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Abstract
The paper addresses the optimal control and stabilization problems for the indefinite
discrete-time mean-field system over infinite horizon. Firstly, we show the
convergence of the generalized algebraic Riccati equations (GAREs) and establish
their compact form GARE. By dealing with the GARE, we derive the existence of the
maximal solution to the original GAREs along with the fact that the maximal solution
is the stabilizing solution. Then, the maximal solution is employed to design the
linear-quadratic (LQ) optimal controller and the optimal value of the control problem.
Specifically, we deduce that under the assumption of exact observability, the
mean-field system is L2-stabilizable if and only if the GAREs have a solution, which is
also the maximal solution. By semi-definite programming (SDP) method, the
solvability of the GAREs is discussed. Our results generalize and improve previous
results. Finally, some numerical examples are exploited to illustrate the validity of the
obtained results.
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1 Introduction
We are curious about the indefinite discrete-time mean-field LQ (MF-LQ) optimal control
problems over infinite horizon. The system equation is the following stochastic difference
equation (SDE):

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = (Axk + ĀExk + Buk + B̄Euk) + (Cxk + C̄Exk + Duk + D̄Euk)wk ,

k = 0, 1, . . . ,

x0 = ξ ,

(1.1)

where xk ∈ R
n and uk ∈ R

m are the state, control processes, respectively. E is the expec-
tation operator and {wk}k≥0 is a martingale difference sequence, defined on a complete
filtered probability space (Ω ,F, {Fk}k≥0, P), in the sense that E[wk|Fk] = 0, E[w2

k|Fk] = σ 2,
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where Fk is the σ -field generated by {ξ , w0, . . . , wk–1}, F0 = {∅,Ω}. The initial values ξ and
wk are assumed to be independent of each other. A, Ā, C, C̄ ∈ R

n×n and B, B̄, D, D̄ ∈ R
n×m

are given deterministic matrices. Indeed, system (1.1) is also regarded as a mean-field SDE
(MF-SDE). Mean-field theory has been developed to investigate the collective behaviors
owing to individuals’ mutual interactions in various physical and sociological dynamical
systems. This problem combines the mean-field theory with the LQ stochastic optimal
control (see [1, 2]).

Lately, the mean-field problems have made many constructive and significative applica-
tions in various fields of mathematical finance, statistical mechanics, games theory (see
[3]), especially in stochastic optimal control (see [4]). Some representative works in the
mean-field optimal control, to name a few, include Li and Liu [5], Ma and Liu [6–8]. It is
noteworthy that the optimal control problems of MF-LQ have received considerable at-
tention. With regard to continuous-time cases, Yong [9] studied LQ optimal control prob-
lems for mean-field stochastic differential equations by variational method and decoupling
technique; the same author in [10] systematically investigated the open-loop and closed-
loop equilibrium solutions for the time-inconsistency MF-LQ optimal control problems.
Subsequently, Huang et al. [11] generalized the results of Yong [9] to infinite horizon.

Nevertheless, discrete-time optimal control problems are more relevant to biomedical,
engineering, economic, operation research and optimizing complex technological prob-
lems, etc. Recently, Elliott et al. [12] formulated the finite horizon discrete-time MF-LQ
optimal control problem as an operator stochastic LQ optimal control problem. Later,
the same authors in [13] discussed the infinite horizon case. Ni et al. [14] considered the
indefinite mean-field stochastic LQ optimal control problem with finite horizon. More-
over, Song and Liu [15] derived the necessary and sufficient solvability condition of the
finite horizon MF-LQ optimal control problem. Specially, here it is worth mentioning that
Zhang et al. [16] presented the necessary and sufficient stabilization conditions of the MF-
LQ optimal control problem subject to system (1.1). Nevertheless, the stabilization results
in [16] mainly rely on a restrictive condition, namely

Q ≥ 0, Q + Q̄ ≥ 0, R ≥ 0, R + R̄ ≥ 0.

Indeed, it is a critical condition to study the MF-LQ optimal control problems. It is, there-
fore, natural to ask whether similar results can be derived if Q, Q̄, R, R̄ are just assumed to
be symmetric, which is of particular and significant mathematical interest.

