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Abstract
This paper is concerned with the following system:

{
–�u + λA(x)u – K (x)(2ω + φ)φu = f (x,u) + h(x), x ∈ R

3,

�φ = K (x)(ω + φ)u2, x ∈R
3,

where λ ≥ 1 is a parameter, ω > 0 is a constant and the potential A is sign-changing.
Under the classic Ambrosetti–Rabinowitz condition and other suitable conditions,
nontrivial solutions are obtained via the linking theorem and Ekeland’s variational
principle. Especially speaking, we use a super-quadratic condition to replace the
4-superlinear condition which is usually used to show the existence of nontrivial
solutions in many references. Our results improve the previous results in the literature.

MSC: 35B33; 35J65; 35Q55

Keywords: Klein–Gordon–Maxwell system; Super-quadratic condition; Variational
methods; Nonhomogeneous; Solutions

1 Introduction
The following type of Klein–Gordon–Maxwell system is considered:

⎧⎨
⎩–�u + λA(x)u – K(x)(2ω + φ)φu = f (x, u) + h(x), x ∈R

3,

�φ = K(x)(ω + φ)u2, x ∈R
3,

(1.1)

where λ ≥ 1 is a parameter, ω > 0 is a constant, A ∈ C(R3,R), f ∈ C(R3 × R,R), and f
satisfies the following basic condition:

(F1) f (x, t) = o(|t|) uniformly in x as t → 0, there exists a constant C > 0 such that
|f (x, t)| ≤ C(|t| + |t|q), 2 < q < 6, for all (x, t), and F(x, t) =

∫ t
0 f (x, s) ds ≥ 0 for all

(x, t).
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The Klein–Gordon–Maxwell system was first introduced by Benci and Fortunato [1] as
a model to describe a nonlinear Klein–Gordon equation interacting with an electromag-
netic field.

When h(x) ≡ 0, K(x) ≡ 1 and λA(x) ≡ m2 – ω2, system (1.1) becomes to the following
homogeneous system (1.2). We now first recall some results about homogeneous case. In
2002, Benci and Fortunato proved that system (1.2) with constant potential has infinitely
many radially symmetric nontrivial solutions when f (x, u) = |u|q–2u, ω and m are constants
and |m| > |ω|, 4 < q < 6. For more physical background, see [2]. We have

⎧⎨
⎩–�u + [m2 – (ω + φ)2]φu = f (x, u), x ∈R

3,

�φ = (ω + φ)u2, x ∈R
3.

(1.2)

The authors in [3] investigated the case 2 < q < 4 and 0 < ω <
√

q
2 – 1m. Later, the exis-

tence of a ground state solution for (1.2) was obtained in [4] either 4 ≤ q < 6 and ω < m,
or 2 < q < 4 and ω < m

√
(q – 2)/(6 – q).

When the potential A was an external Coulomb function, or a steep function, or a peri-
odic function, or a sign-changing function, etc., the Klein–Gordon–Maxwell system had
been extensively studied in the past decades. For example, positive ground state solutions
for the following system were obtained by Cunha [5]:

⎧⎨
⎩–�u + A(x)u + [m2 – (ω + φ)2]φu = ξ |u|q–2u + |u|2∗–2u, x ∈R

3,

�φ = (ω + φ)u2, x ∈R
3,

(1.3)

where A is a periodic potential.
In [6], Georgiev and Visciglia investigated a homogeneous system with a small external

Coulomb potential and λ = 1. In [7], Chen and Tang considered the geometrically distinct
solutions for Klein–Gordon–Maxwell systems by using Lusternik–Schnirelmann theory.
In [8], Ding and Li proved that the Klein–Gordon–Maxwell system with sign-changing
potential had infinitely many standing wave solutions. Liu, Chen and Tang [9] studied the
ground state solutions for Klein–Gordon–Maxwell system with steep potential well. In
[10], Wang improved the results of [2].

Next, let us present some results for the nonhomogeneous case.
When λ ≡ 1 and K(x) ≡ 1, Shi and Chen [11] established the multiplicity of solutions

for nonhomogeneous system (1.1). Wang and Chen [12] investigated the system (1.1) with
sign-changing potential A and f satisfies the following crucial assumptions:

(F2)’ F(x, t)/t4 → +∞ as |t| → +∞ uniformly in x;
(F3)’ F (x, t) := 1

4 f (x, t)t – F(x, t) ≥ 0 for all (x, t) ∈R
3 ×R;

Existence and multiplicity of solutions for a type of Klein–Gordon–Maxwell system with
sign-changing potentials were got via the symmetric mountain pass theorem in [13]. In
[14], under a variant super-quadratic condition, two solutions for a nonhomogeneous
Klein–Gordon–Maxwell system were got by Wang via the mountain pass theorem and
Ekeland’s variational principle. Via Ekeland’s variational principle and the mountain pass
theorem, the author in [15] studied the nonhomogeneous Klein–Gordon–Maxwell sys-
tem with constant potential.

