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Abstract
In this paper, we consider the effects of the small and abrupt random perturbations in
the environment, and formulate a stochastic single species model with Allee effect
and jump-diffusion. We first prove that the model admits a unique solution which is
global and positive. Then we study the stochastic permanence and extinction of the
model. In addition, we estimate the growth rate of the solution. Our results reveal that
the properties of the model have close relationships with the jump-diffusion. Finally,
we work out several numerical simulations to validate the theoretical results.
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1 Introduction
In the natural world, plenty of species exhibit the Allee effect [7], for instance, meerkats [6]
and the African wild dogs [4]. In order to describe the Allee effect, a lot of mathematical
equations have been developed and studied, see, e.g., [5, 9–11, 14, 23]. In particular, Dennis
[9], Stephens and Sutherland [23], Kang and Udiani [14] considered the following single
species model with Allee effect:

dψ(t)
dt

= ψ(t)
[
r – β1ψ(t)

]
–

β2ψ(t)
β2αψ(t) + 1

, (1)

where
ψ(t) population size,

r intrinsic growth rate,
β1 > 0 intraspecific competition rate,
β2 > 0 attack rate,
α > 0 handling time of predator.

On the other hand, the growth of populations often encounters environmental per-
turbations. Therefore, one should introduce stochastic factors into population models
[8, 9, 12, 13, 18, 26]. In [9, 26] the authors researched the following stochastic single species
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model with Allee effect driven by the Brownian motion:

dψ(t) = ψ(t)
[

r – β1ψ(t) –
β2

β2αψ(t) + 1

]
dt + ξψ(t) dB(t), (2)

where B(t) stands for a standard Brownian motion defined on a completed probability
space (Ω ,F ,P), ξ represents the intensity of the stochastic perturbations. The authors of
[26] investigated the persistence, extinction, stochastic permanence and the ergodicity of
model (2).

Nevertheless, there are lots of abrupt perturbations in the environment which cannot be
characterized by the Brownian motion, for instance, drought, epidemic, pesticides. Several
scholars (see [2, 3, 8, 19, 20]) have suggested that one might utilize a Lévy jump process to
characterize these abrupt perturbations. Hence, Eq. (2) is replaced by

dψ(t) = ψ
(
t–)[

r – β1ψ
(
t–)

–
β2

β2αψ(t–) + 1

]
dt + ξψ

(
t–)

dB(t)

+
∫

X

θ (x)ψ
(
t–)

Υ̃ (dt, dx), (3)

where ψ(t–) is the left limit of ψ(t), X ⊂ (0, +∞), Υ̃ (dt, dx) = Υ (dt, dx) – π (dx) dt, Υ rep-
resents a Poisson counting measure, π stands for the characteristic measure of Υ with
π (X) < +∞. To the best of our current knowledge, there are no studies of Eq. (3).

In this paper we explore model (3). We will prove in Sect. 2 that the model admits a
unique solution which is global and positive. Then we study the stochastic permanence
and extinction of the model in Sect. 3. In Sect. 4, we estimate the growth rate of the solu-
tion. In Sect. 5, we work out several simulations to numerically illustrate that the proper-
ties of the model have close relationships with the jump-diffusion.

2 The existence and uniqueness of the solution
Let C1, C2, . . . , C7 be positive constants. Throughout this article, we assume that Υ and
B(t) are independent, 1 + θ (x) > 0, ∀u ∈X, and

(H)
∫
X

[ln(1 + θ (x))]2π (dx) < C1. This hypothesis illustrates that the jumps are tempered.
Equation (3) is a population system, we must illustrate that it admits a unique global

positive solution for any given positive initial value. To prove this, we need to recall a
lemma. Let Y (t, y) represent the solution of the following scalar equation with initial value
Y (0) = y �= 0:

dY (t) = G1
(
Y

(
t–))

dt + G2
(
Y

(
t–))

dB(t) +
∫

X

G3(
(
Y

(
t–)

, x
)
Υ̃ (dt, dx), (4)

where G1(0) = G2(0) = 0, and G3(0, x) = 0 for ∀x ∈ X; G1, G2, G3 are locally Lipschitz con-
tinuous and measurable functions. Define

Λ(y) =
∫

X

(
ln

|y + G3(y, x)|
|y|

)2

π (dx).

Lemma 1 ([25]) If for every n ≥ 1,

sup
0<|y|≤n

Λ(y) < ∞, (5)
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then

P
(
Y (t, y) �= 0 and Y

(
t–, y

) �= 0,∀t ≥ 0
)

= 1.

