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whereFk is the � -“eld generated by{� ,w0, . . . ,wk…1}, F0 = {� , � }. The initial values� and
wk are assumed to be independent of each other.A,Ā,C,C̄ � Rn× n and B,B̄,D,D̄ � Rn× m

are given deterministic matrices. Indeed, system (1.1) is also regarded as a mean-“eld SDE
(MF-SDE). Mean-“eld theory has been developed to investigate the collective behaviors
owing to individuals• mutual interactions in various physical and sociological dynamical
systems. This problem combines the mean-“eld theory with the LQ stochastic optimal
control (see [1, 2]).

Lately, the mean-“eld problems have made many constructive and signi“cative applica-
tions in various “elds of mathematical “nance, statistical mechanics, games theory (see
[3]), especially in stochastic optimal control (see [4]). Some representative works in the
mean-“eld optimal control, to name a few, include Li and Liu [5], Ma and Liu [6…8]. It is
noteworthy that the optimal control problems of MF-LQ have received considerable at-
tention. With regard to continuous-time cases, Yong [9] studied LQ optimal control prob-
lems for mean-“eld stochastic di�erential equations by variational method and decoupling
technique; the same author in [10] systematically investigated the open-loop and closed-
loop equilibrium solutions for the time-inconsistency MF-LQ optimal control problems.
Subsequently, Huang et al. [11] generalized the results of Yong [9] to in“nite horizon.

Nevertheless, discrete-time optimal control problems are more relevant to biomedical,
engineering, economic, operation research and optimizing complex technological prob-
lems, etc. Recently, Elliott et al. [12] formulated the “nite horizon discrete-time MF-LQ
optimal control problem as an operator stochastic LQ optimal control problem. Later,
the same authors in [13] discussed the in“nite horizon case. Ni et al. [14] considered the
inde“nite mean-“eld stochastic LQ optimal control problem with “nite horizon. More-
over, Song and Liu [15] derived the necessary and su�cient solvability condition of the
“nite horizon MF-LQ optimal control problem. Specially, here it is worth mentioning that
Zhang et al. [16] presented the necessary and su�cient stabilization conditions of the MF-
LQ optimal control problem subject to system (1.1). Nevertheless, the stabilization results
in [16] mainly rely on a restrictive condition, namely

Q � 0, Q + Q̄ � 0, R� 0, R+ R̄� 0.

Indeed, it is a critical condition to study the MF-LQ optimal control problems. It is, there-
fore, natural to ask whether similar results can be derived ifQ, Q̄, R, R̄are just assumed to
be symmetric, which is of particular and signi“cant mathematical interest.

Inspired by the above arguments, in this paper we consider the following cost functional
subject to system (1.1):

J(u,� ) = E
��

k=0

�
x�

kQxk + (Exk)�Q̄Exk + u�
kRuk

+ (Euk)�R̄Euk + 2x�
kGuk + 2(Exk)�ḠEuk

�
. (1.2)

Here, the cost functional contains the explicitly correlative terms of state and control pro-
cesses, namelyG �= 0 andḠ �= 0. More importantly, the weighting matricesQ, Q̄, R, R̄ are
just symmetric, which is distinctly di�erent from [16].

To the best of our knowledge, the study on the necessary and su�cient stabilization
conditions of the discrete-time MF-LQ stochastic optimal control problems, especially
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with inde“nite weighting matrices, is fairly scarce in the literature. Besides, the stabiliza-
tion properties have not been investigated systematically. In this paper, we design the LQ
optimal controller by means of the GAREs (see [17]), and we obtain the existence of the
maximal solution to the original GAREs by introducing another one. Then, we show that
the stabilizing solution is the maximal solution which is employed to present the optimal
value. Furthermore, under the assumption of exact observability (see [18, 19]), we derive
that the mean-“eld system isL2-stabilizable if and only if the GAREs have a solution, which
is also a maximal solution. Finally, we discuss the solvability of the GAREs by SDP method
(see [20…23]), and we establish the relations among the GAREs, the SDP, and the MF-LQ
optimal control problems.

The remainder of the paper is organized as follows. The next section gives the problem
formulation and preliminaries. Section3 is devoted to studying the GAREs. In Sect.4,
we discuss the solvability and stabilization for the MF-LQ optimal control problems. Sec-
tion 5 establishes the relations among the GAREs, the SDP, and the MF-LQ optimal con-
trol problems. A couple of numerical examples are given in Sect.6 to illustrate our main
results. Section7 gives some concluding remarks.

Most notations adopted in the paper are considerably standard as follows.A > 0/A � 0
meansA is strictly positive de“nite/ positive semi-de“nite.A� denotes the transpose of
any matrix or vectorA. B…1stands for the inverse of real matrixB. dim(A)/R(A)/Ker(A)
is the dimension/rank/kernel ofA. Tn represents then × n symmetric matrix. Denote
byX the space of allRn-valued square-integrable random variables. LetN = {0,1, . . . ,N},
�Nl = {l, l + 1, . . .}, �N0 = �N = {0,1,2, . . .}.

2 Problem formulation and preliminaries
In this paper, we study the in“nite horizon MF-LQ optimal control problems. Indeed, to
make the problems meaningful, the in“nite horizon solution also requires to guarantee
the closed-loop stability, which is interestingly di�erent from the “nite horizon cases. We
“rstly introduce the admissible control set

U� =

	

u





uk � Rm,uk is Fk-measurable,E

��

k=0

|uk|2 < � andJ(� ,u) < �

�

.

For simplicity, system (1.1) is denoted by [A,Ā,B,B̄;C,C̄,D,D̄]. In addition, [A,Ā;C,C̄]
denotes [A,Ā, 0, 0;C,C̄, 0, 0], and [A;C] denotes [A,0,0,0;C,0,0,0].

The in“nite horizon MF-LQ optimal control problem to be solved can be stated as fol-
lows.

Problem A For any� � X , “nd u� � U� such that

J
�
� ,u� 


= inf
u� U�

J(� ,u) 	 V (� ),

whereu� is called an optimal control, andV(·) is called the value function of ProblemA.

Definition 2.1 For a matrix A � Rn× m, the Moore…Penrose inverse ofA is de“ned to be
the unique matrixA† � Rm× n such that

(i) AA†A = A, A†AA† = A†;
(ii) (AA†)� = AA†, (A†A)� = A†A.
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Definition 2.2 System [A,Ā,B,B̄;C,C̄,D,D̄] is calledL2-asymptotically stable if, for any

� � X , limk
� E|xk|2 = 0.

Definition 2.3 ([24]) System [A,Ā,B,B̄;C,C̄,D,D̄] is called closed-loopL2-stabilizable if

there exists a pair (K,K̄) � Rm× n × Rm× n such that, for any� � X , the closed-loop sys-

tem

�
���

���

xk+1 = [(A + BK)xk + (Ā + (B+ B̄)K̄ + B̄K)Exk]

+ [(C + DK)xk + (C̄ + (D + D̄)K̄ + D̄K)Exk]wk, k = 0, 1, 2, . . . ,

x0 = � ,

is L2-asymptotically stable. In this case,uk = Kxk + K̄Exk (k � �N) is called the closed-loop

L2-stabilizer.

Definition 2.4 Consider the uncontrolled mean-“eld system

�
�

�
xk+1 = (Axk + ĀExk) + (Cxk + C̄Exk)� k,

Yk = Q1/2Xk,
(2.1)

whereQ =
� Q 0

0 Q+Q̄



and Xk =

� xk…Exk
Exk



. System (2.1) (or (A,Ā,C,C̄,Q1/2), for short) is said

to be exactly observable if, for anyN � 0,

Yk = 0, 0� k � N � x0 = 0.

Lemma 2.1 (Schur•s lemma)Let matrices M= M�,R= R�,and N be given with appropriate

dimensions. Then the following statements are equivalent:

(i) M …NR…1N� � (resp. >) 0.
(ii)

� M N
N� R



� (resp. >) 0.

(iii)
�

R N�

N M



� (resp. >) 0.

In what follows, we make two assumptions.