Finally, we mention some recent work also related to the Klein–Gordon–Maxwell sys-
tem. In [16], the authors investigated positive ground state solutions for a kind of fractional
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Klein–Gordon–Maxwell system. In [17, 18], some results on reaction-diffusion equations
involving fractional operators were obtained. In [19], some results on Klein–Gordon equa-
tions involving fractional operators were obtained. The authors in [20] studied a nonlinear
heat equation and obtained some results. In [21], the authors investigated the numerical
computation of Klein–Gordon equation by using a homotopy analysis transform method.

Inspired by the above-mentioned work, we will make the following conditions which are
weaker than conditions (F2)’ and (F3)’. Otherwise, we consider a more general potential
A(x):

(F2) F(x, t)/t2 → +∞ as |t| → +∞ uniformly in x;
(F3) There exists μ > 2 such that μF(x, t) ≤ f (x, t)t for all (x, t) ∈ R

3 ×R;
(A1) There is a > 0 such that meas{x ∈R

3 : A(x) ≤ a} < +∞;
(A2) A ∈ C(R3,R) is bounded from below;
(A3) Ω = int A–1(0) is nonempty, ∂Ω is smooth boundary, Ω = A–1(0).

In our assumptions, the nonlinearity f just needs to satisfy a super-quadratic condition at
infinity. The 4-superlinear assumption is not necessary. Conditions (A1)–(A3) were first
introduced in [22]. Since the potential in (1.1) is sign-changing, the usual way of verifying
the compactness is invalid. Following [12, 23], we establish the parameter which is depen-
dent on compactness conditions to recover the compactness. The following assumptions
will be needed throughout the paper.

(F4) There exist a1, L0 > 0 and σ ∈ (3/2, 2) such that

∣∣f (x, t)
∣∣σ ≤ a1F (x, t)|t|σ , for all x ∈ R

3 and |t| ≥ L0,

where F (x, t) := 1
μ

f (x, t)t – F(x, t);
(K) K(x) ∈ L3(R3) ∪ L∞(R3), K(x) ≥ 0 and K(x) 
≡ 0 for a.e. x ∈ R

3;
(H) h(x) ∈ L2(R3) and h(x) ≥ 0 for a.e. x ∈R

3.

Remark 1.1 It is not difficult to see that (F2) and (F3) are much weaker than (F2)’ and (F3)’,
respectively. The following function satisfies (F2) and (F3) but not (F2)’ and (F3)’:

f (x, t) = c(x)|t|
–2, ∀(x, t) ∈R
3 ×R,

where 
 ∈ (2, 4), c is a continuous function with infx∈R3 c(x) > 0.

Theorem 1.2 Let (F1)–(F4), (A1)–(A2), (K) and (H) hold. If there exists x0 ∈R
3 such that

A(x0) < 0, then ∀n ∈ N, there exist λn > n, bn > 0 and ηn > 0 such that system (1.1) admits
at least two nontrivial solutions for every λ = λn, |K |∞ < bn (or |K |3 < bn) and |h|2 ≤ ηn.

Theorem 1.3 Suppose (F1)–(F4), (A1)–(A3), (K) and (H) hold. If the interior of A–1(0) is
nonempty, then there exist Λ̄ > 0, bλ > 0 and ηλ > 0 such that problem (1.1) possesses at
least two nontrivial solutions for every λ > Λ̄, |h|2 ≤ ηλ and |K |∞ < bλ (or |K |3 < bλ).

Theorem 1.4 Assume A ≥ 0 and let (F1)–(F4), (A1)–(A3), (K) and (H) hold. If the interior
of A–1(0) is nonempty and h 
= 0, then there exist Λ̃ > 0 and η > 0 such that system (1.1) has
at least two nontrivial solutions for every λ > Λ̃ and |h|2 ≤ η.
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In the present paper, we use weaker conditions than the previous literature to show the
boundedness of Palais–Smale sequence and obtain nontrivial solutions for the nonhomo-
geneous Klein–Gordon–Maxwell system involving sign-changing potential, which extend
and generalize the related results in the literature.

In this paper, C denotes different positive constant in different place. The paper is orga-
nized by four sections. Some preliminary results are stated in Sect. 2. The proofs of main
results are given in Sect. 3. The conclusion is given in Sect. 4.

2 Preliminaries
Some notations are given first. For 1 ≤ s ≤ +∞, Ls(Ω) denotes a Lebesgue space with the
norm given by | · |s. Let D1,2(R3) be the completion of C∞

0 (R3) endowed with the norm

‖u‖2
D := ‖u‖2

D1,2(R3) =
∫
R3

|∇u|2 dx.

The space H1(R3) is endowed with the following standard product and norm, respectively:

(u, v) =
∫
R3

(∇u∇v + uv) dx; ‖u‖2 =
∫
R3

(|∇u|2 + |u|2)dx.

The best Sobolev constant S is given by

S = inf
u∈D1,2(R3)\{0}

‖u‖D

|u|6 .

For any ρ > 0 and x ∈ R
3, Bρ(x) denotes the ball of radius ρ centered at x.

As pointed out in [4], the existence of solutions are not related to the signs of ω, so one
can assume that ω > 0. Similar to [12], we now first give the variational structure of system
(1.1).