Theorem 1 For arbitrary initial data ψ(0) > 0, model (3) admits a unique solution ψ(t)
which is global and positive almost surely (a.s.).

Proof Since the coefficients of Eq. (3) are locally Lipschitz, for arbitrary ψ(0) > 0, Eq. (3)
admits a unique local solution ψ(t) for t ∈ [0, τe), where τe is the explosion time (see [3]).
Notice that for t ∈ [0, τe),

ψ(t) = ψ(0) exp

{
rt –

ξ 2

2
t – β1

∫ t

0
ψ(s) ds –

∫ t

0

β2

β2αψ(s) + 1
ds + ξB(t)

– t
∫

X

(
θ (x) – ln

(
1 + θ (x)

))
π (dx) +

∫ t

0

∫

X

ln
(
1 + θ (x)

)
Υ̃ (ds, dx)

}
.

Therefore for t ∈ [0, τe), ψ(t) ≥ 0. In addition, it follows from Hypothesis (H) that the
equation in (3) obeys (5). In view of Lemma 1, ψ(t) > 0 for t ∈ [0, τe).

We are in the position to show that τe = +∞. Let k0 > 0 be a sufficiently large positive
integer such that ψ(0) < k0. For every k > k0, define

τk := inf
{

t ∈ [0, τe) : ψ(t) > k
}

.

Define τ∞ := limk→+∞ τk . Then τ∞ ≤ τe a.s. Define V (ψ) = ψq, 0 < q < 1. Making use of
Itô’s formula (see [15]) yields that

E
(
ψq(t)

)
= ψ(0) + E

∫ t

0
LV

(
ψ(s)

)
ds, (6)

where

LV (ψ) = q
[

r – β1ψ –
β2

β2αψ + 1
– (1 – q)ξ 2/2

]
ψq

+
∫

X

[(
1 + θ (x)

)q – 1 – qθ (x)
]
π (dx)ψq.

Notice that

ua ≤ 1 + a(u – 1), u ≥ 0, 0 < a < 1, (7)

therefore,

LV (ψ) = q
[

r – β1ψ –
β2

β2αψ + 1
– (1 – q)ξ 2/2

]
ψq

+
∫

X

[(
1 + θ (x)

)q – 1 – qθ (x)
]
π (dx)ψq

≤ q[r – β1ψ]ψq ≤ C2.
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For k > 0, define

σ (k) = inf
{

V (ψ), |ψ | ≥ k
}

.

Consequently,

lim
k→+∞

σ (k) = +∞.

Thus for any T > 0,

σ (k)P(τk ≤ T) ≤ E
(
V

(
ψ(τk)

)
I{τk≤T}

) ≤ E(V
(
ψ(τk ∧ T)

) ≤ C3.

Letting k → +∞ results in P(τ∞ ≤ T) = 0. It then follows from the arbitrariness of T that
τ∞ = ∞. In other words, τe = ∞. �

3 Permanence and extinction
Now we explore the permanence and extinction of model (3).

Definition 1 ([2]) If for ∀ε > 0, there are two positive constants κ1 = κ1(ε) and κ2 = κ2(ε)
such that for ∀ψ(0) > 0,

lim inf
t→+∞ P

{
ψ(t) ≤ κ1

} ≥ 1 – ε (8)

and

lim inf
t→+∞ P

{
ψ(t) ≥ κ2

} ≥ 1 – ε, (9)

then Eq. (3) is said to be stochastically permanent (SP).

Theorem 2 If μ > 0, then model (3) is SP, where

μ = r – β2 –
ξ 2

2
–

∫

X

(
θ (x) – ln

(
1 + θ (x)

))
π (dx).

Proof To begin with, we claim that (8) holds. According to Itô’s formula, we have

E
(
etψq(t)

)
= ψ(0) + E

∫ t

0
es[ψq(s) + LV

(
ψ(s)

)]
ds.

It is easy to see that ψq + LV (ψ) ≤ [1 + qr – β1qψ]ψq, as a result,

E
(
etψq(t)

) ≤ ψ(0) + C4

∫ t

0
es ds = ψ(0) + C4

(
et – 1

)
.