(A1) [A,Ā,B,B̄;C,C̄,D,D̄] is closed-loop L2-stabilizable.
(A2) (A,Ā,C,C̄,Q1/2) is exactly observable.
We establish the following maximum principle which is the base to deriving the main

results. De“ne

JN = E
N�

k=0

�
x�

kQxk + (Exk)�Q̄Exk + u�
kRuk + (Euk)�R̄Euk + 2x�

kGuk

+ 2(Exk)�ḠEuk
�

+ E
�
x�

N+1PN+1xN+1



+ (ExN+1)�P̄N+1ExN+1, (2.2)

wherePN+1,P̄N+1 � Tn. The corresponding admissible control set is given as

UN =

	

(u0, . . . ,uN )





uk � Rm,uk is Fk-measurable,E

N�

k=0

|uk|2 < � andJN < �

�

.
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Proposition 2.1 (Maximum principle) The general maximum principle for minimizing

(2.2) is presented as

0 = E

	

Ruk + R̄Euk + G�xk + Ḡ�Exk +

�
B+ � kD

0

� �

� k

+E

��
B̄+ � kD̄

B+ B̄

� �

� k

� 




Fk

�

, (2.3)

where� k satis“es

� k…1= E

	�
Qxk + Q̄Exk + Guk + ḠEuk

0

�

+

�
A + � kC Ā + � kC̄

0 A + Ā

� �

� k






Fk

�

, (2.4)

with the terminal condition

� N =

�
PN+1 P̄N+1

0 0

� �
xN+1

ExN+1

�

. (2.5)

Proof Denote

xk+1 := gk(xk,uk,Exk,Euk,� k), (2.6)

Exk+1 = E
�
gk(xk,uk,Exk,Euk,� k)

�
:= hk(xk,uk,Exk,Euk), (2.7)

JN := E

	

� (xN+1,ExN+1) +
N�

k=0

Sk(xk,uk,Exk,Euk)

�

. (2.8)

For anyuk, � uk � UN , 	 � (0, 1), we haveu	
k = uk + 	� uk � UN . By (2.8), we get that

� JN = E
N�

k=0

�
Sk

xk
� xk + Sk

Exk
� Exk + Sk

uk
	� uk + Sk

Euk
	� Euk

�

+ E{� xN+1� xN+1 + � ExN+1� ExN+1} + O
�
	 2


= E

	
N�

k=1

�
Sk

xk
+ ESk

Exk

�
� xk +

N�

k=0

�
Sk

xk
+ ESk

Exk

�
	� uk

+ [� xN+1 + E� ExN+1]� xN+1

�

+ O
�
	 2


.

Combining (2.6) with (2.7), for � xk = x	
k …xk, it is obtained that

�
� xk+1

� Exk+1

�

=

�
gk

xk
gk
Exk

hk
xk

hk
Exk

� �
� xk

� Exk

�

+

�
gk

uk
gk
Euk

hk
uk

hk
Euk

� �
	� uk

	� Euk

�

.
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Seeing that� x0 = � Ex0 = 0, it yields that

� xk+1 = gk
xk

� xk + gk
uk

	� uk + gk
Exk

� Exk + gk
Euk

	� Euk

= �Gx(k, 0)

�
� x0

� Ex0

�

+
k�

l=0

�Gx(k, l + 1)

�
gl

ul
gl
Eul

hl
ul

hl
Eul

� �
	� ul

	� Eul

�

=
k�

l=0

�Gx(k, l + 1)

�
gl

ul

hl
ul

�

	� ul +
k�

l=0

�Gx(k, l + 1)

�
gl
Eul

hl
Eul

�

	� Eul ,

where

gk
xk

=

 gk


 xk
, gk

uk
=


 gk


 uk
, gk

Exk
=


 gk


 Exk
, gk

Euk
=


 gk


 Euk
,

hk
xk

=

 hk


 xk
, hk

uk
=


 hk


 uk
, hk

Exk
=


 hk


 Exk
, hk

Euk
=


 hk


 Euk
,

Sk
xk

=

 Sk


 xk
, Sk

Exk
=


 Sk


 Exk
, Sk

uk
=


 Sk


 uk
, Sk

Euk
=


 Sk


 Euk
,

� xN+1 =

� (xN+1,ExN+1)


 xN+1
, � ExN+1 =


� (xN+1,ExN+1)

 ExN+1

,

�Gx(k,k + 1) =
�
In 0

�
, �Gx(k, l) =

�
gk

xk
gk
Exk

�
�gk…1
xk…1

· · · �gl
xl

,

�gl
xl

=

�
gl

xl
gl
Exl

hl
xl

hl
Exl

�

, l = 0, . . . ,k,k = 0, . . . ,N.

Consequently,

� JN = E

	

G(N + 1,N)	� uN +
N…1�

l=0

G(l + 1,N)	� ul

�

+ O
�
	 2


= E

	

E
�
G(N + 1,N)|FN

�
	� uN +

N…1�

l=0

E
�
G(l + 1,N)|Fl

�
	� ul

�

+ O
�
	 2


,

where

G(N + 1,N) = [� xN+1 + E� ExN+1]gN
uN

+ E
�
(� xN+1 + E� ExN+1)gN

EuN

�
+ SN

uN
+ ESN

EuN
,

G(l + 1,N) = [� xN+1 + E� xN+1] �Gx(N,l + 1)

�
gl

ul

hl
ul

�

+ Sl
ul

+ ESl
Eul

+ E

	

(� xN+1 + E� ExN+1) �Gx(N,l + 1)

�
gl
Eul

hl
Eul

��

+
N�

k=l+1

�
Sk

xk
+ ESk

Exk



�Gx(k … 1,l + 1)

�
gl

ul

hl
ul

�

+ E

	
N�

k=l+1

�
Sk

xk
+ ESk

Exk



�Gx(k … 1,l + 1)

�
gl
Eul

hl
Eul

��

.
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Hence, the maximum principle can be written as

0 = E
�
G(N + 1,N)|FN

�
, a.s., (2.9)

0 = E
�
G(l + 1,N)|Fl

�
, l = 0, . . . ,N … 1, a.s. (2.10)

Furthermore, we shall show that (2.3)…(2.5) are equivalent to (2.9)…(2.10). Using (2.3)…
(2.5), we can immediately get that the maximum principle can be reformulated as

0 = E

	
�
Sk

uk


 �
+ E

�
Sk
Euk


 �
+

�
gk

uk

hk
uk

� �

� k + E

��
gk
Euk

hk
Euk

� �

� k

� 




Fk

�

, (2.11)

� k…1= E

	�
In

0

�
�
Sk

xk
+ ESk

Exk


 �
+

�
�gk
xk


 �
� k|Fk

�

, k = 0, . . . ,N, (2.12)

� N =

�
� �

xN+1
+ E� �

ExN+1

0

�

. (2.13)

Indeed, adding (2.13) to (2.11) and for k = N, we have

E
��

SN
uN


 �
+ E

�
SN
EuN


 �
+

�
gN

uN


 �
(� xN+1 + E� ExN+1)�

+ E
��

gN
EuN


 �
(� xN+1 + E� ExN+1)�� |FN

�
= 0,

which is exactly (2.9). Furthermore, by (2.12)…(2.13), we derive

� k…1= E

	
N�

j=k

�G�
x(j … 1,k)

�
Sj

xj
+ ESj

Exj


 �
+ �G�

x(N,k)(� xN+1 + E� ExN+1)�





Fk

�

. (2.14)

Combining (2.3) with (2.14), it follows that

0 = E

�
�

�

�
Sk

uk
+ ESk

Euk


 �
+

N�

j=k+1

�
gk

uk

hk
uk

� �
�

�G�
x(j … 1,k + 1)

�
Sj

xj
+ ESj

Exj


 ��

+

�
gk

uk

hk
uk

� �
�

�G�
x(N,k + 1)(� xN+1 + E� ExN+1)��

�

+ E

�
�

�

N�

j=k+1

�
gk
Euk

hk
Euk

� �
�

�G�
x(j … 1,k + 1)

�
Sj

xj
+ ESj

Exj


 ��
�
�

�

+ E

	�
gk
Euk

hk
Euk

� �
�

�G�
x(N,k + 1)(� xN+1 + E� ExN+1)��






Fk

�

, k = 0, . . . ,N,

which is exactly (2.10). The proof is completed. �

Remark2.1 Compared with most of previous works, the maximum principle for MF-LQ
optimal control problem was based on the mean-“eld backward stochastic di�erential

equation (see [25, 26]), while Proposition2.1provides a convenient calculation method
and can be reduced to the standard stochastic LQ case.
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3 GAREs
In this section, we present several results about the GAREs which play a key role in deriving

our main results. Now, we introduce the following GAREs:

�
������

������

Pk = Q + A�Pk+1A + � 2C�Pk+1C … [M(1)
k ]�[� (1)

k ]†M(1)
k ,

P̄k = Q̄ + � 2C�Pk+1C̄ + � 2C̄�Pk+1C + � 2C̄�Pk+1C̄ + A�Pk+1Ā + Ā�Pk+1A

+ Ā�Pk+1Ā + (A + Ā)�P̄k+1(A + Ā) + [M(1)
k ]�[� (1)

k ]†M(1)
k … [M(2)

k ]�[� (2)
k ]†M(2)

k ,

� (i)
k � 0, � (i)

k [� (i)
k ]†M(i)

k = M(i)
k , i = 1,2,

(3.1)

where

�
������

������

� (1)
k = B�Pk+1B+ � 2D�Pk+1D + R,

M(1)
k = B�Pk+1A + � 2D�Pk+1C + G�,

� (2)
k = (B+ B̄)�(Pk+1 + P̄k+1)(B+ B̄) + � 2(D + D̄)�Pk+1(D + D̄) + R+ R̄,

M(2)
k = (B+ B̄)�(Pk+1 + P̄k+1)(A + Ā) + � 2(D + D̄)�Pk+1(C + C̄) + G� + Ḡ�.

Definition 3.1 GAREs (3.1) are said to be solvable if� (i)
k [� (i)

k ]†M(i)
k = M(i)

k , i = 1,2, are sat-

is“ed for k � N.

Motivated by [27] of Ait Rami et al. (2002), we denote

Γ :=

	

(P� ,P̄� ) =
�
P�

� ,P̄
�
�


 





�
W (i) (S(i))�

S(i) 
 (i)

�

� 0,i = 1,2

�

,

Γ̄ :=

	

(P� ,P̄� ) =
�
P�

� ,P̄
�
�


 





�
W (i) (S(i))�

S(i) 
 (i)

�

� 0,Ker
�

 (i)
 
 � (i), i = 1,2

�

.

Here,� (1) = KerB� KerD, � (2) = Ker(B+ B̄) � Ker(D + D̄), and

�
������������

������������

W (1) = Q + A�P� A + � 2C�P� C …P� ,


 (1) = R+ B�P� B+ � 2D�P� D,

S(1) = B�P� A + � 2D�P� C + G�,

W (2) = Q + Q̄ + � 2(C + C̄)�P� (C + C̄) + � 2(A + Ā)�(P� + P̄� )(A + Ā) …P� …P̄� ,


 (2) = (B+ B̄)�(P� + P̄� )(B+ B̄) + � 2(D + D̄)�P� (D + D̄) + R+ R̄,

S(2) = (B+ B̄)�(P� + P̄� )(A + Ā) + � 2(D + D̄)�P� (C + C̄) + G� + Ḡ�.

Theorem 3.1 If Γ �= � , then for any terminal value(PN+1,P̄N+1) = ( �P, �P) � Γ , GAREs(3.1)

are solvable and converge to the following GAREs:

�
������

������

P= Q + A�PA+ � 2C�PC… [M(1)]�[� (1)]†M(1),

P̄= Q̄ + A�PĀ + Ā�PA+ Ā�PĀ + � 2C�PC̄ + � 2C̄�PC+ � 2C̄�PC̄

+ (A + Ā)�P̄(A + Ā) + [M(1)]�[� (1)]†M(1) … [M(2)]�[� (2)]†M(2),

� (i) � 0, � (i)[� (i)]†M(i) = M(i), i = 1,2,

(3.2)
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where� (i), M(i) are given by

�
������

������

� (1) = B�PB+ � 2D�PD+ R,

M(1) = B�PA+ � 2D�PC+ G�,

� (2) = (B+ B̄)�(P+ P̄)(B+ B̄) + � 2(D + D̄)�P(D + D̄) + R+ R̄,

M(2) = (B+ B̄)�(P+ P̄)(A + Ā) + � 2(D + D̄)�P(C + C̄) + G� + Ḡ�.

Proof For any (�P, �P) � Γ , de“ne the new GAREs (NGAREs)

�
���������

���������

Tk = A�Tk+1A + � 2C�Tk+1C … [H(1)
k ]�[� (1)

k ]†H(1)
k + W (1),

T̄k = � 2C�Tk+1C̄ + � 2C̄�Tk+1(N)C + � 2C̄�Tk+1C̄ + A�Tk+1Ā

+ Ā�Tk+1A + Ā�Tk+1Ā + (A + Ā)�T̄k+1(A + Ā)

+ [H(1)
k ]�[� (1)

k ]†H(1)
k … [H(2)

k ]�[� 2
k]†H(2)

k + W (2) …W (1),

� (i)
k � 0, � (i)

k [� (i)
k ]†H(i)

k = H(i)
k , i = 1,2,

(3.3)

whereTN+1 = T̄N+1 = 0 and

�
������

������

� (1)
k = B�Tk+1B+ � 2D�Tk+1D + 
 (1),

H(1)
k = B�Tk+1A + � 2D�Tk+1C + S(1),

� (2)
k = (B+ B̄)�(Tk+1 + T̄k+1)(B+ B̄) + � 2(D + D̄)�Tk+1(D + D̄) + 
 (2),

H(2)
k = (B+ B̄)�(Tk+1 + T̄k+1)(A + Ā) + � 2(D + D̄)�Tk+1(C + C̄) + S(2).

(3.4)

The corresponding new cost functional is given by

J̄T (l, � ;u) := E
N�

k=l

	�
Exk

Euk

� � �
W (1) (S(1))�

S(1) 
 (1)

� �
Exk

Euk

�

+

�
xk …Exk

uk …Euk

� � �
W (2) (S(2))�

S(2) 
 (2)

� �
xk …Exk

uk …Euk

��

� 0. (3.5)

To make the time horizonN speci“c in the “nite horizon MF-LQ problem, we denoteTk,

T̄k in (3.3) asTk(N), T̄k(N). Set

V(l, � ) = E
�
x�

lTl (N)xl
�

+ (Exl )�T̄l (N)Exl , (3.6)

wherexl = � . According to (3.5), for l1 < l2, we get

Tl1(N) � Tl2(N), Tl1(N) + T̄l1(N) � Tl2(N) + T̄l2(N). (3.7)

Seeing the time-invariance of the coe�cient matrices, it is obtained thatTl (N) = T0(N …

l), T̄l (N) = T̄0(N …l). Combining (3.5) with (3.6), for any x0 = � � X and any stabilizing
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controller uk = Lxk + L̄Exk, it follows that

E
�
x�

0T0(N …l)x0
�

+ (Ex0)�T̄0(N …l)Ex0

� E
N…l�

k=0

	�
Exk

(L + L̄)Exk

� � �
W (1) (S(1))�

S(1) 
 (1)

� �
Exk

(L + L̄)Exk

�

+

�
xk …Exk

L(xk …Exk)

� � �
W (2) (S(2))�

S(2) 
 (2)

� �
xk …Exk

L(xk …Exk)

��

� cE
N…l�

k=0

|xk|2, (3.8)

wherec> 0 is a constant. Selectingx0 � Rn, we claim that, for anyN, l,

x�
0

�
T0(N …l) + T̄0(N …l)

�
x0 < � . (3.9)

Meanwhile, let x0 = �� with � � Rn and P(� = …1) =P(� = 1) = 1
2. By virtue of (3.8), we

obtain

E
�
(x0 …Ex0)�Tl (N)(x0 …Ex0)

�
= � �T0(N …l)� < � . (3.10)

From (3.7) and (3.9)…(3.10), we get

lim
l 
 …�

Tl (N) = lim
N…l
�

T0(N …l) = C1, lim
l 
 …�

T̄l (N) = lim
N…l
�

T̄0(N …l) = C̄1.