Let A+ = max{A(x), 0} and A– = max{–A(x), 0}, then A(x) = A+(x) – A–(x). Let

H =
{

u ∈ H1(
R

3) :
∫
R3

[|∇u|2 + A+(x)u2]dx < ∞
}

be a Hilbert space, whose inner product and norm are given by

(u, v) =
∫
R3

(∇u∇v + A+(x)uv
)

dx and ‖u‖ = (u, u)1/2,

respectively. For λ ≥ 1, the inner product and norm are defined as

(u, v)λ =
∫
R3

(∇u∇v + λA+(x)uv
)

dx, ‖u‖λ = (u, u)1/2
λ .

It is obvious ‖u‖ ≤ ‖u‖λ for λ ≥ 1. Let Hλ = (H ,‖ · ‖λ). By (A1)–(A2) and the Poincaré
inequality, the embedding Hλ ↪→ H1(R3) is continuous. Thus, for s ∈ [2, 6], there exists
γs > 0 which is independent of λ such that

|u|s ≤ γs‖u‖λ, ∀u ∈ Hλ. (2.1)
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Let Eλ = {u ∈ Hλ : supp u ⊂ A–1([0,∞))}, E⊥
λ be the orthogonal complement of Eλ in Hλ.

Obviously, if A ≥ 0, then Eλ = Hλ, otherwise E⊥
λ 
= {0}. Define

Aλ := –� + λA,

the corresponding bilinear form of Aλ is defined as

aλ(u, v) =
∫
R3

(∇u∇v + λA(x)uv
)

dx,

it is obvious that Aλ is self-adjoint in L2(R3) and aλ(u, v) is continuous in Hλ. As in [23],
for fixed λ > 0, consider the following eigenvalue problem:

–�u + λA+(x)u = ξλA–(x)u, u ∈ E⊥
λ . (2.2)

From (A1)–(A2), the mapping u �→ ∫
R3 λA–(x)u2 dx is weakly continuous. Hence, follow-

ing [24], the following proposition is obtained in [12].

Proposition 2.1 ([12]) Let (A1), (A2) be satisfied, then, for any Λ̃ > 0, there exists a se-
quence of positive eigenvalues {ξi(λ)} for problem (2.2), which is characterized by

ξi(λ) = inf
dim N≥i,N⊂E⊥

λ

sup

{
‖u‖2

λ : u ∈ N ,
∫
R3

λA–(x)u2 dx = 1
}

,

where i = 1, 2, 3, . . . . Furthermore, ξ1(λ) ≤ ξ2(λ) ≤ · · · ≤ ξi(λ) → +∞ as i → +∞, the corre-
sponding eigenfunctions {gi(λ)} can be chosen such that (gi(λ), gj(λ))λ = δij, then {gi(λ)} is a
basis of E⊥

λ .

Proposition 2.2 ([23]) Suppose that (A1), (A2) are satisfied and A– 
≡ {0}. Then, for i ∈N,
ξi(λ) → 0 as λ → +∞ and ξi(λ) is non-increasing with respect to λ.

Denote

H–
λ := span

{
gi(λ) : ξi(λ) ≤ 1

}
and H+

λ := span
{

gi(λ) : ξi(λ) > 1
}

.

Then Hλ = H–
λ ⊕ H+

λ ⊕ Eλ. Moreover, aλ ≤ 0 on H–
λ , and aλ ≥ 0 on H+

λ ⊕ Eλ. It can easily
be verified that aλ(u, v) = 0 if u and v come from different subspaces of Hλ, respectively.

By Proposition 2.2, there exists Λ̃0 > 0 such that ξ1(λ) ≤ 1 for all λ > Λ̃0, so one has
dim H–

λ ≥ 1 when λ > Λ̃0. Moreover, for every fixed λ > 0, dim H–
λ < +∞ since ξi(λ) → +∞

as i → +∞.
System (1.1) has a variational formulation. Actually, the corresponding functional ϕλ :

Hλ × D1,2(R3) →R is defined by

ϕλ(u,φ) =
1
2

∫
R3

(|∇u|2 + λA(x)u2)dx –
1
2

∫
R3

|∇φ|2 dx –
∫
R3

h(x)u dx

–
1
2

∫
R3

K(x)(2ω + φ)φu2 dx –
∫
R3

F(x, u) dx.
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The pair (u,φ) ∈ Hλ ×D1,2(R3) is a solution of system (1.1) if and only if it is a critical point
of ϕλ. By borrowing the reduction method used in [25], we can study ϕλ(u,φ) with only
one variable u. The following technical result comes from [12].

Proposition 2.3 ([12]) Let K(x) satisfy the condition (K). Then, for any u ∈ Hλ, there exists
a unique φ = φu ∈ D1,2(R3) which satisfies

�φ = K(x)(φ + ω)u2 in R
3.

Moreover, the map Φ : u ∈ Hλ �→ φu ∈ D1,2(R3) is continuously differentiable, and
(i) –ω ≤ φu ≤ 0 on the set {x ∈R

3|u(x) 
= 0};
(ii) ‖φu‖D ≤ C1|K |3‖u‖2

λ and
∫
R3 K(x)φuu2 dx ≤ C2|K |23‖u‖4

λ, if K ∈ L3(R3);
(iii) ‖φu‖D ≤ C3|K |∞‖u‖2

λ and
∫
R3 K(x)φuu2 dx ≤ C4|K |2∞‖u‖4

λ, if K ∈ L∞(R3).

