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1 Introduction
The following result is well known in the literature as error estimation, Simpson’s second
formula.

Theorem 1.1 Let ϕ : [c, d] → R be a four times continuously differentiable mapping on
(c, d) and ‖ϕ(4)‖∞ = supx∈(c,d) |ϕ(4)| < ∞, then
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∣
∣
∣

1
8

[

ϕ(c) + 3ϕ

(
2c + d

3

)

+ 3ϕ

(
c + 2d

3

)

+ ϕ(d)
]

–
1

d – c

∫ d

c
ϕ(x) dx

∣
∣
∣
∣

≤ 1
6480

∥
∥ϕ(4)∥∥∞(d – c)5.

This result is also known as a Newton type of inequality. Since these results have wide
applications in the pure and applied sciences, this topic attracted considerable attention
of several mathematicians. Some researchers focused on new Simpson type inequalities
based on a two step quadratic kernel and Simpson’s second type results based on three step
quadratic kernel via different classes of functions. For example, Alomari et al. [4] provided
Simpson type inequalities via s-convex functions and they also gave some applications
to special means and numerical quadrature rules. Sarikaya et al. [21] gave some new in-
equalities of Simpson type based on s-convexity and their applications to special means of
real numbers. Park in [17] gave some Hadamard and Simpson type results for functions
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whose second derivatives are s-convex in the second sense. In addition, Gao and Shi [9]
obtained new inequalities of Newton type for functions whose absolute values of second
derivatives are convex. Inspired by this, some researchers obtained Hermite–Hadamard,
Simpson and Simpson’s second type/Newton type inequalities via harmonically convex
mappings (see [10, 14, 15]).

Integral equations play an important role in pure and applied mathematics. A large num-
ber of initial and boundary value problems related to ordinary and partial differential equa-
tions can be transformed into problems of solving some approximate integral equations.
However, some initial and boundary value problems are fractal curves, which are every-
where continuous but nowhere differentiable. In these cases, it can be used local fractional
theory to handle the fractal and continuously non-differentiable functions, because this
theory deal with everywhere continuous but nowhere differentiable functions in fractal
space.

Local fractional theory that was introduced by Yang in [27] is used to handle differ-
ent non-differentiable problems which appear in complex systems of the real-world phe-
nomenon. Specifically, the non-differentiability circumstance in science and engineering
was modeled by means of ordinary or partial differential equations including local frac-
tional statements. What is more, local fractional derivatives and integrals are effectively
applied many equations such as Fokker–Planck, diffusion and relaxation equation in frac-
tal space, the fractal heat conduction equation and local fractional diffusion equation. We
also note that concepts of fractional calculus have many advantages, for example one of
the significant advantages of the Caputo fractional derivative is that it allows traditional
initial and boundary conditions to be included in the formulation of the problem. On
the other side, Fractional calculus have played a significant role in different fields of pure
and applied sciences such as mechanics, electricity, chemistry, biology, economics, no-
tably control theory, and signal and image processing etc. Due to this, local fractal the-
ory has received significantly great attention from scientists and engineers. Therewith,
these topics are observed a lot of researchers who study in areas such as mathematical
physics and applied sciences (for example [25]). For more details, see [25–27]. Further-
more, local fractional versions of some inequalities which have a very significant role in
application areas of mathematics are studied by many mathematicians. For instance, Chen
established a Hölder inequality and some integral inequalities on fractal space in [6]. In
[13], Mo et al. discovered the generalized Hermite–Hadamard inequality for a generalized
convex function. Also, generalized Hermite–Hadamard type inequalities for generalized
convex functions were presented by Sarikaya and Budak in [19]. New Simpson type inte-
gral inequalities involving local fractional integrals were obtained by Sarikaya et al. [20].
Sun, in [22], introduced the concept of generalized harmonically convex functions and ob-
tained Hermite–Hadamard type inequalities. He has also worked on some inequalities on
generalization of Ostrowski and Simpson type inequalities for functions whose absolute
values of derivatives are generalized harmonically convex in [23]. In addition to these re-
sults, Noor et al. deduced several new Hermite–Hadamard inequalities for a new class of
convex functions including generalized convex functions and harmonic convex functions
in [16]. For some useful and recent studies on fractional calculus and its applications in
different fields of mathematics, see [1–3, 5, 7, 8, 11, 12, 18, 24].

The main objective of this paper is to obtain a new auxiliary result based on a three step
quadratic kernel by utilizing the concepts of local fractional calculus. With the help of this
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new auxiliary result we obtain several new integral inequalities of Newton type for func-
tions whose powers of local fractional derivatives in modulus are generalized harmonic
convex. The main motivation of this paper is to capture new estimations for generalized
convex functions. We expect that the ideas and techniques used in this paper will inspire
the interested reader working in the field of inequalities.