Inspired by the above arguments, in this paper we consider the following cost functional
subject to system (1.1):

J(u, ξ ) = E

∞∑

k=0

[
x′

kQxk + (Exk)′Q̄Exk + u′
kRuk

+ (Euk)′R̄Euk + 2x′
kGuk + 2(Exk)′ḠEuk

]
. (1.2)

Here, the cost functional contains the explicitly correlative terms of state and control pro-
cesses, namely G �= 0 and Ḡ �= 0. More importantly, the weighting matrices Q, Q̄, R, R̄ are
just symmetric, which is distinctly different from [16].

To the best of our knowledge, the study on the necessary and sufficient stabilization
conditions of the discrete-time MF-LQ stochastic optimal control problems, especially
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with indefinite weighting matrices, is fairly scarce in the literature. Besides, the stabiliza-
tion properties have not been investigated systematically. In this paper, we design the LQ
optimal controller by means of the GAREs (see [17]), and we obtain the existence of the
maximal solution to the original GAREs by introducing another one. Then, we show that
the stabilizing solution is the maximal solution which is employed to present the optimal
value. Furthermore, under the assumption of exact observability (see [18, 19]), we derive
that the mean-field system is L2-stabilizable if and only if the GAREs have a solution, which
is also a maximal solution. Finally, we discuss the solvability of the GAREs by SDP method
(see [20–23]), and we establish the relations among the GAREs, the SDP, and the MF-LQ
optimal control problems.

The remainder of the paper is organized as follows. The next section gives the problem
formulation and preliminaries. Section 3 is devoted to studying the GAREs. In Sect. 4,
we discuss the solvability and stabilization for the MF-LQ optimal control problems. Sec-
tion 5 establishes the relations among the GAREs, the SDP, and the MF-LQ optimal con-
trol problems. A couple of numerical examples are given in Sect. 6 to illustrate our main
results. Section 7 gives some concluding remarks.

Most notations adopted in the paper are considerably standard as follows. A > 0/A ≥ 0
means A is strictly positive definite/ positive semi-definite. A′ denotes the transpose of
any matrix or vector A. B–1 stands for the inverse of real matrix B. dim(A)/R(A)/Ker(A)
is the dimension/rank/kernel of A. Tn represents the n × n symmetric matrix. Denote
by X the space of all Rn-valued square-integrable random variables. Let N = {0, 1, . . . , N},
Ñl = {l, l + 1, . . .}, Ñ0 = Ñ = {0, 1, 2, . . .}.

2 Problem formulation and preliminaries
In this paper, we study the infinite horizon MF-LQ optimal control problems. Indeed, to
make the problems meaningful, the infinite horizon solution also requires to guarantee
the closed-loop stability, which is interestingly different from the finite horizon cases. We
firstly introduce the admissible control set

U∞ =

{

u
∣
∣
∣uk ∈R

m, uk is Fk-measurable,E
∞∑

k=0

|uk|2 < ∞ and J(ξ , u) < ∞
}

.

For simplicity, system (1.1) is denoted by [A, Ā, B, B̄; C, C̄, D, D̄]. In addition, [A, Ā; C, C̄]
denotes [A, Ā, 0, 0; C, C̄, 0, 0], and [A; C] denotes [A, 0, 0, 0; C, 0, 0, 0].

The infinite horizon MF-LQ optimal control problem to be solved can be stated as fol-
lows.

Problem A For any ξ ∈X , find u∗ ∈ U∞ such that

J
(
ξ , u∗) = inf

u∈U∞
J(ξ , u) ≡ V (ξ ),

where u∗ is called an optimal control, and V (·) is called the value function of Problem A.

Definition 2.1 For a matrix A ∈ R
n×m, the Moore–Penrose inverse of A is defined to be

the unique matrix A† ∈ R
m×n such that

(i) AA†A = A, A†AA† = A†;
(ii) (AA†)′ = AA†, (A†A)′ = A†A.
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Definition 2.2 System [A, Ā, B, B̄; C, C̄, D, D̄] is called L2-asymptotically stable if, for any
ξ ∈X , limk→∞ E|xk|2 = 0.