Here,C1, C̄1 are bounded. Takingl 
 …� and letting Pk = Tk + �P, P̄k = T̄k + �P, then Pk,
P̄k increase with respect tok, and (Pk,P̄k) converges to (P,P̄) with (P,P̄) satisfying GAREs
(3.2). �

Remark3.1 In view of the regular conditions in (3.3), we have

�
H(1)

k

� ��
� (1)

k

� †
H(1)

k = …
�
H(1)

k

� �Lk …L�
kH(1)

k …L�
k� (1)

k Lk,
�
H(2)

k

� ��
� (2)

k

� †
H(2)

k = …
�
H(2)

k

� �
(Lk + L̄k) … (Lk + L̄k)�H(2)

k … (Lk + L̄k)�� (2)
k (Lk + L̄k),

whereLk, L̄k satisfy

Lk = …
�
� (1)

k

� †
H(1)

k , L̄k = …
�
� (2)

k

� †
H(2)

k +
�
� (1)

k

� †
H(1)

k . (3.11)

Besides,

Tk = Q + A�Tk+1A + � 2C �Tk+1C,

Tk + T̄k = Q̄ + Ā�(Tk+1 + T̄k+1)Ā + � 2C̄ �Tk+1C̄,

where

A = A + BLk, Ā = A + Ā + (B+ B̄)(Lk + L̄k),
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C = C + DLk, C̄ = C + C̄ + (D + D̄)(Lk + L̄k),

Qk = W (1) + L�
k
 (1)Lk +

�
S(1)� �Lk + L�

kS(1) =
�
I L�

k

�
�

W (1) (S(1))�

S(1) 
 (1)

� �
I

Lk

�

� 0,

Q̄k = W (2) + (Lk + L̄k)�
 (2)(Lk + L̄k) +
�
S(2)� �

(Lk + L̄k) + (Lk + L̄k)�S(2)

=
�
I L�

k + L̄�
k

�
�

W (2) (S(2))�

S(2) 
 (2)

� �
I

Lk + L̄k

�

� 0.

Proposition 3.1 Under Γ �= � , for NGAREs(3.3) with the terminal conditions TN+1(N) =

T̄N+1(N) = 0, assume that� (i)
k [� (i)

k ]†H(i)
k = H(i)

k , i = 1,2.Then the optimal controller is de-

signed as u�k = Lkxk + L̄kExk, whereLk, L̄k are given as(3.11), and the optimal value is

derived by

J̄�
T (0,� ;u) = E

�
x�

0T0(N)x0
�

+ (Ex0)�T̄0(N)Ex0.

Proof Denote

J̄(k) := E
N�

j=k

�
x�

jW
(1)xj + (Exj)�� W (2) …W (1)
 Exj + u�

j 

(1)uj + (Euj)�� 
 (2) …
 (1)
 Euj

+ 2x�
j

�
S(1)
 �

uj + 2(Exj)�� S(2) …S(1)
 �
Euj

�
,

let k = N, byΓ �= � , it yields that

J̄(N) = E

	�
ExN

EuN

� � �
W (2) (S(2))�

S(2) 
 (2)

� �
ExN

EuN

�

+

�
xN …ExN

uN …EuN

� � �
W (1) (S(1))�

S(1) 
 (1)

� �
xN …ExN

uN …EuN

��

= E
�
(uN …EuN )�� (1)

N (uN …EuN )
�

+ (EuN )�� (2)
N EuN � 0. (3.12)

Indeed, ifEuN = 0,uN �= 0, thenJ̄(N) = E[u�
N � (1)

N uN ] > 0; further, we have� (1)
N > 0. Similarly,

if uN = EuN �= 0, we have� (2)
N > 0. Using the maximum principle in Proposition2.1, it

follows that

E

	�
xk

Exk

� �

� k…1…

�
xk+1

Exk+1

� �

� k

�

= E

	�
xk

Exk

� � �
W (1)xk + (W (2) …W (1))Exk + (S(1))�uk + (S(2) …S(1))�Euk

0

�

…

�
xk

Exk

� � �
A + � kC Ā + � kC̄

0 A + Ā

� �

� k

+

�
xk

Exk

� �

E

��
A + � kC Ā + � kC̄

0 A + Ā

� �

� k






Fk

�
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…u�
k

�
B+ � kD

0

� �

� k …u�
kE

��
B̄+ � kD̄

B+ B̄

� �

� k

��

= E
�
x�

kW (1)xk + (Exk)�� W (2) …W (1)
 Exk + u�
k
 (1)uk + (Euk)�� 
 (2) …
 (1)
 Euk

+ 2x�
k

�
S(1)
 �

uk + 2(Exk)�� S(2) …S(1)
 �
Euk

�
.

Adding from k = l + 1 to k = N on both sides of the above equation, we obtain

E

��
xl+1

Exl+1

� �

� l …x�
N+1TN+1xN+1 … (ExN+1)�T̄N+1ExN+1

�

= E
N�

k=l+1

�
x�

kW (1)xk + (Exk)�� W (2) …W (1)
 Exk + u�
k
 (1)uk + (Euk)�� 
 (2) …
 (1)
 Euk

+ 2x�
k

�
S(1)
 �

uk + 2(Exk)�� S(2) …S(1)
 �
Euk

�
.

Furthermore,

J̄(l) = E
N�

k=l+1

�
x�

kW (1)xk + (Exk)�� W (2) …W (1)
 Exk + u�
k
 (1)uk + (Euk)�� 
 (2) …
 (1)
 Euk

+ 2x�
k

�
S(1)
 �

uk + 2(Exk)�� S(2) …S(1)
 �
Euk

�
+ E

�
x�

lW
(1)xl + (Exl )�� W (2) …W (1)
 Exl

+ 2x�
k

�
S(1)
 �

uk + 2(Exk)�� S(2) …S(1)
 �
Euk + u�

l 

(1)ul + (Eul )�� 
 (2) …
 (1)
 Eul

�

= E

�

x�
lW

(1)xl + (Exl )�� 
 (2) …
 (1)
 Exl + u�
l 


(1)ul + (Eul )�� 
 (2) …
 (1)
 Eul

+2x�
l

�
S(1)
 �

ul + 2(Exl )�� S(2) …S(1)
 �
Eul +

�
xl+1

Exl+1

� �

� l

�

= E
�
x�

lTl (N)xl
�

+ (Exl )�T̄l (N)Exl +
�
Eul … (Ll + L̄l )Exl

� �
� (2)

l

�
Eul … (Ll + L̄l )Exl

�

+ E
��

ul …Eul …Ll (xl …Exl)
� �

� (1)
l

�
ul …Eul …Ll (xl …Exl)

��
.

Now we prove� (1)
l > 0 and� (2)

l > 0. Letxl = 0,

J̄(l) = E
�
(ul …Eul)�� (1)

l (ul …Eul) + (Eul )�� (2)
l Eul

�
,

then for anyul �= 0, J̄(l) > 0. Following the discussion of (3.12), it implies that � (1)
l > 0 and

� (2)
l > 0. Namely,� (1)

k � 0, � (2)
k � 0 for k � 0. Furthermore,

J̄T (0,� ;u)

= E
N�

k=0

��
uk …Euk …Lk(xk …Exk)

� �
� (1)

k

�
uk …Euk …Lk(xk …Exk)

��
+ E

�
x�

0T0(N)x0
�

+ E
N�

k=0

�
Euk … (Lk + L̄k)Exk

� �
� (2)

k

�
Euk … (Lk + L̄k)Exk

�
+ (Ex0)�T̄0(N)Ex0.

Therefore,J̄�
T (0,� ;u) = E[x�

0T0(N)x0] + (Ex0)�T̄0(N)Ex0. The proof is completed. �
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Generally speaking, the uniqueness of the solution to the GAREs is not guaranteed.

Next, we shall focus on the properties of the maximal solution and its relation with the

stabilizing solution.

Definition 3.2 A solution of GAREs (3.2) is called the maximal solution, denoted by

(P� ,P̄� ), if for any solution (P,P̄) of GAREs (3.2), P� � P, P̄� � P̄ hold.

By De“nition 3.2, it is clear that the maximal solution must be unique if it exists.

Definition 3.3 ([13]) A solution (P,P̄) of GAREs (3.2) is called a stabilizing solution if the

closed-loop control

uk = …
�
� (2)� †

M(2)Exk …
�
� (1)� †

M(1)(xk …Exk), k � �N,

stabilizes the mean-“eld system (1.1).