2 Preliminaries
In this section, we discuss some preliminary concepts and results which will play signifi-
cant roles in the development of the main results of the paper.

First of all, we give the set Rα of real line numbers to describe the definitions of the local
fractional derivative and integral. For 0 < α ≤ 1, we have the following α-type sets:

Zα : The α-type set of integer is defined as the set {0α ,±1α ,±2α , . . . ,±nα , . . .}.
Qα : The α-type set of the rational numbers is defined as the set {mα = ( p

q )α : p, q ∈ Z,
q �= 0}.

Jα : The α-type set of the irrational numbers is defined as the set {mα �= ( p
q )α : p, q ∈ Z,

q �= 0}.
R

α : The α-type set of the real numbers is defined as the set Rα = Qα ∪ Jα .
If ρα , σα and τα belongs to the set Rα of real numbers, then
(1) ρα + σα and ρασα belongs to the set Rα ;
(2) ρα + σα = σα + ρα = (ρ + σ )α = (σ + ρ)α ;
(3) ρα + (σα + τα) = (ρ + σ )α + τα ;
(4) ρασα = σαρα = (ρσ )α = (σρ)α ;
(5) ρα(σατα) = (ρασα)τα ;
(6) ρα(σα + τα) = ρασα + ρατα ;
(7) ρα + 0α = 0α + ρα = ρα and ρα1α = 1αρα = ρα .
The definition of the local fractional derivative is given as follows.

Definition 2.1 ([27]) A non-differentiable function ϕ : R → R
α , k → ϕ(k) is called local

fractional continuous at k0, if for any ε > 0, there exists δ > 0, such that

∣
∣ϕ(k) – ϕ(k0)

∣
∣ < εα

holds for |k – k0| < δ, where ε, δ ∈ R. If ϕ(k) is local continuous on the interval (c, d), we
denote ϕ(k) ∈ Cα(c, d).

Definition 2.2 ([27]) The local fractional derivative of ϕ(k) of order α at k = k0 is defined
by

ϕ(α)(k0) =
dαϕ(k)

dkα

∣
∣
∣
∣
k=k0

= lim
k→x0

	α(ϕ(k) – ϕ(k0))
(k – k0)α

,

where 	α(ϕ(k) – ϕ(k0)) ∼= Γ (α + 1)(ϕ(k) – ϕ(k0)).

If there exists ϕ(k+1)α(k) =
k+1 times
︷ ︸︸ ︷

Dα
k

...Dα
k
ϕ(k) for any k ∈ I ⊆ R, then we denote ϕ ∈ D(k+1)α(I),

where k = 0, 1, 2, . . . .
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The definition and some properties of the local fractional integral that we will use
throughout this article are defined as follows.

Definition 2.3 ([27]) Let ϕ(k) ∈ Cα[c, d]. Then the local fractional integral is defined by

cIα
d ϕ(k) =

1
Γ (α + 1)

∫ d

c
ϕ(x)(dx)α =

1
Γ (α + 1)

lim
	x→0

N–1
∑

j=0

ϕ(xj)(	xj)α ,

with 	xj = xj+1 – xj and 	x = max{	x1,	x2, . . . ,	xN–1}, where [xj, xj+1], j = 0, . . . , N – 1
and c = x0 < x1 < · · · < xN–1 < xN = d is a partition of the interval [c, d].

Here, it follows that cIα
d ϕ(k) = 0 if c = d and cIα

d ϕ(k) = –dIα
c ϕ(k) if c < d. If, for any k ∈

[c, d], there exists cIα
d ϕ(k), then we denote ϕ(k) ∈ Iα

k
[c, d].

Lemma 2.1 ([27])
(i) (Local fractional integration is anti-differentiation) Suppose that

ϕ(k) = ψ (α)(k) ∈ Cα[c, d], then we have

cIα
d ϕ(k) = ψ(d) – ψ(c).

(ii) (Local fractional integration by parts) Suppose that ϕ(k),ψ(k) ∈ Dα[c, d] and
ϕ(α)(k), ψ (α)(k) ∈ Cα[c, d], then we have

cIα
d ϕ(k)ψ (α)(k) = ϕ(k)ψ(k)|dc – cIα

d ϕ(α)(k)ψ(k).

In addition, we ought to give some properties of the local fractional derivative to use in
the change of the variable in the integrals.

Lemma 2.2 ([26]) Suppose that ϕ(k) ∈ Cα[c, d] and ϕ(k) ∈ Dα(c, d), then, for 0 < α ≤ 1, we
have a α-differential form

dαϕ(k) = ϕ(α)(k) dkα .

Lemma 2.3 ([26]) Let I be an interval, ϕ,ψ : I ⊂ R → Rα (I◦ is the interior of I) and y(k) =
ϕ(ψ(k)) such that ϕ,ψ ∈ Dα(I◦). Then we have

dαy(k)
dxα

= ϕ(α)(ψ(k)
)(

ψ (1)(k)
)α .