That is to say,

lim sup
t→+∞

E
(
ψq(t)

) ≤ C4.
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For ∀ε > 0, let κ1 = C1/q
4 /ε1/q. Then Chebyshev’s inequality (see, e.g., [21]) indicates that

P
{
ψ(t) > κ1

}
= P

{
ψq(t) > κ

q
1
} ≤ E

[
ψq(t)

]
/κq

1 = κ
–q
1 E

[
ψq(t)

]
.

In other words, lim supt→+∞ P{ψ(t) > κ1} ≤ ε, and so we obtain (8).
Now we claim that (9) holds. Define V1(ψ) = ψ–1, ψ > 0. By Itô’s formula, one obtains

dV1(ψ) = –
1

ψ2 ψ

[(
r – β1ψ –

β2

β2αψ + 1

)
dt + ξ dB(t)

]
+

1
ψ3 ξ 2ψ2 dt

+
∫

X

(
1

(1 + θ (x))ψ
–

1
ψ

+
1

ψ2 θ (x)ψ
)

π (dx) dt

+
∫

X

(
1

(1 + θ (x))ψ
–

1
ψ

)
Υ̃ (dt, dx)

= V1(ψ)
[

–r + β2 + ξ 2 +
∫

X

(
1

1 + θ (x)
– 1 + θ (x)

)
π (dx)

]
dt

+ β1 dt –
β2

2α

β2αψ + 1
dt – ξV1(ψ) dB(t) + V1(ψ)

∫

X

(
1

1 + θ (x)
– 1

)
Υ̃ (dt, dx).

Clearly,

lim
λ→0+

{
λξ 2

2
+

∫

X

[
1

λ(1 + θ (x))λ
–

1
λ

]
π (dx)

}
=

∫

X

ln

(
1

1 + θ (x)

)
π (dx)

= –
∫

X

ln
(
1 + θ (x)

)
π (dx).

Since μ > 0, there is a constant λ > 0 such that

r – β2 –
ξ 2

2
–

∫

X

θ (x)π (dx) –
{

λξ 2

2
+

∫

X

[
1

λ(1 + θ (x))λ
–

1
λ

]
π (dx)

}
> 0. (10)

Define V2(ψ) = V λ
1 (ψ). It then follows from Itô’s formula that

dV2(t)

= λV λ–1
1 (ψ)

{
V1(ψ)

[
–r + β2 + ξ 2 +

∫

X

(
1

1 + θ (x)
– 1 + θ (x)

)
π (dx)

]

+ β1 –
β2

2α

β2αψ + 1

}
dt

+ 0.5λ(λ – 1)V λ–2
1 (ψ)ξ 2V 2

1 (ψ) dt – λV λ–1
1 (ψ)ξV1(ψ) dB(t)

+
∫

X

{[
V1(ψ) + V1(ψ)

(
1

1 + θ (x)
– 1

)]λ

– V λ
1 (ψ)

– V1(ψ)
(

1
1 + θ (x)

– 1
)

λV λ–1
1 (ψ)

}
π (dx) dt

+
∫

X

{[
V1(ψ) + V1(ψ)

(
1

1 + θ (x)
– 1

)]λ

– V λ
1 (ψ)

}
Υ̃ (dt, dx)

= λV λ–1
1 (ψ)

{
–V1(ψ)

[
r – β2 – 0.5ξ 2 –

∫

X

(
1

1 + θ (x)
– 1 + θ (x)

)
π (dx) – 0.5λξ 2

]
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+ β1 –
β2

2α

β2αψ + 1

}
dt + V λ

1 (ψ)
∫

X

[
1

(1 + θ (x))λ
– 1 – λ

(
1

1 + θ (x)
– 1

)]
π (dx) dt

– λξV λ
1 (ψ) dB(t) + V λ

1 (ψ)
∫

X

[
1

(1 + θ (x))λ
– 1

]
Υ̃ (dt, dx)

= λV λ–1
1 (ψ)

{
–V1(ψ)

[
r – β2 – 0.5ξ 2 –

∫

X

θ (x)π (dx) – 0.5λξ 2

–
∫

X

(
1

λ(1 + θ (x))λ
–

1
λ

)
π (dx)

]

+ β1 –
β2

2α

β2αψ + 1

}
dt – λξV λ

1 (ψ) dB(t) + V λ
1 (ψ)

∫

X

[
1

(1 + θ (x))λ
– 1

]
Υ̃ (dt, dx).