Now, we introduce a compact form of GAREs (3.2). Let �P=
�

P+P̄ 0
0 P



, then

�
�

�

�P= �Q + A�
1
�PA1 + C�

1
�PC1 + C�

2
�PC2 …M�� †M,

� � 0, �� †M …M = 0,
(3.13)

where

�
�

�
M = B�

1
�PA1 + � 2D�

1
�PC1 + � 2D�

2
�PC2 + �G�,

� = �R+ B�
1
�PB1 + � 2D�

1
�PD1 + � 2D�

2
�PD2,

with

�R=

�
R+ R̄ 0

0 R

�

, �Q =

�
Q + Q̄ 0

0 Q

�

, �G =

�
G + Ḡ 0

0 G

�

,

A1 =

�
A + Ā 0

0 A

�

, B1 =

�
B+ B̄ 0

0 B

�

, C1 =

�
0 0

0 C

�

,

C2 =

�
0 0

C + C̄ 0

�

, D1 =

�
0 0

0 D

�

, D2 =

�
0 0

D + D̄ 0

�

.

By considering GARE (3.13), we can immediately show the existence of the maximal so-

lution to GAREs (3.2).

Proposition 3.2 Suppose that GAREs(3.2) and GARE(3.13) have the maximal solutions

and the stabilizing solutions, then the following statements hold.

(i) �P� = diag{P� + P̄� ,P� } is the maximal solution to GARE (3.13) if and only if (P� ,P̄� )

is the maximal solution to GAREs (3.2).
(ii) �P= diag{P+ P̄,P} is a stabilizing solution to GARE (3.13) if and only if (P,P̄) is the

stabilizing solution to GAREs (3.2).
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Proof (i) It is clear.

(ii) Seeing that � †M =
� [� (2)]†M(2) 0

0 [� (1)]†M(1)



and resorting to the method in

[13, Lemma 5.1],{� k = …� †M,k � �N} is a stabilizing control of the following system:

�
�

�
yk+1 = (A1yk + B1� k) + (C1yk + D1� k)� k + (C2yk + D2� k)� k, k � �N,

y0 = � ,

where � = {� k,k � �N} and � = {� k,k � �N} are two mutually independent martingale dif-

ference sequences if and only if{uk = …[� (2)]†M(2)Exk … [� (1)]†M(1)(xk …Exk),k � �N} is a

stabilizing control of (1.1). Thus, the conclusion holds. �

Proposition 3.3 If Γ �= � and (A1) are satis“ed, then a stabilizing solution to GARE(3.13)

is the maximal solution.

Proof Let z = (z�
1 z�

2 z�
3 z�

4)� � R2(n+m), z1,z3 � Rn, z2,z4 � Rm, we get that

z�

�
�Q + A�

1
�P� A1 + C�

1
�P� C1 + C�

2
�P� C2 M�

M �

�

z

= z�
1

�
M(2)� ��

� (2)� †
M(2)z1 + z�

1

�
M(2)� �

z3 + z�
3

�
M(2)� z1 + z�

3

�
� (2)� z3

+ z�
2

�
M(1)� ��

� (1)� †
M(1)z2 + z�

2

�
M(1)� �

z4 + z�
4

�
M(1)� �

z2 + z�
4

�
� (1)� z4

=

�
z1

z3

� � �
W (2) (S(2))�

S(2) 
 (2)

� �
z1

z3

�

+

�
z2

z4

� � �
W (1) (S(1))�

S(1) 
 (1)

� �
z2

z4

�

,

thus, it immediately yields that

Γ =

	

(P� ,P̄� ) =
�
P�

� ,P̄
�
�


 





�
�Q + A�

1
�P� A1 + C�

1
�P� C1 + C�

2
�P� C2 M�

M �

�

� 0

�

.

Then, by the method in [28, Theorem 5.3.1] of Damn (2004), and [29] of Abou-Kandil et al.

(2003). This statement is standard due to the space limitations, here we omit the proof.�

Corollary 3.1 If Γ �= � and (A1) are satis“ed, then the following statements hold.

(i) GAREs (3.2) admit at most one stabilizing solution.
(ii) If there is (P� ,P� + P̄� ) such that

� W(i) (S(i))�

S(i) 
 (i)



> 0, i = 1,2, then GAREs (3.2) admit a

stabilizing solution.

Proof (i) Combining Propositions3.2with 3.3and noticing the uniqueness of the maximal

solution, we could immediately get the result.

(ii) We could resort to the method in [30, Theorem 4.3] of Ait Rami et al. (2001). Owing

to the space limitations, here we omit the proof. �

4 MF-LQ optimal control
Now, we return to the in“nite horizon stochastic MF-LQ optimal control problems.
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Theorem 4.1 If Γ �= � and (A1) are satis“ed, then ProblemA has an optimal control

uk = …
��

� (2)
 � � †�
M(2)� �

Exk …
��

� (1)
 � � †�
M(1)� �

(xk …Exk), k � �N, (4.1)

and the optimal value is given by

V(x0) = E
�
x�

0P� x0



+ (Ex0)�P̄� Ex0. (4.2)

Here, (P� ,P̄� ) is the maximal solution to GAREs(3.2), and (� (i))� , (M(i))� (i = 1,2)are those

in Theorem3.1with (P,P̄) replaced by(P� ,P̄� ).

Proof By means of completing the squares, it yields that

J(� ,u) = E
��

k=0

�
(xk …Exk)�� Q + A�P� A + � 2C�P� C …

��
M(1)
 � � ���

� (1)
 � � †�
M(1)� �

…P� �

× (xk …Exk) +
�
uk …Euk +

��
� (1)
 � � †�

M(1)� �
(xk …Exk)

� ��
� (1)
 �

×
�
uk …Euk +

��
� (1)
 � � †�

M(1)� �
(xk …Exk)

�

+
�
Euk +

��
� (2)
 � � †�

M(2)� �
Exk

� ��
� (2)
 �

×
�
Euk +

��
� (2)
 � � †�

M(2)� �
Exk

�
+ (Exk)�� Q + Q̄ + � 2(C + C̄)�P� (C + C̄)

+ (A + Ā)�� P� + P̄� 

(A + Ā) …P� …P̄� …

��
M(2)
 � � ���

� (2)
 � � †�
M(2)� � �

Exk
�

+ E
�
(x0 …Ex0)�P� (x0 …Ex0)

�
+ (Ex0)�� P� + P̄� 


Ex0

… lim
N
�

E
�
(xN …ExN)�P� (xN …ExN)

�
… lim

N
�
(ExN )�� P� + P̄� 


ExN

= E
�
(x0 …Ex0)�P� (x0 …Ex0)

�
+ (Ex0)�� P� + P̄� 


Ex0

+ E
��

k=0

�
uk …Euk +

��
� (1)
 � � †�

M(1)� �
(xk …Exk)

� ��
� (1)
 �

×
�
uk …Euk +

��
� (1)
 � � †�

M(1)� �
(xk …Exk)

�

+ E
��

k=0

��
Euk +

��
� (2)
 � � †�

M(2)� �
Exk

� ��
� (2)
 � �

Euk +
��

� (2)
 � � †�
M(2)� �

Exk
��

.

Since� (1), � (2) � 0, we can immediately get thatJ(� ,u) � E(x�
0P� x0) + (Ex0)�P̄� Ex0. Thus,

V(x0) = inf
u� U�

J(� ,u) � E
�
x�

0P� x0



+ (Ex0)�P̄� Ex0. (4.3)

Next, we shall showV(x0) = infu� U� J(� ,u) � E(x�
0P� x0) + (Ex0)�P̄� Ex0 by the standard

perturbation method. For a positive decreasing sequence{	 i , i = 0,1,2, . . .}, we consider

the GAREs withQ, R replaced byQ + 	 i I , R+ 	 i I , respectively. And the corresponding

stabilizing solution to the GAREs is written as (P	 i ,P̄	 i ), which is the maximal solution.

Indeed, P	 0 � · · · � P	 i � P	 i+1 � · · · � P, P̄	 0 � · · · � P̄	 i � P̄	 i+1 � · · · � P̄. Moreover,
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limi
� P	 i = P, limi
� P̄	 i = P̄. Setui
k = …[� (2)

i ]†M(2)
i Exk … [� (1)

i ]†M(1)
i (xk …Exk), then

V(x0) � E
��

k=0

�
x�

k(Q + 	 i I )xk + (Exk)�Q̄Exk + 2x�
kGuk

+ 2(Exk)�ḠEuk + u�
k(R+ 	 i I )uk + (Euk)�R̄Euk

�

= E
�
(x0 …Ex0)�P	 i (x0 …Ex0)

�
+ (Ex0)�(P	 i + P̄	 i )Ex0.

