| < min{ d

D+d , σ (M–D)
σ (M–D)+D }. Then h∗(·) := b(·)h(·) belongs to

C+
ω(R), and the operator Sλ : C+

ω(R) → C+
ω(R) defined by

(
Sλh∗)(t) =

∫ t

t–ω

U(t – s)
[(

M – a(s)g
(
A–1y

)
(s)

)
y(s) – G

(
y(s)

)
+ λh∗(s)

]
ds

maps C+
ω(R) to K and it is completely continuous.



Yang and Zhang Advances in Difference Equations        (2020) 2020:164 Page 7 of 12

Proof By Lemma 1, y = Sλh∗ ∈ C2
ω(R) is an ω-periodic solution of equation (10) since equa-

tion (10) is equivalent to equation (8). By Lemma 5, equation (8) has a unique ω-periodic
solution y ∈ C2

ω(R) expressed by

y =
∞∑

n=0

(TλBλ)nTλh∗.

By (13), we know that y ∈ K . Hence Sλ : C+
ω(R) → K and it is completely continuous. This

completes the proof of Lemma 6. �

At the end of this section, we introduce a fixed point theorem, which will be used in the
proof of our main result.

Let (X,‖ ·‖) be a real Banach space and K be a cone in X. A map ρ is called a nonnegative
continuous concave function on K if ρ : K → [0, +∞) is continuous and

ρ
(
tx + (1 – t)y

) ≥ tρ(x) + (1 – t)ρ(y)

for all x, y ∈ K and t ∈ [0, 1].
Let 0 < r < R and ρ be a nonnegative continuous concave function on K , set

Kr =
{

x ∈ K : ‖x‖ < r
}

, Kr =
{

x ∈ K : ‖x‖ ≤ r
}

,

K(ρ, r, R) =
{

x ∈ K : r ≤ ρ(x),‖x‖ ≤ R
}

.

Lemma 7 ([16, 17]) Let Q : KR → KR be a completely continuous mapping and ρ be a
nonnegative continuous concave function on K with ρ(x) ≤ ‖x‖ for all x ∈ K R. Suppose
that there exist positive constants r, r1, r2, R with 0 < r < r1 < r2 < R such that

(a) {x ∈ K(ρ, r1, r2) : ρ(x) > r1} �= ∅ and ρ(Qx) > r1 for x ∈ K(ρ, r1, r2);
(b) ‖Qx‖ < r for x ∈ Kr ;
(c) ρ(Qx) > r1 for x ∈ K(ρ, r1, R) with ‖Qx‖ > r2.

Then Q has at least three fixed points x1, x2, x3 satisfying

x1 ∈ Kr , x2 ∈ {
x ∈ K(ρ, r1, R) : ρ(x) > r1

}
, x3 ∈ KR \ (

K(ρ, r1, R) ∪ Kr
)
.

3 Existence theorem
Theorem 1 Let assumptions (H1)–(H3) hold. In addition, we suppose that

(H4) |c| < min{σ , d
D+d , σ (M–D)

σ (M–D)+D };
(H5) 1 – |c| > Lω(M – d)(1 – |c|) + LDω|c|;
(H6) there exist positive constants r, r1, and R with 0 < r < r1 < R such that

supt∈[0,ω] f (t, r
1–|c| ,

r
1–|c| ,

C0r
1–|c| )

A0r
L(1–|c|)

<
supt∈[0,ω] f (t, R

1–|c| ,
R

1–|c| ,
C0R
1–|c| )

A0R
L(1–|c|)

<
inft∈[0,ω] f (t, σ–|c|

1–c2 r1, σ–|c|
1–c2 r1, – σ–|c|

σ (1–c2) C0r1)
B0r1

l(1–|c|)
, (14)
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where

A0 = 1 – |c| – Lω(M – d)
(
1 – |c|) – LDω|c|,

B0 = 1 – |c| – lωσ (M – D)
(
1 – |c|) + lDω|c|.

Then equation (1) associated with λ ∈ (λ1,λ2) has at least three positive ω-periodic solu-
tions, where

λ1 =
B0r1

l(1–|c|)
bω inft∈[0,ω] f (t, σ–|c|

1–c2 r1, σ–|c|
1–c2 r1, – σ–|c|

σ (1–c2) C0r1)
,

λ2 =
A0R

L(1–|c|)
bω supt∈[0,ω] f (t, R

1–|c| ,
R

1–|c| ,
C0R
1–|c| )

.