Remark 2.4 It is pointed out in [12] that the condition (K) can be replaced by
(K)’ K(x) ∈ Lq1 (R3) ∪ L∞(R3), K(x) ≥ 0, and K(x) 
≡ 0 for a.e. x ∈R

3, where q1 ≥ 3.

Multiplying both sides of the equation –�φu + K(x)φuu2 = –ωK(x)u2 by φu and inte-
grating by parts, we get

∫
R3

(|∇φu|2 + K(x)φ2
uu2)dx = –

∫
R3

ωK(x)φuu2 dx. (2.3)

From (2.3), we obtain a C1 functional Ψλ : Hλ →R which is given by

Ψλ(u) = ϕλ(u,φu)

=
1
2

∫
R3

(|∇u|2 + λA(x)u2)dx –
1
2

∫
R3

(|∇φu|2 + K(x)φ2
uu2)dx

–
∫
R3

ωK(x)φuu2 dx –
∫
R3

F(x, u) dx –
∫
R3

h(x)u dx

=
1
2

∫
R3

(|∇u|2 + λA(x)u2)dx –
1
2

∫
R3

K(x)ωφuu2 dx

–
∫
R3

F(x, u) dx –
∫
R3

h(x)u dx. (2.4)

By φu = (� – K(x)u2)–1[ωK(x)u2], the Gateaux derivative of Ψλ(u) is given by

〈
Ψ ′

λ(u), v
〉

=
∫
R3

(∇u · ∇v + λA(x)uv
)

dx –
∫
R3

K(x)(2ω + φu)φuuv dx

–
∫
R3

f (x, u)v dx –
∫
R3

h(x)v dx (2.5)

for all v ∈ Hλ. Set

G(u) =
∫
R3

–ωK(x)φuu2 dx.

The properties of the functional G is given by [12], the derivative G′ possesses the Brezis–
Lieb-splitting (written for BL-splitting) property, which is similar to the Brezis–Lieb
lemma [26].
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Next, the compactness conditions for the functional Ψλ is considered. It is well known
that a C1 functional I satisfying Palais–Smale ((PS) for short) condition at level c if for
any sequence {un} ⊂ H such that I(un) → c and I ′(un) → 0, there exists a convergent sub-
sequence of H , which is called a (PS)c sequence. Since K ∈ L∞(R3) and K ∈ L3(R3) are
similar, in the following, we just consider the case K ∈ L∞(R3).

Lemma 2.5 Let (A1)–(A2), (F1)–(F4), (K) and (H) hold. Then, for each c ∈R, every (PS)c

sequence is bounded in Hλ.

Proof Let {un} ⊂ Hλ be a (PS)c sequence of Ψλ. Arguing indirectly, suppose ‖un‖λ → ∞
such that

Ψλ(un) → c, Ψ ′
λ(un) → 0, n → ∞, (2.6)

after passing to a subsequence. Denote wn := un/‖un‖λ. Then ‖wn‖λ = 1, wn ⇀ w0 in Hλ

and wn(x) → w0(x) for a.e. x ∈ R
3.

If w0 = 0, by the fact wn → 0 in L2({x ∈ R
3 : A(x) < 0}), (2.4), (2.5), (2.6), (F3), (F4) and

Proposition 2.3, there are two cases to consider.
Case (1). 2 < μ < 4. From (2.4), (2.5) and (2.6), we derive

o(1) =
1

‖un‖2
λ

(
μΨλ(un) –

〈
Ψ ′

λ(un), un
〉)

=
(

μ

2
– 1

)
‖wn‖2

λ –
(

μ

2
– 1

)∫
R3

λA–(x)w2
n dx +

1
‖un‖2

λ

∫
R3

K(x)φ2
un u2

n dx

+
(2 – μ

2 )
‖un‖2

λ

∫
R3

K(x)ωφun u2
n dx +

1
‖un‖2

λ

∫
R3

F (x, un) dx +
(1 – μ)
‖un‖2

λ

∫
R3

h(x)un dx

≥
(

μ

2
– 1

)
–

(
μ

2
– 1

)
λ
∣∣A–∣∣∞

∫
supp A–

w2
n dx

–
(

2 –
μ

2

)
|K |∞ω2|wn|2λ + (1 – μ)|h|2γ2

1
‖un‖λ

=
(

μ

2
– 1

)
+ o(1),

then 0 ≥ μ

2 – 1, which contradicts μ > 2.
Case (2). μ ≥ 4. In this case, by (2.4), (2.5) and (2.6), we have

o(1) =
1

‖un‖2
λ

(
μΨλ(un) –

〈
Ψ ′

λ(un), un
〉)