Let i 
 � , we have

V(x0) � E
�
x�

0P� x0



+ (Ex0)�P̄� Ex0. (4.4)

Combining (4.3) with (4.4), we haveV(x0) = E(x�
0P� x0) + (Ex0)�P̄� Ex0. Meanwhile, the op-

timal controller uk satis“es

�
�

�
uk …Euk + [(� (1))� ]†(M(1))� (xk …Exk) = 0,

Euk + [(� (2))� ]†(M(2))� Exk = 0.

Thus,uk = …[(� (2))� ]†[M(2)]� Exk … [(� (1))� ]†[M(1)]� (xk …Exk). �

Remark4.1 In Theorem4.1, we show that the optimal value of ProblemA can be pre-
sented by virtue of the maximal solution to GAREs (3.2).

A classical problem in optimal control theory is the so-called LQ stabilization problem.
Now, we consider the stabilization of the inde“nite discrete-time MF-LQ control problem.

Problem B Find a Fk-measurableuk to minimize the cost functional (1.2), simultane-
ously, to stabilize the mean-“eld system (1.1).

Definition 4.1 NGAREs (3.3) are said to have a positive semi-de“nite (de“nite) solution
if they admit T � 0, T + T̄ � 0 (T > 0,T + T̄ > 0) satisfying NGAREs (3.3).

Theorem 4.2 If Γ̄ �= � and (A2) are satis“ed, then system(1.1) is L2-stabilizable if and
only if there exists a solution to GAREs(3.2), which is also the maximal solution. In this
case, the optimal stabilizing solution and the optimal value can be designed as(4.1)…(4.2),
respectively.

Proof Necessity:Under (A2) andΓ̄ �= � , assume that system (1.1) isL2-stabilizable, we shall
show that GAREs (3.2) have a solution (P,P̄), which is also a maximal solution. Notice that
Remark3.1and TN+1(N) = T̄N+1(N) = 0, by virtue of the induction, we can immediately
get thatTk(N) � 0, T̄k(N) � 0 for 0 � k � N.

Step 1.We shall state that� (i)
k [� (i)

k ]†H(i)
k = H(i)

k , i = 1,2. Since� (1)
k � 0, we obtain that

[� (1)
k ]† =

�
U1

k U2
k

�
�

V …1
k 0

0 0

�
�
U1

k U2
k

� �
,

in which (U1
k U2

k ) is an orthogonal matrix,Vk > 0 anddim(Vk) = R(� (1)
k ), and the columns

of the matrix U2
k form a basis ofKer(� (1)

k ). Combining 
 (1) � 0 with (3.4), we derive
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Ker(� (1)
k ) � Ker(
 (1)). Moreover, in view of� (1)

k U2
k (U2

k )� = 0, then 
 (1)U2
k (U2

k )� = 0. We can

easily calculate

�
A�Tk+1(N)B+ � 2C�Tk+1(N)D +

�
S(1)
 ���

I …� (1)
k

�
� (1)

k


 †�

=
�
A�� Tk+1(N) + P�



B+ � 2C�� Tk+1(N) + P�



D

�
U2

k

�
U2

k


 �
.

Meanwhile, sinceKer(� (1)) 
 (KerB� KerD), we deduce that� (1)
k [� (1)

k ]†H(1)
k = H(1)

k . Simi-

larly, � (2)
k [� (2)

k ]†H(2)
k = H(2)

k follows.

Step 2.We shall prove thatTk(N), T̄k(N) are convergent. Using Proposition3.1, it is clear

that the optimal controller and optimal cost value of (3.5) subject to (1.1) are, respectively,

designed by

u�
k = …� (1)

k H(1)
k xk +

�
� (1)

k H(1)
k …� (2)

k H(2)
k

�
Exk,

J̄�
T (0,� ;u) = E

�
x�

0T0(N)x0
�

+ (Ex0)�T̄0(N)Ex0.
(4.5)

Accordingly, for anyN, it yields that

E
�
x�

0T0(N)x0
�

+ (Ex0)�T̄0(N)Ex0 � E
�
x�

0T0(N + 1)x0
�

+ (Ex0)�T̄0(N + 1)Ex0.

Let x0 �= 0,Ex0 = 0, thenT0(N) � T0(N + 1). Similarly, letx0 �= 0,Ex0 = x0, we haveT0(N) +

T̄0(N) � T0(N + 1) +T̄0(N + 1). Namely,T0(N), T0(N) + T̄0(N) increase with respect toN.

Next, we state thatT0(N), T0(N) + T̄0(N) are bounded. Since system (1.1) is L2-

stabilizable, there existsuk = Lxk + L̄Exk such that system (1.1) satis“eslimk
 +� E(x�
kxk) =

0. Notice that

(Exk)�Exk + E
�
(xk …Exk)�(xk …Exk)

�
= E

�
x�

kxk


, (4.6)

thus, limk
 +� (Exk)�Exk = 0. Resorting to [30, Lemma 4.1], we obtainE
� �

k=0(x�
kxk) < +� .

Using (4.6), we get
� �

k=0(Exk)�Exk < +� . On the other hand, noticingΓ̄ �= � , there exists

a constantb such that
� W(1) (S(1))�

S(1) 
 (1)



� bI,

� W(2) (S(2))�

S(2) 
 (2)



� bI. Hence, we claim that

J̄�
T (0,� ;u) � J̄

:= E
��

k=0

��
Exk

Euk

� � �
W (1) (S(1))�

S(1) 
 (1)

� �
Exk

Euk

�

+

�
xk …Exk

uk …Euk

� � �
W (2) (S(2))�

S(2) 
 (2)

� �
xk …Exk

uk …Euk

��

� E
��

k=0

��
Exk

(L + L̄)Exk

� � �
W (1) (S(1))�

S(1) 
 (1)

� �
Exk

(L + L̄)Exk

�

+

�
xk …Exk

L(xk …Exk)

� � �
W (2) (S(2))�

S(2) 
 (2)

� �
xk …Exk

L(xk …Exk)

��

� bcE
�
x�

0x0


.
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By (4.5), we have

E
�
x�

0T0(N)x0
�

+ (Ex0)�T̄0(N)Ex0 � bcE
�
x�

0x0


.

Let Ex0 = 0, we have 0� T0(N) � bcI. Similarly, letx0 = Ex0, we get 0� T0(N) + T̄0(N) �
bcI. Consequently,T0(N) and T0(N) + T̄0(N) are bounded. Furthermore,T0(N) and
T0(N) + T̄0(N) are convergent. Observe the time-invariance, we derive

lim
N
�

Tk(N) = lim
N
�

T0(N …k) = T, lim
N
�

T̄k(N) = lim
N
�

T̄0(N …k) = T̄ .

In this case,limN
� � (i)
k = � (i), limN
� H(i)

k = H(i), i = 1,2. Consequently, we deduce that
(T ,T̄ ) is the solution to the following NGAREs:

�
������

������

T = A�TA + � 2C�TC … [H(1)]�[� (1)]†H(1) + W (1),

T̄ = � 2C�TC̄ + � 2C̄�TC + � 2C̄�TC̄ + A�TĀ + Ā�TA + Ā�TĀ

+ (A + Ā)�T̄ (A + Ā) + [M(1)]�[� (1)]†M(1) … [H(2)]�[� 2]†H(2) + W (2) …W (1),

� (i) � 0, � (i)[� (i)]†H(i) = H(i), i = 1,2,

(4.7)

where

�
������

������

� (1) = B�TB + � 2D�TD + � (1),

H(1) = B�TA + � 2D�TC + M(1),

� (2) = (B+ B̄)�(T + T̄ )(B+ B̄) + � 2(D + D̄)�T (D + D̄) + � (2),

H(2) = (B+ B̄)�(T + T̄ )(A + Ā) + � 2(D + D̄)�T (C + C̄) + M(2).

Step 3.We shall proveT > 0, T̄ > 0. In view ofTk(N) � 0, T̄k(N) � 0, we get thatT � 0,
T̄ � 0. Speci“cally, suppose it does not hold. Seeing thatE(x�

0x0) = E(X�
0X0), then there

is X0 �= 0 such thatE(X�
0

�TX0) = 0 with �T = diag(T ,T + T̄ ). De“ne the Lyapunov function
candidate as

VT (k,xk) = E
�
(xk …Exk)�T (xk …Exk)

�
+ (Exk)�(T + T̄ )Exk � 0.