Proof By (H5), we obtain A0 > 0 and

B0 > 1 – |c| – Lωσ (M – D)
(
1 – |c|) – lDω|c|

> 1 – |c| – Lωσ (M – D)
(
1 – |c|) – LDω|c|

> 1 – |c| – Lω(M – D)
(
1 – |c|) – LDω|c|

> 1 – |c| – Lω(M – d)
(
1 – |c|) – LDω|c|

> 0.

Furthermore, in view of (14), we get 0 < λ1 < λ2.
For each λ ∈ (λ1,λ2) and y ∈ K , denote F by

F(y)(t) = f
(
t,

(
A–1y

)
(t),

(
A–1y

)(
t – τ1(t)

)
,
(
A–1y

)′(t – τ2(t)
))

,

then F : K → C+
ω(R) is continuous. We define a mapping Qλ by

Qλy = Sλ ◦ F(y). (15)

By Lemma 6, Qλ : K → K is completely continuous.
Define a function ρ : K → [0,∞) by

ρ(y) = min
t∈[0,ω]

y(t).

Then ρ is a nonnegative continuous concave function on K and

ρ(y) ≤ ‖y‖C , ∀y ∈ KR.
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For any y ∈ KR and λ ∈ (λ1,λ2), by (4), (14), (15), Lemmas 4 and 5, we have

(Qλy)(t) ≤
∫ t

t–ω

U(t – s)
[(

M – a(s)g
(
A–1y

)
(s)

)
y(s) + G

(
y(s)

)
+ λb(s)F(y)(s)

]
ds

< L
[

(M – d)
∫ t

t–ω

y(s) + G
(
y(s)

)
ds

+ λ2bω sup
t∈[0,ω]

f
(

t,
R

1 – |c| ,
R

1 – |c| ,
C0R

1 – |c|
)]

≤ L
[

(M – d)
∫ t

t–ω

y(s) ds +
D|c|

1 – |c|ωR

+ λ2bω sup
t∈[0,ω]

f
(

t,
R

1 – |c| ,
R

1 – |c| ,
C0R

1 – |c|
)]

= R.

Hence ‖Qλy‖C ≤ R and Qλ is completely continuous on KR.
We now verify that condition (b) of Lemma 7 holds. Indeed, if y ∈ Kr , we have

(Qλy)(t) ≤ L
∫ t

t–ω

[(
M – a(s)g

((
A–1y

)
(s)

))
y(s) + G

(
y(s)

)
+ λb(s)F(y)(s)

]
ds

< L
[

(M – d)
∫ t

t–ω

y(s) ds +
D|c|

1 – |c|ωr

+ λ2bω sup
t∈[0,ω]

f
(

t,
r

1 – |c| ,
r

1 – |c| ,
C0r

1 – |c|
)]

≤ L
[

(M – d)ωr +
D|c|

1 – |c|ωr +
A0r

L(1 – |c|)
]

= r.

Hence, ‖Qλy‖C < r.
Choose a positive constant r2 such that 0 < r1 = σ r2 < r2 ≤ R. In the next discussion, we

prove that condition (a) of Lemma 7 holds. Obviously, ρ is a concave continuous function
on K with ρ(y) ≤ ‖y‖C for y ∈ KR. Noticing that if y(t) = 1

3 r1 + 2
3 r2 for any t ∈ [0,ω], then

y ∈ K(ρ, r1, r2) and ρ(y) > r1, which means that {y ∈ K(ρ, r1, r2) : ρ(y) > r1} �= ∅. So, for any
y ∈ K(ρ, r1, r2), we have

r1 < ρ(y) = min
t∈[0,ω]

y(t) ≤ ‖y‖C ≤ r2.