Definition 2.3 ([24]) System [A, Ā, B, B̄; C, C̄, D, D̄] is called closed-loop L2-stabilizable if
there exists a pair (K, K̄) ∈ R

m×n × R
m×n such that, for any ξ ∈ X , the closed-loop sys-

tem

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = [(A + BK)xk + (Ā + (B + B̄)K̄ + B̄K)Exk]

+ [(C + DK)xk + (C̄ + (D + D̄)K̄ + D̄K)Exk]wk , k = 0, 1, 2, . . . ,

x0 = ξ ,

is L2-asymptotically stable. In this case, uk = Kxk + K̄Exk (k ∈ Ñ) is called the closed-loop
L2-stabilizer.

Definition 2.4 Consider the uncontrolled mean-field system

⎧
⎨

⎩

xk+1 = (Axk + ĀExk) + (Cxk + C̄Exk)ωk ,

Yk = Q
1/2

Xk ,
(2.1)

where Q =
( Q 0

0 Q+Q̄

)
and Xk =

( xk –Exk
Exk

)
. System (2.1) (or (A, Ā, C, C̄,Q1/2), for short) is said

to be exactly observable if, for any N ≥ 0,

Yk = 0, 0 ≤ k ≤ N ⇒ x0 = 0.

Lemma 2.1 (Schur’s lemma) Let matrices M = M′, R = R′, and N be given with appropriate
dimensions. Then the following statements are equivalent:

(i) M – NR–1N ′ ≥ (resp. >) 0.
(ii)

( M N
N ′ R

) ≥ (resp. >) 0.
(iii)

( R N ′
N M

) ≥ (resp. >) 0.

In what follows, we make two assumptions.
(A1) [A, Ā, B, B̄; C, C̄, D, D̄] is closed-loop L2-stabilizable.
(A2) (A, Ā, C, C̄,Q1/2) is exactly observable.
We establish the following maximum principle which is the base to deriving the main

results. Define

JN = E

N∑

k=0

[
x′

kQxk + (Exk)′Q̄Exk + u′
kRuk + (Euk)′R̄Euk + 2x′

kGuk

+ 2(Exk)′ḠEuk
]

+ E
(
x′

N+1PN+1xN+1
)

+ (ExN+1)′P̄N+1ExN+1, (2.2)

where PN+1, P̄N+1 ∈ T
n. The corresponding admissible control set is given as

UN =

{

(u0, . . . , uN )
∣
∣
∣uk ∈R

m, uk is Fk-measurable,E
N∑

k=0

|uk|2 < ∞ and JN < ∞
}

.



Song and Liu Advances in Difference Equations        (2020) 2020:187 Page 5 of 27

Proposition 2.1 (Maximum principle) The general maximum principle for minimizing
(2.2) is presented as

0 = E

{

Ruk + R̄Euk + G′xk + Ḡ′
Exk +

(
B + ωkD

0

)′
βk

+E

[(
B̄ + ωkD̄

B + B̄

)′
βk

]
∣
∣
∣Fk

}

, (2.3)

where βk satisfies

βk–1 = E

{(
Qxk + Q̄Exk + Guk + ḠEuk

0

)

+

(
A + ωkC Ā + ωkC̄

0 A + Ā

)′
βk

∣
∣
∣Fk

}

, (2.4)

with the terminal condition

βN =

(
PN+1 P̄N+1

0 0

)(
xN+1

ExN+1

)

. (2.5)

Proof Denote

xk+1 := gk(xk , uk ,Exk ,Euk ,ωk), (2.6)

Exk+1 = E
[
gk(xk , uk ,Exk ,Euk ,ωk)

]
:= hk(xk , uk ,Exk ,Euk), (2.7)

JN := E

{

ψ(xN+1,ExN+1) +
N∑

k=0

Sk(xk , uk ,Exk ,Euk)

}

. (2.8)

For any uk , δuk ∈ UN , ε ∈ (0, 1), we have uε
k = uk + εδuk ∈ UN . By (2.8), we get that

δJN = E

N∑

k=0

[
Sk

xk
δxk + Sk

Exk
δExk + Sk

uk
εδuk + Sk

Euk
εδEuk

]

+ E{ψxN+1δxN+1 + ψExN+1δExN+1} + O
(
ε2)

= E

{ N∑

k=1

[
Sk

xk
+ ESk

Exk

]
δxk +

N∑

k=0

[
Sk

xk
+ ESk

Exk

]
εδuk

+ [ψxN+1 + EψExN+1 ]δxN+1

}

+ O
(
ε2).