Using (4.7), it follows that

VT (k,xk) …VT (k + 1,xk+1)

= E
�
(xk …Exk)�� W (1) + L� 
 (1)L



(xk …Exk)

+ (Exk)�� W (2) + (L + L̄)�� 
 (1) + 
 (2)
 (L + L̄)
�
Exk

�

= E

�

X�
k

�
Q0

0Q̄

�

Xk

�

,

where

�
�

�
Q = W (1) + L� 
 (1)L + [S(1)]�L + L�S(1),

Q̄ = W (2) + (L + L̄)�
 (2)(L + L̄) + [S(2)]�(L + L̄) + (L + L̄)�S(2).
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According to Remark3.1, we haveQ � 0, Q̄ � 0; further, it is obtained that

VT (k,xk) …VT (k + 1,xk+1) = E

�

X�
k

�
Q 0

0 Q̄

�

Xk

�

:= E
�
X�

k
�QXk



� 0. (4.8)

Adding from 0 to N on both sides of (4.8), then

0 � E
N�

k=0

�
X�

k
�QXk



= E

�
X�

0
�TX0



…E

�
X�

N+1
�TXN+1



= …E

�
X�

N+1
�TXN+1



� 0.

Consequently,

�Q1/2Xk = 0, k � 0. (4.9)

Resorting to the method of [31, Theorem 4, Proposition 1], we get that the exact observ-
ability of system (A,Ā,C,C̄,Q1/2) is equivalent to the exact observability of the following
system:

�
�

�
Xk+1 = AXk + CXkwk,

Yk = �Q1/2Xk.

Here,

A =

�
A + BL 0

0 A + C + (B+ D)(L + L̄)

�

,

C =

�
Ā + B̄L Ā + C̄ + (B̄+ D̄)(L + L̄)

0 0

�

.

Thus, by (4.9), we getX0 = 0, which is contradiction. In summary,T > 0 andT + T̄ > 0
hold.

Step 4.From Theorem3.1, we seePk(N) = Tk(N) + �P, P̄k(N) = T̄k(N) + �P. Recall the con-
vergences ofPk(N), P̄k(N), thenP= T + �P, P̄= T̄ + �P. Besides, combining the arbitrariness
of �P, �P with T,T̄ > 0, we deriveP � �P, P̄ � �P, namely (P,P̄) is the maximal solution to
GAREs (3.2).

Su�ciency. Under (A2) and Γ̄ �= � , assume that GAREs (3.2) have a solution, we shall
prove that system (1.1) isL2-stabilizable. Following the proof of the necessity, we claim that
if GAREs (3.2) have a solution (P,P̄), then NGAREs (4.7) have a positive de“nite solution
(T ,T̄ ). In addition, P = T + �P, P̄ = T̄ + �P. Notice that K = L, K̄ = L̄, the stabilization of
system (1.1) with uk = Kxk + K̄Exk is equivalent to the stabilization of system (1.1) with
uk = Lxk + L̄Exk. Together with Remark3.1, (4.8) can be reformulated as

VT (k,xk) …VT (k + 1,xk+1) = E

	�
Exk

Euk

� � �
W (1) (S(1))�

S(1) 
 (1)

� �
Exk

Euk

�

+

�
xk …Exk

uk …Euk

� � �
W (2) (S(2))�

S(2) 
 (2)

� �
xk …Exk

uk …Euk

��

� 0,
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which implies thatVT (k,xk) is decreasing with respect tok. Along with VT (k,xk) � 0, we
can deduce thatVT (k,xk) is convergent. Adding fromm to m + N on both sides of the
above equation and taking limitation, we get

0 = lim
m
�

E
m+N�

k=m

��
Exk

Euk

� � �
W (1) (S(1))�

S(1) 
 (1)

� �
Exk

Euk

�

+

�
xk …Exk

uk …Euk

� � �
W (2) (S(2))�

S(2) 
 (2)

� �
xk …Exk

uk …Euk

��

.

By a time-shift, it yields that

0 � lim
m
�

E
�
x�

mTm(m + N)xm
�

+ lim
m
�

�
(Exm)�T̄m(m + N)Exm

�

= lim
m
�

E
�
(xm …Exm)�T0(N)(xm …Exm)

�
+ lim

m
�

�
(Exm)�� T0(N) + T̄0(N)



Exm

�
� 0.

We further obtain

lim
m
 +�

E
�
(xm …Exm)�(xm …Exm)

�
= 0, lim

m
 +�
(Exm)�Exm = 0,

hence,limm
 +� E(x�
mxm) = 0. Namely, system (1.1) is L2-stabilizable. Using Theorem4.1,

the optimal controller and optimal value can be designed as (4.1)…(4.2), respectively. �

Remark4.2 Our results extend and improve the ones in [16]. Besides, Theorem4.2makes
it clear that the solvability of GAREs (3.2) with inde“nite weighting matrices is equivalent
to the solvability of NGAREs (4.7) with positive semi-de“nite weighting matrices. Simul-
taneously, it also indicates that the stabilization problems with inde“nite weighting ma-
trices can be reduced to a positive semi-de“nite case. So to speak, these conclusions will
give us fresh ideas to consider the inde“nite MF-LQ optimal control problems, especially
to consider their stabilization problems.

Remark4.3 Theorem4.2presents the necessary and su�cient stabilization condition for
the inde“nite MF-LQ optimal control problem, while for most of previous works, stabi-
lization was the precondition for the inde“nite control problems. In other words, their
conclusions were only to discuss the existence of the stabilizing solution to the GAREs
based on the assumption of the stabilization.

5 Characterizing MF-LQ problem via SDP
In this section, we present some results with respect to the SDP problem. Meanwhile,
we establish the relations among the GAREs, the SDP, and the MF-LQ optimal control
problems.

Definition 5.1 Let a vectora = (a1,a2, . . . ,am)� � Rm and matricesF0,F1, . . . ,Fm � Tn be
given. The following optimization problem:

min a�x,

subject to F(x) = F0 +
m�

i=1

xiFi � 0,
(5.1)
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is called a SDP. Besides, the dual problem of SDP (5.1) is de“ned as

max …Tr(F0Z),

subject to Z � Tn, Tr(ZFi) = ai , i = 1,2, . . . ,m,Z � 0.

Speci“cally, we consider the following SDP problem:

max Tr(P) + Tr(P̄),

subject to (P,P̄) � Γ .
(5.2)

Theorem 5.1 A unique optimal solution is admitted to SDP problem(5.2), which is also

the maximal solution to GAREs(3.2).

Proof Let (P� ,P̄� ) be an optimal solution to SDP problem (5.2). In order to show that it is

indeed a maximal solution, denote

�
���

���

K1 = …(R+ B�P� B+ � 2D�P� D)†(B�P� A + � 2D�P� C + G�),

K2 = …[R+ R̄+ (B+ B̄)�(P� + P̄� )(B+ B̄) + � 2(D + D̄)�P� (D + D̄)]†

× [(B+ B̄)�(P� + P̄� )(A + Ā) + � 2(D + D̄)�P� (C + C̄) + G� + Ḡ�].

By a simple calculation, we have

�
���������

���������

(A + BK1)�P� (A + BK1) + � 2(C + DK1)�P� (C + DK1) +K�
1G� + GK1

= P� …Q …K�
1RK1,

(G� + Ḡ�)K2 + K�
2(G + Ḡ) + � 2(C + C̄ + DK2 + D̄K2)�P� (C + C̄ + DK2 + D̄K2)

+ (A + Ā + BK2 + B̄K2)�(P� + P̄� )(Ā + A + BK2 + B̄K2)

= P� + P̄� …Q …Q̄ …K�
2(R+ R̄)K2.

On the other hand,u� = K1xk +(K2 …K1)Exk is a stabilizing control. Following the proof of

[11, Theorem 6.7], it follows that (P� ,P̄� ) is the upper bound of the setΓ ; in other words,

(P� ,P̄� ) is the maximal solution. Furthermore, the uniqueness of the solution to SDP (5.2)

follows from the maximality. The proof is completed. �

Corollary 5.1 The following statements are equivalent: (i) Γ �= � ; (ii) There is a solution to

GAREs(3.2).

Besides,while either(i) or (ii) holds,GAREs(3.2) have a maximal solution(P� ,P̄� ),which

is the unique optimal solution to SDP problem(5.2).