Lemma 2.4 ([27]) We have
(i) dα

k
kα

dkα = Γ (1+kα)
Γ (1+(k–1)α)k

(k–1)α ;
(ii) 1

Γ (α+1)
∫ d

c k
kα( dx)α = Γ (1+kα)

Γ (1+(k+1)α) (d(k+1)α – c(k+1)α), k ∈ R.

The class of generalized harmonic convex function which will be examined in this paper
is defined as follows.
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Definition 2.4 ([22]) Let ϕ : I ⊂ R \ {0} → R
α . For any c, d ∈ I and k ∈ [0, 1], if the in-

equality

ϕ

(
cd

tc + (1 – k)d

)

≤ (1 – k)αϕ(c) + k
αϕ(d)

holds, then ϕ is called a generalized harmonic convex function on I .

Chen [6] presented the generalized Hölder inequality on fractal space as follows.

Theorem 2.5 Let ϕ(x), ψ(x) ∈ Cα(c, d), p > 1, 1
p + 1

q = 1. Then

1
Γ (1 + α)

∫ d

c

∣
∣ϕ(x)ψ(x)

∣
∣(dx)α ≤

(
1

Γ (1 + α)

∫ d

c

∣
∣ϕ(x)

∣
∣
p(dx)α

) 1
p

×
(

1
Γ (1 + α)

∫ d

c

∣
∣ψ(x)

∣
∣
q(dx)α

) 1
q

.

3 Results and discussions
In this section, we first give an auxiliary result involving local factional integral and then
we use this result to obtain new Newton type inequalities via generalized harmonic convex
functions.

Lemma 3.1 Let ϕ : I◦ ⊂ R → R
α be a function such that ϕ ∈ Dα(I◦) and ϕ(α) ∈ Cα[c, d],

where I◦ is the interior of I ⊂R \ {0}. Then, for all x ∈ [c, d], we have

1
8α

[

ϕ(c) + 3αϕ

(
3cd

c + 2d

)

+ 3αϕ

(
3cd

2c + d

)

+ ϕ(d)
]

– Γ (1 + α)
(

cd
d – c

)α

cId
α ϕ(x)

x2α

=
(cd)α(d – c)α

Γ (1 + α)

∫ 1

0

χ (k)
(tc + (1 – k)d)2α

ϕ(α)
(

cd
tc + (1 – k)d

)

(dk)α , (3.1)

where χ (k) is defined by

χ (k) =

⎧

⎪⎪⎨

⎪⎪⎩

(k – 1
8 )α , k ∈ [0, 1

3 ),

(k – 1
2 )α k ∈ [ 1

3 , 2
3 ),

(k – 7
8 )α , k ∈ [ 2

3 , 1].

Proof From the definition of χ (k), we have

(cd)α(d – c)α

Γ (1 + α)

∫ 1

0

χ (k)
(tc + (1 – k)d)2α

ϕ(α)
(

cd
tc + (1 – k)d

)

(dk)α

=
(cd)α(d – c)α

Γ (1 + α)

∫ 1
3

0

(k – 1
8 )α

(tc + (1 – k)d)2α
ϕ(α)

(
cd

tc + (1 – k)d

)

(dk)α
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+
(cd)α(d – c)α

Γ (1 + α)

∫ 2
3

1
3

(k – 1
2 )α

(tc + (1 – k)d)2α
ϕ(α)

(
cd

tc + (1 – k)d

)

(dk)α

+
(cd)α(d – c)α

Γ (1 + α)

∫ 1

2
3

(k – 7
8 )α

(tc + (1 – k)d)2α
ϕ(α)

(
cd

tc + (1 – k)d

)

(dk)α . (3.2)

Applying the local fractional integration by parts to the first integral in the right side of
(3.2), we find that

(cd)α(d – c)α

Γ (1 + α)

∫ 1
3

0

(k – 1
8 )α

(tc + (1 – k)d)2α
ϕ(α)

(
cd

tc + (1 – k)d

)

(dk)α

=
(

k –
1
8

)α

ϕ

(
cd

tc + (1 – k)d

)∣
∣
∣
∣

1
3

0

–
1

Γ (1 + α)

∫ 1
3

0
Γ (1 + α)ϕ

(
cd

tc + (1 – k)d

)

(dk)α

=
(

5
24

)α

ϕ

(
3cd

c + 2d

)

–
(

–
1
8

)α

ϕ(c) –
∫ 1

3

0
ϕ

(
cd

tc + (1 – k)d

)

(dk)α . (3.3)

Combining the resulting identities after calculating the other integrals in (3.2), from the
property of fractal space cα + dα = (c + d)α , it follows that

(cd)α(d – c)α

Γ (1 + α)

∫ 1

0

χ (k)
(tc + (1 – k)d)2α

ϕ(α)
(

cd
tc + (1 – k)d

)

(dk)α

=
1

8α

[

ϕ(c) + 3αϕ

(
3cd

c + 2d

)

+ 3αϕ

(
3cd

2c + d

)

+ ϕ(d)
]

–
∫ 1

0
ϕ

(
cd

tc + (1 – k)d

)

(dk)α .