Define V3(ψ) = eθ tV2(ψ), where θ > 0 is a sufficiently small constant satisfying

r – β2 – ξ 2/2 –
∫

X

θ (x)π (dx) –
{
λξ 2/2 +

∫

X

[
1

λ(1 + θ (x))
–

1
λ

]
π (dx)

}
> θ/λ. (11)

Making use of Itô’s formula leads to

dV3(t) = θeθ tV λ
1 (ψ) dt + λeθ tV λ–1

1 (ψ)
{

–V1(ψ)
[

r – β2 – ξ 2/2 –
∫

X

θ (x)π (dx) – λξ 2/2

–
∫

X

(
1

λ(1 + θ (x))λ
–

1
λ

)
π (dx)

]
+ β1 –

β2
2α

β2αψ + 1

}
dt

– λξeθ tV λ
1 (ψ) dB(t) + eθ tV λ

1 (ψ)
∫

X

[
1

(1 + θ (x))λ
– 1

]
Υ̃ (dt, dx)

≤ λeθ tV λ–1
1 (ψ)

{
–V1(ψ)

[
r – β2 – ξ 2/2 –

∫

X

θ (x)π (dx) – λξ 2/2

–
∫

X

(
1

λ(1 + θ (x))λ
–

1
λ

)
π (dx) – θ/λ

]
+ β1

}
dt

– λξeθ tV λ
1 (ψ) dB(t) + eθ tV λ

1 (ψ)
∫

X

[
1

(1 + θ (x))λ
– 1

]
Υ̃ (dt, dx)

=: eθ tΨ (ψ) dt – λξeθ tV λ
1 (ψ) dB(t) + eθ tV λ

1 (ψ)
∫

X

[
1

(1 + θ (x))λ
– 1

]
Υ̃ (dt, dx),

where

Ψ (ψ) = λV λ–1
1 (ψ)

{
–V1(ψ)

[
r – β2 – ξ 2/2 –

∫

X

θ (x)π (dx)

– λξ 2/2 –
∫

X

(
1

λ(1 + θ (x))λ
–

1
λ

)
π (dx) – θ/λ

]
+ β1

}
.

Then (11) implies that C5 := supψ>0 Ψ (ψ) < +∞. Hence,

dV3(t) ≤ C5eθ t dt – λξeθ tV λ
1 (ψ) dB(t) + eθ tV λ

1 (ψ)
∫

X

[
1

(1 + θ (x))λ
– 1

]
Υ̃ (dt, dx).

Therefore,

E
[
eθ tV λ

1
(
ψ(t)

)] ≤ V λ
1 (0) + C5

(
eθ t – 1

)
/θ .
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Thereby,

lim sup
t→+∞

E
[
ψ–λ(t)

] ≤ C5/θ =: C6.

For ∀ε > 0, let κ2 = ε1/λ/C1/λ
6 . Then Chebyshev’s inequality indicates that

P
{
ψ(t) < κ2

}
= P

{
ψ–λ(t) > κ–λ

2
} ≤ E

[
ψ–λ(t)

]
/κ–λ

2 = κλ
2E

[
ψ–λ(t)

]
.

Thus lim supt→+∞ P{ψ(t) < κ2} ≤ ε. Consequently, (9) holds. �

Now we study the extinction of model (3).

Theorem 3 If μ < 0 and β1 > β2
2α, then limt→+∞ ψ(t) = 0 a.s.

Proof By Itô’s formula, one has

lnψ(t) – lnψ(0)

= rt –
ξ 2

2
t –

∫ t

0

[
β1ψ(s) +

β2

β2αψ(s) + 1

]
ds + ξB(t)

+
∫ t

0

∫

X

(
ln

(
ψ

(
s–)

+ θ (x)ψ
(
s–))

– ln
(
ψ

(
s–))

– θ (x)ψ
(
s–) 1

ψ(s–)

)
π (dx) ds

+
∫ t

0

∫

X

(
ln

(
ψ

(
s–)

+ θ (x)ψ
(
s–))

– ln
(
ψ

(
s–)))

Υ̃ (ds, dx)

= rt – β2t –
ξ 2

2
t –

∫ t

0

[
β1ψ(s) –

β2
2αψ(s)

β2αψ(s) + 1

]
ds + ξB(t)

– t
∫

X

(
θ (x) – ln

(
1 + θ (x)

))
π (dx) +

∫ t

0

∫

X

ln
(
1 + θ (x)

)
Υ̃ (ds, dx)

= μt –
∫ t

0

[
β1ψ(s) –

β2
2αψ(s)

β2αψ(s) + 1

]
ds + ξB(t) + Q(t), (12)

where

Q(t) =
∫ t

0

∫

X

ln
(
1 + θ (x)

)
Υ̃ (ds, dx).