Corollary 5.2 Let (A1) and Γ �= � hold, then ProblemB admits an optimal control uk =

K� xk + K̄� Exk, k � �N, and the optimal value is given as V(x0) = E(x�
0P� x0) + (Ex0)�P̄� Ex0.

Here, (P� ,P̄� ) is the maximal solution to GAREs(3.2), which is the unique optimal solution

to SDP problem(5.2).
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6 Numerical results
In this section, we give some numerical examples to illustrate our main results.

Example6.1 Consider system (1.1) and cost functional (1.2) with

A =

�
1.0 0.5

0.0 0.8

�

, Ā =

�
0.5 0.6

0.0 0.8

�

, B =

�
1.0 1.0

0.0 1.0

�

,

B̄ =

�
1.0 0.0

0.0 1.0

�

; C =

�
1.0 0.6

0.0 1.0

�

, C̄ =

�
1.0 0.0

0.4 1.0

�

,

D =

�
1.0 1.0

0.0 1.0

�

, D̄ =

�
1.0 0.0

0.5 0.6

�

; G =

�
1.0 0.0

0.0 1.0

�

,

Ḡ =

�
1.0 0.0

0.0 1.0

�

, R=

�
1.0 0.0

0.0 1.0

�

, R̄=

�
1.0 0.0

0.0 1.0

�

;

Q =

�
3.0000 0.0000

0.0000 2.8476

�

, Q̄ =

�
3.5845 0.3870

0.3870 2.9894

�

.

After running the calculation of the SDP theory via Matlab software, we obtain that

P� =

�
2 0

0 2

�

, P̄� =

�
3 0

0 3

�

.

Furthermore, we have

W (1) =

�
5 2.2

2.2 5.3476

�

, 
 (1) =

�
5 4

8 9

�

, S(1) =

�
4 5.8

8 11.6

�

,

W (2) =

�
21.1545 12.637

12.637 28.407

�

, 
 (2) =

�
30.5 15.6

15.6 34.12

�

, S(2) =

�
25.8 17.4

7.828 30.5

�

.

It is clear that Ker(
 (1)) 
 KerB � KerD, Ker(
 (2)) 
 Ker(B + B̄) � Ker(D + D̄). Using

Lemma2.1, it is easy to see
� W(i) (S(i))�

S(i) 
 (i)



� 0, i = 1,2. In other words,Γ̄ �= � . Thus, by The-

orem 4.2, we deduce that system (1.1) is L2-stabilizable, and the optimal controller is de-

signed by

uk = K� xk + K̄� Exk, k � �N, (6.1)

where

K� =

�
…1.0000 0.2552

0.000 …0.8690

�

, K̄� =

�
0.1631 …0.3057

0.0081 …0.0194

�

.

A curve ofE|xk|2 under control (6.1) is shown in Fig.1. As expected, the curve is conver-

gent.



Song and Liu Advances in Difference Equations        (2020) 2020:187 Page 23 of 27

Figure 1 Curve ofE|xk|2 with initial statex0 = […5 20]�

Example6.2 Consider system (1.1) and cost functional (1.2) with

A =

�
1.0 2

0.0 2.5

�

, Ā =

�
2.0 0.5

0.0 0.5

�

, B =

�
1.0 1.0

0.0 1.0

�

, B̄ =

�
1.0 0.0

0.0 1.0

�

;

C =

�
1.0 0.5

0.0 1.0

�

, C̄ =

�
1.0 0.0

0.5 1.0

�

, D =

�
2.0 1.0

0.0 2.0

�

, D̄ =

�
1.0 0.0

0.5 2.0

�

;

G =

�
1.0 0.0

0.0 1.0

�

, Ḡ =

�
1.0 0.0

0.0 1.0

�

, R=

�
…1.0 0.0

0.0 …1.0

�

,

R̄=

�
…1.0 0.0

0.0 …1.0

�

; Q =

�
3.2667 …1.0333

…1.0333 0.5667

�

, Q̄ =

�
6.3067 …2.3170

…2.3170 …3.1531

�

.

By virtue of SDP theory, we have

P� =

�
1 0

0 1

�

, P̄� =

�
4 0

0 4

�

.

Furthermore,

W (1) =

�
1 2.5

2.5 10.5

�

, 
 (1) =

�
4 3

3 6

�

, S(1) =

�
4 3

2 8

�

,

W (2) =

�
53.8234 36.1497

36.1497 41.6636

�

, 
 (2) =

�
27.25 15

15 40

�

, S(2) =

�
38.25 27.5

19 73

�

.

Similar to Example6.1, it is easy to verifyΓ̄ = � . In this case,

K� =

�
…1.2000 0.4000

0.2667 …1.5333

�

, K̄� =

�
…0.2393 …0.7526

…0.2019 0.3406

�

.

According to Theorem4.2, we know that system (1.1) is not L2-stabilizable. A curve of
E|xk|2 under control (6.1) is shown in Fig.2. As expected, the curve is not convergent.
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Figure 2 Curve ofE|xk|2 with initial statex0 = [15 0.1]�

To further illustrate Theorem 4.2, we give the following two examples as well.

Example6.3 Consider system (1.1) and cost functional (1.2) with

A = 1.2, Ā = 0.3, B = 0.5, B̄ = 0.1, C = 1, C̄ = 0.5,

D = 0.8, D̄ = 0.2; Q = 2, Q̄ = 1, R= 1, R̄= 1,

G = 1, Ḡ = 1, � 2 = 1, x0 � N(0,1).

Likewise, by virtue of the SDP theory, we deduce thatP� = 1.5625,P̄� = 0.7722. Then

W (1) = 4.25, 
 (1) = 2.390625, S(1) = 3.1875,

W (2) = 9.434, 
 (2) = 8.815575, S(2) = 6.44498.

Since Γ̄ �= � , by Theorem4.2, there is a unique optimal controller to stabilize system

(1.1); meanwhile, to minimize cost functional (1.2), the optimal controller is given as

uk = …1.3333xk … 0.1305Exk, k � 0. According to the optimal controller, the simulation

of the system state and the curve ofE|xk|2 are shown in Fig.3. As expected, the curve is

convergent.

Example6.4 Consider system (1.1) and cost functional (1.2) with

A = 2, Ā = 1, B = 2, B̄ = 1, C = 1, C̄ = 1,

D = …1, D̄ = 1; Q = 2, Q̄ = 2, R= 1, R̄= 1,

G = 1, Ḡ = 1, � 2 = 1, x0 � N(0,1).

By GAREs (3.2), we get thatP has two di�erent negative rootsP = …0.1604,P = …0.5670,

andP̄ has a negative root̄P= …0.1548. Then we have the following two sets of solutions:

W (1)
1 = 1.3584, 
 (1)

1 = 0.198, S(1)
1 = 0.6792,
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Figure 3 Curve ofE|xk|2 with initial statex0 � N(0,1)

Figure 4 Curve ofE|xk|2 with initial statex0 � N(0,1)

W (2)
1 = 1.249, 
 (2)

1 = …0.8368, S(2)
1 = …0.8368;

W (1)
2 = …0.835, 
 (1)

2 = …1.835, S(1)
2 = …0.701,

W (2)
2 = …4.0424, 
 (2)

2 = …4.4962, S(2)
2 = …4.4962.

In the above two cases,̄Γ = � . Furthermore, whenP = …0.1604, we can getK = …0.1027,

K̄ = …0.5975. Similarly, whenP = …0.5670, we getK = …1.2863,̄K = …19.0322. Thus, the

controllers are presented asuk = …0.1027xk … 0.5975Exk, uk = …1.2863xk … 19.0322Exk,

respectively. Simulation results for the curve ofE|xk|2 with the corresponding optimal

controller are shown as in Fig.4 and Fig.5, respectively. As expected, the curves are not

convergent.

7 Concluding remarks
We have investigated the exact observability of a linear stochastic time-invariant system in

this work. How to extend various de“nitions to the linear stochastic time-varying system

is a meaningful topic that merits further discussions. Compared with the time-invariant
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Figure 5 Curve ofE|xk|2 with initial statex0 � N(0,1)

system, de“ning the exact observability for the time-varying stochastic system is much

more di�cult and sophisticated. In addition, the necessary and su�cient stabilization con-

ditions also deserve to be systematically studied. Thus, we attempt to discuss the linear

time-varying system deeply in the future.
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