Finally, if we use the change of the variable x = cd
tc+(1–k)d and from (dk)α = cd

(d–c)x2α (dx)α , then
we obtain the desired equality (3.1) which completes the proof. �

Remark 3.1 If we take α = 1, then Lemma 3.1 collapses to the previous well-known result
obtained by Noor et al. in [14].

Theorem 3.2 Let ϕ : I◦ ⊂ R → R
α be a function such that ϕ ∈ Dα(I◦) and ϕ(α) ∈ Cα[c, d]

where I◦ is the interior of I ⊂ R \ {0}. If |ϕ(α)|q is a generalized harmonic convex function
for 1 ≤ q, then one has

∣
∣
∣
∣

1
8α

[

ϕ(c) + 3αϕ

(
3cd

c + 2d

)

+ 3αϕ

(
3cd

2c + d

)

+ ϕ(d)
]

– Γ (1 + α)
(

cd
d – c

)α

cId
α ϕ(x)

x2α

∣
∣
∣
∣

≤ (cd)α(d – c)α
[((

17
288

)α
Γ (1 + α)
Γ (1 + 2α)

)1– 1
q

× (

ϑ1(c, d)
∣
∣ϕ(α)(c)

∣
∣
q + ϑ2(c, d)

∣
∣ϕ(α)(d)

∣
∣
q(dk)α

) 1
q
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+
((

1
18

)α
Γ (1 + α)
Γ (1 + 2α)

)1– 1
q

× (

ϑ3(c, d)
∣
∣ϕ(α)(c)

∣
∣
q + ϑ4(c, d)

∣
∣ϕ(α)(d)

∣
∣
q) 1

q

+
((

17
288

)α
Γ (1 + α)
Γ (1 + 2α)

)1– 1
q

× (

ϑ5(c, d)
∣
∣ϕ(α)(c)

∣
∣
q + ϑ6(c, d)

∣
∣ϕ(α)(d)

∣
∣
q) 1

q

]

, (3.4)

where

ϑ1(c, d) =
1

(d – c)3αΓ (1 + α)

[ (cα(c + 7d)α)(d1–2q – 2( c+7d
8 )1–2q + ( c+2d

3 )1–2q)α

(1 – 2q)α

+
8α(d3–2q – 2( c+7d

8 )3–2q + ( c+2d
3 )3–2q)α

(3 – 2q)α

–
((c + 7d)α + (8c)α)(d2–2q – 2( c+7d

8 )2–2q + ( c+2d
3 )2–2q)α

(2 – 2q)α

]

,

ϑ2(c, d) =
1

(d – c)3αΓ (1 + α)

[ ((c + 7d)α + (8d)α)(d2–2q – 2( c+7d
8 )2–2q + ( c+2d

3 )2–2q)α

(2 – 2q)α

–
(dα(c + 7d)α)(d1–2q – 2( c+7d

8 )1–2q + ( c+2d
3 )1–2q)α

(1 – 2q)α

–
8α(d3–2q – 2( c+7d

8 )3–2q + ( c+2d
3 )3–2q)α

(3 – 2q)α

]

,

ϑ3(c, d) =
1

(d – c)3αΓ (1 + α)

[ (cα(c + d)α)(( c+2d
3 )1–2q – 2( c+d

2 )1–2q + ( 2c+d
3 )1–2q)α

(1 – 2q)α

+
2α(( c+2d

3 )3–2q – 2( c+d
2 )2–2q + ( 2c+d

3 )3–2q)α

(3 – 2q)α

–
((c + d)α + (2c)α)(( c+2d

3 )2–2q – 2( c+d
2 )2–2q + ( 2c+d

3 )2–2q)α

(2 – 2q)α

]

,

ϑ4(c, d) =
1

(d – c)3αΓ (1 + α)

[ ((c + d)α + (2d)α)(( c+2d
3 )2–2q – 2( c+d

2 )2–2q + ( 2c+d
3 )2–2q)α

(2 – 2q)α

–
(dα(c + d)α)(( c+2d

3 )1–2q – 2( c+d
2 )1–2q + ( 2c+d

3 )1–2q)α

(1 – 2q)α

–
2α(( c+2d

3 )3–2q – 2( c+d
2 )2–2q + ( 2c+d

3 )3–2q)α

(3 – 2q)α

]

,

ϑ5(c, d) =
1

(d – c)3αΓ (1 + α)