≥
(

μ

2
– 1

)
–

(
μ

2
– 1

)
λ
∣∣A–∣∣∞

∫
supp A–

w2
n dx +

(2 – μ

2 )
‖un‖2

λ

∫
R3

K(x)ωφun u2
n dx

+ (1 – μ)|h|2d2
1

‖un‖λ

≥
(

μ

2
– 1

)
–

(
μ

2
– 1

)
λ
∣∣A–∣∣∞

∫
supp A–

w2
n dx + (1 – μ)|h|2d2

1
‖un‖λ

=
(

μ

2
– 1

)
+ o(1),

then 0 ≥ μ

2 – 1, which contradicts μ ≥ 4.
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If w0 
= 0, then the Lebesgue measure of Ω1 := {x ∈R
3 : w0(x) 
= 0} is positive. For x ∈ Ω1,

one has |un(x)| → ∞ as n → ∞, and then, by (F2),

F(x, un(x))
u2

n(x)
w2

n(x) → +∞ as n → ∞. (2.7)

From (2.7) and Fatou’s lemma, it yields

∫
Ω1

F(x, un)
u2

n
w2

n dx → +∞ as n → ∞. (2.8)

From (2.4), (2.6), (2.8), (K), (H) and Proposition 2.3, we have

0 = lim
n→+∞

Ψλ(un)
‖un‖2

λ

= lim
n→+∞

[
1
2

–
1
2

∫
R3

K(x)ωφun u2
n

‖un‖2
λ

dx –
∫
R3

F(x, un)
‖un‖2

λ

dx –
∫
R3

h(x)un

‖un‖2
λ

dx
]

=
1
2

+ o(1) – lim
n→+∞

∫
R3

F(x, un)
‖un‖2

λ

dx

≤ 1
2

+ o(1) – lim
n→+∞

∫
Ω1

F(x, un)
u2

n
w2

n dx

= –∞,

a contradiction. Hence, the boundedness of {un} in Hλ is obtained.
The case K ∈ L3(R3) can be proved in a similar way as shown above. �

Lemma 2.6 Assume A ≥ 0 and let (A1)–(A2), (F1)–(F4), (K) and (H) hold. Then, for any
M > 0, there exists Λ̃ = Λ̃(M) > 0 such that, for all c < M and λ > Λ̃, Ψλ satisfies (PS)c

condition.

Proof Let {un} ⊂ Hλ be a (PS)c sequence with c < M. According to Lemma 2.5, {un} is
bounded in Hλ, and there exists C > 0 such that ‖un‖λ ≤ C. Hence, passing to a subse-
quence, we have

un ⇀ u in Hλ;

un → u in Ls
loc

(
R

3) (
1 ≤ s < 2∗);

un(x) → u(x) a.e. x ∈R
3.

(2.9)

For λ > 0 large enough, we should prove un → u in Hλ. Let wn := un – u, then wn ⇀ 0 in
Hλ. By [12, Lemma 2.8], we know

Ψλ(un) = Ψλ(wn) + Ψλ(u) + o(1), (2.10)〈
Ψ ′

λ(un), v
〉
=

〈
Ψ ′

λ(wn), v
〉
+

〈
Ψ ′

λ(u), v
〉
+ o(1), uniformly for all v ∈ Hλ (2.11)
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as n → ∞, in particular, if Ψλ(un) → c ∈ R and Ψ ′
λ(un) → 0 in H∗

λ , then Ψ ′
λ(u) = 0 and up

to passing to a subsequence, we have

Ψλ(wn) → c – Ψλ(u),〈
Ψ ′

λ(wn),ϕ
〉 → 0, uniformly for all ϕ ∈ Hλ.

(2.12)

From (2.12), we have Ψ ′
λ(u) = 0, and

Ψλ(wn) → c – Ψλ(u), Ψ ′
λ(wn) → 0 as n → ∞. (2.13)

From A ≥ 0 and (F3), we get

Ψλ(u) = Ψλ(u) –
1
μ

〈
Ψ ′

λ(u), u
〉

=
(

1
2

–
1
μ

)
‖u‖2

λ +
1
μ

∫
R3

K(x)φ2
uu2 dx +

(
2
μ

–
1
2

)∫
R3

K(x)ωφuu2 dx

+
∫
R3

F (x, u) dx +
(

1
μ

– 1
)∫

R3
hu dx

= Φλ(u) +
(

2
μ

–
1
2

)∫
R3

K(x)ωφuu2 dx +
(

1
μ

– 1
)∫

R3
hu dx,

where

Φλ(u) =
(

1
2

–
1
μ

)
‖u‖2

λ +
1
μ

∫
R3

K(x)φ2
uu2 dx +

∫
R3

F (x, u) dx ≥ 0. (2.14)

From (2.1), we get

–
(

1
μ

– 1
)

|h|2|u|2 ≤ –
(

1
μ

– 1
)

|h|2γ2‖u‖λ

≤ –
(

1
μ

– 1
)

|h|2γ2 lim inf
n→∞ ‖un‖λ

≤ |h|2γ2C ≤ M̃, (2.15)

where M̃ > 0 is independent of λ. We have two cases to consider.
Case (1). 2 < μ < 4. From (2.9), (2.13), (2.14), (2.15), c < M and Proposition 2.3, we have

(
1
2

–
1
μ

)
‖wn‖2

λ +
∫
R3

F (x, wn) dx

= Ψλ(wn) –
1
μ

〈
Ψ ′

λ(wn), wn
〉

–
(

2
μ

–
1
2

)∫
R3

K(x)ωφwn w2
n dx +

(
1 –

1
μ

)∫
R3

hwn dx + o(1)