Hence, for any y ∈ K(ρ, r1, r2), by Lemma 4, we have

ρ(Qλy) = min
t∈[0,ω]

∫ t

t–ω

U(t – s)
[(

M – a(s)g
((

A–1y
)
(s)

))
y(s) – G

(
y(s)

)
+ λb(s)F(y)(s)

]
ds

≥ l min
t∈[0,ω]

∫ t

t–ω

[(
M – a(s)g

((
A–1y

)
(s)

))
y(s) – G

(
y(s)

)
+ λb(s)F(y)(s)

]
ds

> l
[

(M – D)
∫ t

t–ω

y(s) ds –
Dω|c|
1 – |c| r1
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+ λ1bω inf
t∈[0,ω]

f
(

t,
σ – |c|
1 – c2 r1,

σ – |c|
1 – c2 r1, –

σ – |c|
σ (1 – c2)

C0r1

)]

≥ l
[

(M – D)ωσ r1 –
Dω|c|
1 – |c| r1 +

B0r1

l(1 – |c|)
]

= r1.

Consequently, condition (a) of Lemma 7 holds.
In the end, we prove that condition (c) of Lemma 7 holds.
Let y ∈ K(ρ, r1, R) and ‖Qλy‖C > r2. We prove ρ(Qλy) > r1. It follows from (15) that

‖Qλy‖C ≤ L
∫ t

t–ω

[(
M – a(s)g

((
A–1y

)
(s)

))
y(s) – G

(
y(s)

)
+ λb(s)F(y)(s)

]
ds.

Therefore,

ρ(Qλy) = min
t∈[0,ω]

∫ t

t–ω

U(t – s)
[(

M – a(s)g
((

A–1y
)
(s)

))
y(s) – G

(
y(s)

)
+ λb(s)F(y)(s)

]
ds

≥ l
∫ t

t–ω

[(
M – a(s)g

((
A–1y

)
(s)

))
y(s) – G

(
y(s)

)
+ λb(s)F(y)(s)

]
ds

≥ l · 1
L

‖Qλy‖C

> σ r2

= r1.

Now, all the conditions of Lemma 7 are satisfied. By Lemma 7, Qλ has at least three positive
fixed points y1, y2, and y3 satisfying

y1 ∈ Kr , y2 ∈ {
y ∈ K(ρ, r1, R) : ρ(y) > r1

}
, y3 ∈ KR \ (

K(ρ, r1, R) ∩ Kr
)
.

Then equation (1) has at least three positive ω-periodic solutions:

x1 = A–1y1, x2 = A–1y2, x3 = A–1y3.

This completes the proof. �

Example 1 We consider the positive 2π-periodic solutions for the second order neutral
differential equation

(
x(t) – 0.35x

(
t –

π

2

))′′
+

1
32

x(t) =
λ

4
F
(
t, x(t), x

(
t – τ1(t)

)
, x′(t – τ2(t)

))
, t ∈R, (16)

where λ > 0 is a constant. Corresponding to equation (1), we choose

c = 0.35, δ =
π

2
, a(t) ≡ 1

32
, g

(
x(t)

) ≡ 1, b(t) ≡ 1
4

.
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Let M = 1
16 . Then

β =
1
4

, L =
4√
2

, L1 =
1
2

, � = 2,

C0 =
1
4

, σ =
√

2
2

, b =
1
4

, D = d =
1

32
.

Therefore, it is easy to verify that conditions (H2)–(H5) are satisfied.
Let F ∈ C(R × [0,∞)2 ×R, [0,∞)), F(t, u, v, w) is nondecreasing with respect to u, v, w

and ω-periodic with respect to t. If there exist positive constants r, r1, and R with 0 < r <
r1 < R such that the function F satisfies the following inequalities:

supt∈[0,ω] F(t, r
1–|c| ,

r
1–|c| ,

C0r
1–|c| )

A0r
L(1–|c|)

<
supt∈[0,ω] F(t, R

1–|c| ,
R

1–|c| ,
C0R
1–|c| )

A0R
L(1–|c|)

<
inft∈[0,ω] F(t, σ–|c|

1–c2 r1, σ–|c|
1–c2 r1, – σ–|c|

σ (1–c2) C0r1)
B0r1

l(1–|c|)
,

where A0 ≈ 0.095, B0 ≈ 0.602, then equation (16) has at least three positive 2π-periodic
solutions provided that

B0r1
l(1–|c|)

bω inft∈[0,ω] F(t, σ–|c|
1–c2 r1, σ–|c|

1–c2 r1, – σ–|c|
σ (1–c2) C0r1)

< λ <
A0R

L(1–|c|)
bω supt∈[0,ω] F(t, R

1–|c| ,
R

1–|c| ,
C0R
1–|c| )

.
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