In view of Hypothesis (H), we can derive that

〈Q, Q〉(t) = t
∫

X

(
ln

(
1 + θ (x)

))2
π (dx) < C1t.

Then the strong law of large numbers for local martingales (see [16]) indicates that

lim
t→+∞ t–1Q(t) = 0 a.s.

In addition, notice that if β1 > β2
2α, then for B ≥ 0,

β1ψ –
β2

2αψ

β2αψ + 1
≥ β1ψ – β2

2αψ ≥ 0.
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Consequently,

lim sup
t→+∞

t–1 lnψ(t) ≤ μ < 0.

Thus limt→+∞ ψ(t) = 0 a.s. �

4 The growth rate
Lemma 2 ([1, Theorem 5.2.9]) Suppose that h1 : [0,∞) → R and h2 : [0,∞) ×X →R are
two Ft-adapted predictable stochastic processes. If for arbitrary T > 0,

∫ T

0

∣∣h1(s)
∣∣2 ds < ∞,

∫ T

0

∫

X

∣∣h2(x, s)
∣∣2

π (dx) ds < ∞,

then for arbitrary constants c1 > 0 and c2 > 0,

P
{

sup
0≤s≤T

[∫ s

0
h1(ν) dB(ν) –

c1

2

∫ t

0

∣∣h1(ν)
∣∣2 dν +

∫ s

0

∫

X

h2(x,ν)Υ̃ (dx, dν)

–
1
c1

∫ s

0

∫

X

(
ec1h2(x,ν) – 1 – c1h2(x,ν)

)
π (dx) dν

]
> c2

}
≤ e–c1c2 .

Theorem 4 For Eq. (3), we have

lim sup
t→+∞

lnψ(t)
ln t

≤ 1 a.s. (13)

Proof According to Itô’s formula, we get

et lnψ(t) – lnψ(0)

=
∫ t

0
es

[
lnψ(s) + r –

ξ 2

2
– β1ψ(s) –

β2

β2αψ(s) + 1

]
ds

+
∫ t

0
ξes dB(s) +

∫ t

0

∫

X

es ln
(
1 + θ (x)

)
Υ̃ (ds, dx). (14)

Let T = kχ , c1 = εe–kχ , c2 = φekχ ln k
ε

, where i ∈N, ε ∈ (0, 1), χ > 0 and φ > 1, then Lemma 2
implies that

P
{

sup
0≤s≤T

[∫ s

0
ξeν dB(ν) –

εe–kχ

2

∫ s

0
ξ 2e2ν dν +

∫ s

0

∫

X

eν ln
(
1 + θ (x)

)
Υ̃ (dx, dν)

–
1

εe–kχ

∫ s

0

∫

X

((
1 + θ (x)

)εeν–kχ

– 1 – εeν–kχ ln
(
1 + θ (x)

))
π (dx) dν

]
>

φekχ ln k
ε

}

≤ k–φ .

Notice that
∑+∞

k=1 k–φ < +∞, so the Borel–Cantelli lemma implies that there is an integer
k̂ such that for arbitrary k ≥ k̂ and 0 ≤ t ≤ kχ ,

∫ t

0
ξeν dB(ν) +

∫ t

0

∫

X

eν ln
(
1 + θ (x)

)
Υ̃ (dx, dν)
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≤ φekχ ln k
ε

+
εe–kχ

2

∫ t

0
ξ 2e2ν dν

+
1

εe–kχ

∫ t

0

∫

X

((
1 + θ (x)

)εeν–kχ

– 1 – εeν–kχ ln
(
1 + θ (x)

))
π (dx) dν. (15)

It follows from (7) that

(
1 + θ (x)

)εeν–kχ

– 1 – εeν–kχ ln
(
1 + θ (x)

) ≤ εeν–kχ
(
θ (x) – ln

(
1 + θ (x)

))
.