≤ c – Ψλ(u) + o(1) +
(

2
μ

–
1
2

)∫
R3

K(x)ω2w2
n dx

≤ c – Ψλ(u) + o(1) +
(

2
μ

–
1
2

)
|K |∞ω2|wn|2λ
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≤ c – Ψλ(u) + o(1)

= c –
[
Φλ(u) +

(
1
μ

– 1
)∫

R3
hu dx +

(
2
μ

–
1
2

)∫
R3

K(x)ωφuu2 dx
]

+ o(1)

= c – Φλ(u) –
(

1
μ

– 1
)∫

R3
hu dx + o(1) –

(
2
μ

–
1
2

)∫
R3

K(x)ωφuu2 dx

≤ c – Φλ(u) –
(

1
μ

– 1
)∫

R3
hu dx + o(1) +

(
2
μ

–
1
2

)
ω2|K |∞|u|22

≤ M + M̃ + C + o(1). (2.16)

Case (2). μ ≥ 4. By (2.9), (2.13), (2.14), (2.15), c < M and Proposition 2.3, we have

(
1
2

–
1
μ

)
‖wn‖2

λ +
∫
R3

F (x, wn) dx

= Ψλ(wn) –
1
μ

〈
Ψ ′

λ(wn), wn
〉
–

(
2
μ

–
1
2

)∫
R3

K(x)ωφwn w2
n dx

+
(

1 –
1
μ

)∫
R3

hwn dx + o(1)

≤ c – Ψλ(u) + o(1)

= c –
[
Ψλ(u) +

(
1
μ

– 1
)∫

R3
hu dx +

(
2
μ

–
1
2

)∫
R3

K(x)ωφuu2 dx
]

+ o(1)

= c – Ψλ(u) –
(

1
μ

– 1
)∫

R3
hu dx + o(1) –

(
2
μ

–
1
2

)∫
R3

K(x)ωφuu2 dx

≤ M + M̃ + o(1). (2.17)

Hence,

∫
R3

F (x, wn) dx ≤ M + M̃ + C + o(1). (2.18)

From (A1) and wn ⇀ 0, we get

|wn|22 ≤ 1
λa

∫
A(x)≥a

λA+(x)w2
n dx +

∫
A(x)<a

w2
n dx ≤ 1

λa
‖wn‖2

λ + o(1). (2.19)

For 2 < s < 6, by the Hölder inequality, Sobolev inequality and (2.19),

|wn|ss =
∫
R3

|wn|s dx

≤
(∫

R3
|wn|2 dx

) 6–s
s

(∫
R3

|wn|6 dx
) 9s–18

s

≤
[

1
λa

∫
R3

(|∇wn|2 + λA+w2
n
)

dx
] 6–s

s
(

S–6
[∫

R3
|∇wn|2 dx

]3) 9s–18
s

+ o(1)

≤
(

1
λa

) 6–s
4

S– 3(s–2)
2 ‖wn‖s

λ + o(1). (2.20)
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According to (F1), for any ε > 0, there exists C = C(ε) > 0 such that |f (x, t)| ≤ ε|t| for all
x ∈ R

3 and |t| ≤ C(ε), and (F4) is satisfied for |t| ≥ C(ε) (with the same σ but possibly
larger than a1). Thus, by (F4), (2.18), (2.20) and the Hölder inequality, we obtain

∫
|wn|≤C

f (x, wn)wn dx ≤ ε

∫
|wn|≤C

w2
n dx ≤ ε

λa
‖wn‖2

λ + o(1) (2.21)

and

∫
|wn|≥C

f (x, wn)wn dx ≤
(∫

|wn|≥C

∣∣∣∣ f (x, wn)
wn

∣∣∣∣
σ

dx
)1/σ

|wn|2s

≤
(∫

|wn|≥C
a1F (x, wn) dx

)1/σ

|wn|2s

≤ [
a1(M + M̃ + C)

]1/σ S– 3(2s–4)
2s

(
1
λa

)θ

‖wn‖2
λ + o(1), (2.22)

where s = 2σ /(σ – 1) and θ = 6–s
2s > 0.

Since un ⇀ u in L2(R3) and h ∈ L2(R3), we obtain

∫
R3

h(un – u) dx → 0 as n → ∞. (2.23)

Therefore, by (2.21), (2.22), (2.23) and Proposition 2.3, we have

o(1) =
〈
Ψ ′

λ(wn), wn
〉

≥ ‖wn‖2
λ –

∫
R3

K(x)(2ω + φwn )φwn w2
n dx –

∫
R3

f (x, wn)wn dx –
∫
R3

hwn dx

≥
[

1 –
ε

λa
–

[
a1(M + M̃ + C)

]1/τ S– 3(2s–4)
2s

(
1
λa

)θ]
‖wn‖2

λ + o(1). (2.24)

It follows from (2.24) that there exists Λ̃ = Λ̃(M) > 0 such that wn → 0 in Hλ when λ > Λ̃.
Since wn = un – u, so un → u in Hλ. �

Lemma 2.7 Assume (A1)–(A2), (F1)–(F4), (K) and (H) hold. Let {un} be a (PS)c sequence
of Ψλ with level c > 0. Then, for any M > 0, up to a subsequence, there exists Λ̃ = Λ̃(M) > 0
such that un ⇀ u 
= 0 in Hλ satisfying Ψ ′

λ(u) = 0 and Ψλ(u) ≤ c for all c < M and λ > Λ̃.