[ (cα(7c + d)α)(( 2c+d
3 )1–2q – 2( 7c+d

8 )1–2q + c1–2q)α

Γ (1 + α)(1 – 2q)α

+
8α(( 2c+d

3 )3–2q – 2( 7c+d
8 )3–2q + c3–2q)α

Γ (1 + α)(3 – 2q)α

–
((7c + d)α + (8c)α)(( 2c+d

3 )2–2q – 2( 7c+d
8 )2–2q + c2–2q)α

Γ (1 + α)(2 – 2q)α

]

,
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and

ϑ6(c, d) =
1

(d – c)3αΓ (1 + α)

[ ((7c + d)α + (8d)α)(( 2c+d
3 )2–2q – 2( 7c+d

8 )2–2q + c2–2q)α

Γ (1 + α)(2 – 2q)α

–
(dα(7c + d)α)(( 2c+d

3 )1–2q – 2( 7c+d
8 )1–2q + c1–2q)α

Γ (1 + α)(1 – 2q)α

–
8α(( 2c+d

3 )3–2q – 2( 7c+d
8 )3–2q + c3–2q)α

Γ (1 + α)(3 – 2q)α

]

.

Proof Taking the modulus in Lemma 3.1 and using the definition of χ (k), we have

∣
∣
∣
∣

1
8α

[

ϕ(c) + 3αϕ

(
3cd

c + 2d

)

+ 3αϕ

(
3cd

2c + d

)

+ ϕ(d)
]

– Γ (1 + α)
(

cd
d – c

)α

cId
α ϕ(x)

x2α

∣
∣
∣
∣

≤ (cd)α(d – c)α
[

1
Γ (1 + α)

∫ 1
3

0

|k – 1
8 |α

(tc + (1 – k)d)2α

∣
∣
∣
∣
ϕ(α)

(
cd

tc + (1 – k)d

)∣
∣
∣
∣
(dk)α

+
1

Γ (1 + α)

∫ 2
3

1
3

|k – 1
2 |α

(tc + (1 – k)d)2α

∣
∣
∣
∣
ϕ(α)

(
cd

tc + (1 – k)d

)∣
∣
∣
∣
(dk)α

+
1

Γ (1 + α)

∫ 1

2
3

|k – 7
8 |α

(tc + (1 – k)d)2α

∣
∣
∣
∣
ϕ(α)

(
cd

tc + (1 – k)d

)∣
∣
∣
∣
(dk)α

]

. (3.5)

If we also apply the power mean inequality to integrals in the right side of (3.5), and using
the fact that |ϕ(α)|q is generalized harmonic convex on [c, d], we have

∣
∣
∣
∣

1
8α

[

ϕ(c) + 3αϕ

(
3cd

c + 2d

)

+ 3αϕ

(
3cd

2c + d

)

+ ϕ(d)
]

– Γ (1 + α)
(

cd
d – c

)α

cId
α ϕ(x)

x2α

∣
∣
∣
∣

≤ (cd)α(d – c)α
[(

1
Γ (1 + α)

∫ 1
3

0

∣
∣
∣
∣
k –

1
8

∣
∣
∣
∣

α

(dk)α
)1– 1

q

×
(

1
Γ (1 + α)

∫ 1
3

0

|k – 1
8 |α

(tc + (1 – k)d)2qα

[

(1 – k)α
∣
∣ϕ(α)(c)

∣
∣
q + k

α
∣
∣ϕ(α)(d)

∣
∣
q](dk)α

) 1
q

+
(

1
Γ (1 + α)

∫ 2
3

1
3

∣
∣
∣
∣
k –

1
2

∣
∣
∣
∣

α

(dk)α
)1– 1

q

×
(

1
Γ (1 + α)

∫ 2
3

1
3

|k – 1
2 |α

(tc + (1 – k)d)2qα

[

(1 – k)α
∣
∣ϕ(α)(c)

∣
∣
q + k

α
∣
∣ϕ(α)(d)

∣
∣
q](dk)α

) 1
q

+
(

1
Γ (1 + α)

∫ 1

2
3

∣
∣
∣
∣
k –

7
8

∣
∣
∣
∣

α

(dk)α
)1– 1

q
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×
(

1
Γ (1 + α)

∫ 1

2
3

|k – 1
8 |α

(tc + (1 – k)d)2qα

× [

(1 – k)α
∣
∣ϕ(α)(c)

∣
∣
q + k

α
∣
∣ϕ(α)(d)

∣
∣
q](dk)α

) 1
q
]

. (3.6)

From the Lemma 2.4, it is easy to see that

1
Γ (1 + α)

∫ 1
3

0

∣
∣
∣
∣
k –

1
8

∣
∣
∣
∣

α

(dk)α =
(

17
288

)α
Γ (1 + α)
Γ (1 + 2α)

, (3.7)

1
Γ (1 + α)

∫ 2
3

1
3

∣
∣
∣
∣
k –

1
2

∣
∣
∣
∣

α

(dk)α =
(

1
18

)α
Γ (1 + α)
Γ (1 + 2α)