Making use of this inequality, (14) and (15) yield that for arbitrary k ≥ k̂ and 0 ≤ t ≤ kχ ,

et lnψ(t) – lnψ(0)

≤ φekχ ln k
ε

+
∫ t

0
es

[
lnψ(s) + r –

ξ 2

2
– β1ψ(s) –

β2

β2αψ(s) + 1

]
ds

+
εe–kχ

2

∫ t

0
ξ 2e2s ds +

(
et – 1

)∫

X

(
θ (x) – ln

(
1 + θ (x)

))
π (dx)

=
φekχ ln k

ε
+

∫ t

0
es

[
lnψ(s) + r –

ξ 2

2
+

εξ 2es–kχ

2
– β1ψ(s) –

β2

β2αψ(s) + 1

]
ds

+
(
et – 1

)∫

X

(
θ (x) – ln

(
1 + θ (x)

))
π (dx)

≤ φekχ ln k
ε

+
∫ t

0
es

[
lnψ(s) + r –

ξ 2

2
+

ξ 2

2
– β1ψ(s)

]
ds

+
(
et – 1

)∫

X

(
θ (x) – ln

(
1 + θ (x)

))
π (dx)

≤ φekχ ln k
ε

+
(

C7 +
∫

X

(
θ (x) – ln

(
1 + θ (x)

))
π (dx)

)(
et – 1

)
.

In other words, for k ≥ k̂ and (k – 1)χ ≤ t ≤ kχ ,

lnψ(t)
ln t

≤ lnψ(0)
et ln t

+
φekχ ln k

e(k–1)χ ln((k – 1)χ )ε
+

(
C7 +

∫

X

(
θ (x)– ln

(
1+θ (x)

))
π (dx)

)
1 – e–t

ln t
.

Letting k → +∞ results in

lim sup
t→+∞

lnψ(t)
ln t

≤ φeχ

ε
.

Letting φ ↓ 1, χ ↓ 0, and ε ↑ 1 gives the required assertion. �

5 Conclusions and simulations
In this paper, we utilized a Lévy jump process to characterize the abrupt perturbations in
the environment, and formulated a stochastic single species model with Allee effect and
jump-diffusion. We proved that the model admits a unique solution which is global and
positive, and investigated the stochastic permanence, extinction and the growth rate of
the solution.

Out results reveal that the properties of the model have close relationships with the
jump-diffusion. As a matter of fact, Theorem 2 illustrates that if the intensity of the jump
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(a) (b)

Figure 1 Solutions of Eq. (3) with r = 0.4, β1 = 0.1, β2 = 0.2, α = 0.3, ξ 2 = 0.2, X = (0, +∞), π (X) = 1, step size
�t = 0.001: (a) θ (x) ≡ 0.3504, hence μ = 0.05 > 0. This figure shows that the species is SP; (b) θ (x) ≡ 0.7722,
hence β1 > β2

2α and μ = –0.1. This figure shows that the species is extinctive. The numerical method is the
Euler scheme in [22]. The parameter values are hypothetical

is sufficiently small such that
∫

X

(
θ (x) – ln

(
1 + θ (x)

))
π (dx) < r –

ξ 2

2
,

then the species is SP (see Fig. 1(a)); Theorem 3 illustrates that if β1 > β2
2α and the intensity

of the jump is sufficiently large such that
∫

X

(
θ (x) – ln

(
1 + θ (x)

))
π (dx) > r – β2 –

ξ 2

2
,

then the species is extinctive (see Fig. 1(b)).
Some problems related to these fields deserve further studies. First, there is a condition

β1 > β2
2α in Theorem 3. What happens if this condition is not satisfied? Second, it is in-

teresting to consider other random perturbations, such as the telephone noise (see, e.g.,
[17, 18, 24]). When the telephone noise is considered, model (3) is replaced by:

dψ(t) = ψ(t)
(

r
(
γ (t)

)
– β1

(
γ (t)

)
ψ(t) –

β2(γ (t))ψ(t)
β2(γ (t))α(γ (t))ψ(t) + 1

)
dt

+ ξ
(
γ (t)

)
ψ(t) dB(t) +

∫

X

θ
(
x,γ (t)

)
ψ(t)Υ̃ (dt, dx),

where γ (t) is a continuous-time Markov chain with finite state. Finally, the present study
supposes that only r is perturbed by the white noise. It is of interest to test the case that
other parameters, for instance, both β1 and β2, are also influenced. That is to say, to con-
sider the following model:

dψ(t) = ψ(t)
(

r – β1ψ(t) –
β2ψ(t)

β2αψ(t) + 1

)
dt + ξ1ψ(t) dB1(t) + ξ2ψ

2(t) dB2(t)

+
ξ3ψ(t)

β2αψ(t) + 1
dB3(t) +

∫

X

θ (x)ψ(t)Υ̃ (dt, dx),

where B1(t), B2(t) and B3(t) are standard Brownian motion.
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