Proof By Lemma 2.6 and [12, Lemma 2.8], we obtain

Ψ ′
λ(u) = 0, Ψλ(wn) → c – Ψλ(u), Ψ ′

λ(un) → 0 as n → ∞. (2.25)
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However, since the appearance of the nonlinear term h in Ψλ(u) and A is sign-changing,
we cannot deduce that Ψλ(u) ≥ 0 from

Ψλ(u) = Ψλ(u) –
1
μ

〈
Ψ ′

λ(u), u
〉

=
(

1
2

–
1
μ

)
‖u‖2

λ +
(

1
μ

–
1
2

)∫
R3

λA–(x)u2 dx +
1
μ

∫
R3

K(x)φ2
uu2 dx

+
(

2
μ

–
1
2

)∫
R3

K(x)ωφuu2 dx +
∫
R3

F (x, u) dx +
(

1
μ

– 1
)∫

R3
hu dx.

So there are two situations to consider: (i) Ψλ(u) < 0; (ii) Ψλ(u) ≥ 0.
If Ψλ(u) < 0, then u 
= 0, thus, the proof is complete. If Ψλ(u) ≥ 0, following the proof of

Lemma 2.6, we can deduce un → u in Hλ. Indeed, from (A1) and wn → 0 in L2({x ∈ R
3 :

A(x) < a}), we obtain

∣∣∣∣
∫
R3

A–(x)w2
n(x) dx

∣∣∣∣ ≤ ∣∣A–∣∣∞
∫

supp A–
w2

n dx = o(1), (2.26)

We have two cases to consider again.
Case (1). 2 < μ < 4. In this case, from (2.25) and (2.26), we have

∫
R3
F (x, wn) dx

= Ψλ(wn) –
1
μ

〈
Ψ ′

λ(wn), wn
〉
+

(
1
μ

–
1
2

)
‖wn‖2

λ +
(

1
2

–
1
μ

)∫
R3

λA–(x)w2
n dx

–
1
μ

∫
R3

K(x)φ2
wn w2

n dx +
(

1
2

–
2
μ

)∫
R3

K(x)ωφwn w2
n dx +

(
1 –

1
μ

)∫
R3

hwn dx

≤ c – Ψλ(u) + o(1) +
(

2
μ

–
1
2

)
|K |∞ω2|wn|2λ

≤ c – Ψλ(u) + o(1) ≤ M + o(1).

Case (2). μ ≥ 4. In this case, from (2.25) and (2.26), one has

∫
R3
F (x, wn) dx

= Ψλ(wn) –
1
μ

〈
Ψ ′

λ(wn), wn
〉
+

(
1
μ

–
1
2

)
‖wn‖2

λ +
(

1
2

–
1
μ

)∫
R3

λA–(x)w2
n dx

–
1
μ

∫
R3

K(x)φ2
wn w2

n dx +
(

1
2

–
2
μ

)∫
R3

K(x)ωφwn w2
n dx +

(
1 –

1
μ

)∫
R3

hwn dx

≤ c – Ψλ(u) + o(1) ≤ M + o(1).

Hence, (2.22), (2.23) and (2.24) still remain valid. Therefore, un → u in Hλ, Ψ ′
λ(u) = 0 and

Ψλ(u) = c > 0. �
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3 Proof of main results
Lemma 3.1 ([27]) Let E = A1 ⊕ A2 be a Banach space, dim A2 < ∞, Φ ∈ C1(A,R3). If there
exist α > 0, R > ρ > 0 and e ∈ A1 such that

α := infΦ(A1 ∩ Lρ) > supΦ(∂S),

where Lρ = {u ∈ E : ‖u‖ = ρ}, S = {u = z + te : v ∈ A2, t ≥ 0,‖u‖ ≤ R}. Then Φ has a (PS)c

sequence with c ∈ [α, supΦ(S)].

Let A1 = H+
λ ⊕ Eλ and A2 = H–

λ . By Proposition 2.2, ξi(λ) → 0 as λ → ∞ for every fixed i,
and there exists Λ1 > 0 such that H–

λ 
= ∅ and dim H–
λ < ∞ for λ > Λ1. The following lemma

comes from [12].

Lemma 3.2 ([12]) Assume that (A1)–(A2), (K), (H) and (F1) are satisfied. Then, for each
λ > Λ1, there exist αλ, ρλ and ηλ > 0 such that

Ψλ(u) ≥ αλ for all u ∈ H+
λ ⊕ Eλ with ‖u‖λ = ρλ and |h|2 < ηλ. (3.1)

Furthermore, if A ≥ 0, we can choose α,ρ,η > 0 independent of λ.

Lemma 3.3 Let (A1), (A2), (F1), (F2), (K) and (H) hold. Then, for any subspace Ẽλ ⊂ Hλ

with finite dimension,

Ψλ(u) → –∞ as ‖u‖λ → ∞, u ∈ Ẽλ.