, (3.8)

1
Γ (1 + α)

∫ 1

2
3

∣
∣
∣
∣
k –

7
8

∣
∣
∣
∣

α

(dk)α =
(

17
288

)α
Γ (1 + α)
Γ (1 + 2α)

. (3.9)

On the other side, using the change of the variable by considering the Lemmas 2.3 and 2.2,
one can obtain

1
Γ (1 + α)

∫ 1
3

0

|k – 1
8 |α(1 – k)α

(tc + (1 – k)d)2qα
(dk)α

=
1

Γ (1 + α)

∫ 1
8

0

( 1
8 – k)α(1 – k)α

(tc + (1 – k)d)2qα
(dk)α +

1
Γ (1 + α)

∫ 1
3

1
8

(k – 1
8 )α(1 – k)α

(tc + (1 – k)d)2qα
(dk)α

=
1

8α(d – c)3α

[
1

Γ (1 + α)

∫ d

c+7d
8

(
cα(c + 7d)α

x2qα
–

(c + 7d)α

xα(2q–1) –
(8c)α

xα(2q–1) +
8α

x2α(q–1)

)

(dx)α

+
1

Γ (1 + α)

∫ c+7d
8

c+2d
3

(
(8c)α

xα(2q–1) –
8α

x2α(q–1) –
cα(c + 7d)α

x2qα
+

(c + 7d)α

xα(2q–1)

)

(dx)α
]

. (3.10)

Now, letting 1
x2q–2 = u and from 1

x(2q–1)α (dx)α = 1
(2–2q)α (du)α , we get

1
Γ (1 + α)

∫ d

c+7d
8

(c + 7d)α + (8c)α

xα(2q–1) (dx)α

=
(c + 7d)α + (8c)α

Γ (1 + α)(2 – 2q)α

∫ d2–2q

( c+7d
8 )2–2q

(du)α

=
((c + 7d)α + (8c)α)(d2–2q – ( c+7d

8 )2–2q)α

Γ (1 + α)(2 – 2q)α
(3.11)

and

1
Γ (1 + α)

∫ c+7d
8

c+2d
3

(c + 7d)α + (8c)α

xα(2q–1) (dx)α

=
(c + 7d)α + (8c)α

Γ (1 + α)(2 – 2q)α

∫ ( c+7d
8 )2–2q

( c+2d
3 )2–2q

(du)α

=
((c + 7d)α + (8c)α)(( c+7d

8 )2–2q – ( c+2d
3 )2–2q)α

Γ (1 + α)(2 – 2q)α
. (3.12)
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Letting 1
x2q–1 = u and from 1

x2qα (dx)α = 1
(1–2q)α (du)α , we have

1
Γ (1 + α)

∫ d

c+7d
8

cα(c + 7d)α

x2qα
(dx)α

=
cα(c + 7d)α

Γ (1 + α)(1 – 2q)α

∫ d1–2q

( c+7d
8 )1–2q

(du)α

=
(cα(c + 7d)α)(d1–2q – ( c+7d

8 )1–2q)α

Γ (1 + α)(1 – 2q)α
(3.13)

and

1
Γ (1 + α)

∫ c+7d
8

c+2d
3

cα(c + 7d)α

x2qα
(dx)α

=
cα(c + 7d)α

Γ (1 + α)(1 – 2q)α

∫ ( c+7d
8 )1–2q

( c+2d
3 )1–2q

(du)α

=
(cα(c + 7d)α)(( c+7d

8 )1–2q – ( c+2d
3 )1–2q)α

Γ (1 + α)(1 – 2q)α
. (3.14)

Letting 1
x2q–3 = u and from 1

x(2q–2)α (dx)α = 1
(3–2q)α (dk)α , we have

1
Γ (1 + α)

∫ d

c+7d
8

8α

xα(2q–2) (dx)α

=
8α

Γ (1 + α)(3 – 2q)α

∫ d3–2q

( c+7d
8 )3–2q

(du)α

=
8α(d3–2q – ( c+7d

8 )3–2q)α

Γ (1 + α)(3 – 2q)α
(3.15)

and

1
Γ (1 + α)

∫ c+7d
8

c+2d
3

8α

xα(2q–2) (dx)α

=
8α

Γ (1 + α)(3 – 2q)α

∫ ( c+7d
8 )3–2q

( c+2d
3 )3–2q

(du)α

=
8α(( c+7d

8 )3–2q – ( c+2d
3 )3–2q)α

Γ (1 + α)(3 – 2q)α
. (3.16)

Substituting the equalities (3.11)–(3.16) in (3.10), one has

1
Γ (1 + α)

∫ 1
3

0

|k – 1
8 |α(1 – k)α

(tc + (1 – k)d)2qα
(dk)α = ϑ1(c, d).

If we similarly calculate the other integrals in (3.6) and later substitute the resulting iden-
tities and the equalities (3.7)–(3.9) in (3.6), then we attain the desired inequality (3.4). The
proof is thus completed. �
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Theorem 3.3 Let ϕ : I◦ ⊂ R → R
α be a function such that ϕ ∈ Dα(I◦) and ϕ(α) ∈ Cα[c, d]

where I ⊂ R \ {0}. If |ϕ(α)|q is a generalized harmonic convex function for p > 1, 1
p + 1

q = 1,

then one has

∣
∣
∣
∣

1
8α

[

ϕ(c) + 3αϕ

(
3cd

c + 2d

)

+ 3αϕ

(
3cd

2c + d

)

+ ϕ(d)
]

– Γ (1 + α)
(

cd
d – c

)α

cId
α ϕ(x)

x2α

∣
∣
∣
∣

≤ (cd)α(d – c)α

×
[
(

ν1(c, d;k)
) 1

p

([(
528

13,824

)α
Γ (1 + α)
Γ (1 + 2α)

+
(

1008
13,824

)α
Γ (1 + 2α)
Γ (1 + 3α)

]

× [∣
∣ϕ(α)(c)

∣
∣ +

∣
∣ϕ(α)(d)

∣
∣
]
) 1

q

+
(

ν2(c, d;k)
) 1

p

([(
528

13,824

)α
Γ (1 + α)
Γ (1 + 2α)

+
(

1008
13,824

)α
Γ (1 + 2α)
Γ (1 + 3α)

]

× [∣
∣ϕ(α)(c)

∣
∣ +

∣
∣ϕ(α)(d)

∣
∣
]
) 1

q

+
(

ν3(c, d;k)
) 1

p

([(
528

13,824

)α
Γ (1 + α)
Γ (1 + 2α)

+
(

1008
13,824

)α
Γ (1 + 2α)
Γ (1 + 3α)

]

× [∣
∣ϕ(α)(c)

∣
∣ +

∣
∣ϕ(α)(d)

∣
∣
]
) 1

q
]

.

Proof If we apply Hölder’s inequality to the inequality (3.5), because of the generalized

harmonic convexity of |ϕ(α)|q, we get

∣
∣
∣
∣

1
8α

[

ϕ(c) + 3αϕ

(
3cd

c + 2d

)

+ 3αϕ

(
3cd

2c + d

)

+ ϕ(d)
]

– Γ (1 + α)
(

cd
d – c

)α

cId
α ϕ(x)

x2α

∣
∣
∣
∣

≤ (cd)α(d – c)α
[(

1
Γ (1 + α)

∫ 1
3

0

|k – 1
8 |α

(tc + (1 – k)d)2pα
(dk)α

) 1
p

×
(

1
Γ (1 + α)

∫ 1
3

0

∣
∣
∣
∣
k –

1
8

∣
∣
∣
∣

α
[

(1 – k)α
∣
∣ϕ(α)(c)

∣
∣
q + k

α
∣
∣ϕ(α)(d)

∣
∣
q](dk)α

) 1
q

+
(

1
Γ (1 + α)

∫ 2
3

1
3

|k – 1
2 |α

(tc + (1 – k)d)2pα
(dk)α

) 1
p

×
(

1
Γ (1 + α)

∫ 2
3

1
3

∣
∣
∣
∣
k –

1
2

∣
∣
∣
∣

α
[

(1 – k)α
∣
∣ϕ(α)(c)

∣
∣
q + k

α
∣
∣ϕ(α)(d)

∣
∣
q](dk)α

) 1
q

+
(

1
Γ (1 + α)

∫ 1

2
3

|k – 1
8 |α

(tc + (1 – k)d)2pα
(dk)α

) 1
p

×
(

1
Γ (1 + α)

∫ 1

2
3

∣
∣
∣
∣
k –

1
8

∣
∣
∣
∣

α
[

(1 – k)α
∣
∣ϕ(α)(c)

∣
∣
q + k

α
∣
∣ϕ(α)(d)

∣
∣
q](dk)α

) 1
q
]

.



Iftikhar et al. Advances in Difference Equations        (2020) 2020:185 Page 12 of 14

Using the change of the variable by considering the Lemmas 2.3 and 2.2, one can obtain

ν1(c, d;k) =
1

Γ (1 + α)

∫ 1
3

0

|k – 1
8 |α

(tc + (1 – k)d)2qα
(dk)α

=
1

(d – c)3αΓ (1 + α)

[ (c + 7d)α(d1–2q – 2( c+7d
8 )1–2q + ( c+2d

3 )1–2q)α

(1 – 2q)α

–
8α(d2–2q – 2( c+7d

8 )2–2q + ( c+2d
3 )2–2q)α

(2 – 2q)α

]

,

ν2(c, d;k) =
1

Γ (1 + α)