Proof Suppose by contradiction, it can be assumed that there is a sequence (un) ⊂ Ẽλ with
‖un‖λ → ∞ such that

inf
n

Ψλ(un) > –∞. (3.2)

Let vn := un/‖un‖λ. Since dim Ẽλ < +∞, after passing to a subsequence, there is v0 ∈ Ẽλ\{0}
such that

vn → v0 in Ẽλ,, vn(x) → v0(x) a.e. x ∈ R
3.

If v0(x) 
= 0, then |un(x)| → +∞ as n → ∞. Thus, it follows from (F2) that

F(x, un(x))
u2

n(x)
v2

n(x) → +∞ as n → ∞,
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which coupled with (F1), (2.4), Proposition 2.3 and Fatou’s lemma yields

Ψλ(un)
‖un‖2

λ

≤ 1
2

–
1

2‖un‖2
λ

∫
R3

K(x)ωφun u2
n dx –

∫
R3

F(x, un)
‖un‖2

λ

dx –
∫
R3

h(x)
un

‖un‖2
λ

dx

≤ 1
2

+
1
2
|K |∞ω2|vn|2λ –

(∫
v0=0

+
∫

v0 
=0

)
F(x, un)

u2
n

v2
n dx +

|h|2γ2

‖un‖λ

≤ 1
2

+
1
2
|K |∞ω2|vn|2λ –

∫
v0 
=0

F(x, un)
u2

n
v2

n dx +
|h|2γ2

‖un‖λ

→ –∞.

This contradicts (3.2). �

Proof of Theorem 1.2 Firstly, we prove that there is a function u0,λ ∈ Hλ satisfying
Ψ ′

λ(u0,λ) = 0 and Ψλ(u0,λ) < 0. Since h ∈ L2(R3) and h ≥ 0( 
≡ 0), we choose a function ζ ∈ Hλ

satisfying

∫
R3

h(x)ψ(x) dx > 0.

Therefore, it follows from –ω ≤ φu ≤ 0 that

Ψλ(tζ ) =
t2

2
‖ζ‖2

λ –
λt2

2

∫
R3

A–(x)ζ 2 dx –
1
2

∫
R3

K(x)ωφtζ (tζ )2 dx

–
∫
R3

F(x, tζ ) dx – t
∫
R3

h(x)ζ dx

≤ t2

2
‖ζ‖2

λ +
t2

2

∫
R3

ω2ζ 2 dx – t
∫
R3

h(x)ζ dx

< 0 for t > 0 small enough.

Let u0,λ = tζ small enough such that Ψλ(u0,λ) < 0. For ρλ > 0, which is given by Lemma 3.2,
from Lemma 3.3, we get

c0,λ = inf
{
Ψλ(u) : u ∈ Bρλ

}
< 0.

From Ekeland’s variational principle, there is a minimizing sequence {un,λ} ⊂ Bρλ
such that

c0,λ ≤ Ψλ(un,λ) < c0,λ +
1

nλ

,

Ψλ(wλ) ≥ Ψλ(un,λ) –
1

nλ

‖wλ – un,λ‖λ,

for all wλ ∈ Bρλ
. Hence, the boundedness of {un,λ} is obtained. By a standard argument,

from Lemma 2.6 and [12, Lemma 2.8], there is a function u0,λ ∈ Hλ such that Ψ ′
λ(u0,λ) = 0

and Ψλ(u0,λ) = c0,λ < 0.
Next, we prove that there is a function ūλ ∈ Hλ satisfying Ψ ′

λ(ūλ) = 0 and Ψλ(ūλ) > 0. By
Lemma 3.1, and [12, Lemma 3.2, Lemma 3.4], for each k ∈N, λ = λk and |h|2 < ηk , Ψλk has
a (PS)c sequence with c ∈ [αλk , supΨλk (Sk)]. Let M := supΨλk (Sk), then, by Lemmas 2.6, 2.7
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and 3.1, Ψλk has a nontrivial critical point ūλ ∈ Hλ such that Ψ ′
λ(ūλ) = 0 and Ψλ(ūλ) = c ≥

αλk > 0. �

Proof of Theorem 1.3 The first solution can be proved in the same way as shown in The-
orem 1.2. The second solution follows from [12, Lemma 3.2, Lemma 3.5], Lemma 2.6,
Lemma 2.7 and Lemma 3.1. �

Proof of Theorem 1.4 If A ≥ 0, from the proof of Theorem 1.2, we can check that ρλ, c0,λ,
u0,λ are independent of λ. So we choose c0 = c0,λ, Bρ = Bρ,λ, α, ρ , and η are independent of
λ, then, by the mountain pass theorem [27, 28], the proof of Theorem 1.4 is complete. �

4 Conclusion
In this paper, we first obtained a Palais–Smale sequence by using super-quadratic con-
dition. Then we establish the parameter which depends on compactness conditions to
recover the compactness. Finally, the existence of nontrivial solutions is proved by the
linking theorem and Ekeland’s variational principle. Obviously, the super-quadratic con-
dition has been successfully applied to find the solutions of the nonhomogeneous Klein–
Gordon–Maxwell system with sign-changing potential, we hope that these results can be
widely used in fractional systems as discussed in [29] and [30].
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