∫ 2
3

1
3

|k – 1
2 |α

(tc + (1 – k)d)2qα
(dk)α

=
1

(d – c)3αΓ (1 + α)

[ (c + d)α(( c+2d
3 )1–2q – 2( c+d

2 )1–2q + ( 2c+d
3 )1–2q)α

(1 – 2q)α

–
2α(( c+2d

3 )2–2q – 2( c+d
2 )2–2q + ( 2c+d

3 )2–2q)α

(2 – 2q)α

]

,

and

ν3(c, d;k) =
1

Γ (1 + α)

∫ 1

2
3

|k – 7
8 |α

(tc + (1 – k)d)2qα
(dk)α

=
1

(d – c)3αΓ (1 + α)

[ (7c + d)α(( 2c+d
3 )1–2q – 2( 7c+d

8 )1–2q + c1–2q)α

Γ (1 + α)(1 – 2q)α

–
8α(( 2c+d

3 )2–2q – 2( 7c+d
8 )2–2q + c2–2q)α

Γ (1 + α)(2 – 2q)α

]

.

From Lemma 2.4, one can easily see that

1
Γ (1 + α)

∫ 1
8

0

(
1
8

– k

)α

k
α(dk)α =

(
1

512

)α
Γ (1 + α)
Γ (1 + 2α)

–
(

1
512

)α
Γ (1 + 2α)
Γ (1 + 3α)

,

1
Γ (1 + α)

∫ 1
3

1
8

(

k –
1
8

)α

k
α(dk)α =

(
485

13,824

)α
Γ (1 + 2α)
Γ (1 + 3α)

–
(

165
13,824

)α
Γ (1 + α)
Γ (1 + 2α)

,

1
Γ (1 + α)

∫ 1
2

1
3

(
1
2

– k

)α

k
α(dk)α =

(
15

216

)α
Γ (1 + α)
Γ (1 + 2α)

–
(

19
216

)α
Γ (1 + 2α)
Γ (1 + 3α)

,

1
Γ (1 + α)

∫ 2
3

1
2

(

k –
1
2

)α

k
α(dk)α =

(
37

216

)α
Γ (1 + 2α)
Γ (1 + 3α)

–
(

21
216

)α
Γ (1 + α)
Γ (1 + 2α)

,

1
Γ (1 + α)

∫ 7
8

2
3

(
7
8

– k

)α

k
α(dk)α =

(
3885

13,824

)α
Γ (1 + α)
Γ (1 + 2α)

–
(

5165
13,824

)α
Γ (1 + 2α)
Γ (1 + 3α)

,

1
Γ (1 + α)

∫ 1

7
8

(

k –
7
8

)α

k
α(dk)α =

(
4563

13,824

)α
Γ (1 + 2α)
Γ (1 + 3α)

–
(

2835
13,824

)α
Γ (1 + α)
Γ (1 + 2α)

.
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Similarly, we have

1
Γ (1 + α)

∫ 1
8

0

(
1
8

– k

)α

(1 – k)α(dk)α

=
(

4563
13,824

)α
Γ (1 + 2α)
Γ (1 + 3α)

–
(

2835
13,824

)α
Γ (1 + α)
Γ (1 + 2α)

,

1
Γ (1 + α)

∫ 1
3

1
8

(

k –
1
8

)α

(1 – k)α(dk)α

=
(

3885
13,824

)α
Γ (1 + α)
Γ (1 + 2α)

–
(

5165
13,824

)α
Γ (1 + 2α)
Γ (1 + 3α)

,

1
Γ (1 + α)

∫ 1
2

1
3

(
1
2

– k

)α

(1 – k)α(dk)α =
(

37
216

)α
Γ (1 + 2α)
Γ (1 + 3α)

–
(

21
216

)α
Γ (1 + α)
Γ (1 + 2α)

,

1
Γ (1 + α)

∫ 2
3

1
2

(

k –
1
2

)α

(1 – k)α(dk)α =
(

15
216

)α
Γ (1 + α)
Γ (1 + 2α)

–
(

19
216

)α
Γ (1 + 2α)
Γ (1 + 3α)

,

1
Γ (1 + α)

∫ 7
8

2
3

(
7
8

– k

)α

(1 – k)α(dk)α

=
(

485
13,824

)α
Γ (1 + 2α)
Γ (1 + 3α)

–
(

165
13,824

)α
Γ (1 + α)
Γ (1 + 2α)

,

1
Γ (1 + α)

∫ 1

7
8

(

k –
7
8

)α

(1 – k)α(dk)α =
(

1
512

)α
Γ (1 + α)
Γ (1 + 2α)

–
(

1
512

)α
Γ (1 + 2α)
Γ (1 + 3α)

.

Thus, the proof is completed. �

Remark 3.2 For suitable and appropriate choices of α and q, one can obtain new and well-
known results.
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