Combining (2.6) with (2.7), for δxk = xε
k – xk , it is obtained that

(
δxk+1

δExk+1

)

=

(
gk

xk
gk
Exk

hk
xk

hk
Exk

)(
δxk

δExk

)

+

(
gk

uk
gk
Euk

hk
uk

hk
Euk

)(
εδuk

εδEuk

)

.
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Seeing that δx0 = δEx0 = 0, it yields that

δxk+1 = gk
xk

δxk + gk
uk

εδuk + gk
Exk

δExk + gk
Euk

εδEuk

= G̃x(k, 0)

(
δx0

δEx0

)

+
k∑

l=0

G̃x(k, l + 1)

(
gl

ul
gl
Eul

hl
ul

hl
Eul

)(
εδul

εδEul

)

=
k∑

l=0

G̃x(k, l + 1)

(
gl

ul

hl
ul

)

εδul +
k∑

l=0

G̃x(k, l + 1)

(
gl
Eul

hl
Eul

)

εδEul,

where

gk
xk

=
∂gk

∂xk
, gk

uk
=

∂gk

∂uk
, gk

Exk
=

∂gk

∂Exk
, gk

Euk
=

∂gk

∂Euk
,

hk
xk

=
∂hk

∂xk
, hk

uk
=

∂hk

∂uk
, hk

Exk
=

∂hk

∂Exk
, hk

Euk
=

∂hk

∂Euk
,

Sk
xk

=
∂Sk

∂xk
, Sk

Exk
=

∂Sk

∂Exk
, Sk

uk
=

∂Sk

∂uk
, Sk

Euk
=

∂Sk

∂Euk
,

ψxN+1 =
∂ψ(xN+1,ExN+1)

∂xN+1
, ψExN+1 =

∂ψ(xN+1,ExN+1)
∂ExN+1

,

G̃x(k, k + 1) =
(

In 0
)

, G̃x(k, l) =
(

gk
xk

gk
Exk

)
g̃k–1

xk–1
· · · g̃l

xl
,

g̃l
xl

=

(
gl

xl
gl
Exl

hl
xl

hl
Exl

)

, l = 0, . . . , k, k = 0, . . . , N .

Consequently,

δJN = E

{

G(N + 1, N)εδuN +
N–1∑

l=0

G(l + 1, N)εδul

}

+ O
(
ε2)

= E

{

E
[
G(N + 1, N)|FN

]
εδuN +

N–1∑

l=0

E
[
G(l + 1, N)|Fl

]
εδul

}

+ O
(
ε2),

where

G(N + 1, N) = [ψxN+1 + EψExN+1 ]gN
uN

+ E
[
(ψxN+1 + EψExN+1 )gN

EuN

]
+ SN

uN
+ ESN

EuN
,

G(l + 1, N) = [ψxN+1 + EψxN+1 ]G̃x(N , l + 1)

(
gl

ul

hl
ul

)

+ Sl
ul

+ ESl
Eul

+ E

{

(ψxN+1 + EψExN+1 )G̃x(N , l + 1)

(
gl
Eul

hl
Eul

)}

+
N∑

k=l+1

(
Sk

xk
+ ESk

Exk

)
G̃x(k – 1, l + 1)

(
gl

ul

hl
ul

)

+ E

{ N∑

k=l+1

(
Sk

xk
+ ESk

Exk

)
G̃x(k – 1, l + 1)

(
gl
Eul

hl
Eul

)}

.
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Hence, the maximum principle can be written as

0 = E
[
G(N + 1, N)|FN

]
, a.s., (2.9)

0 = E
[
G(l + 1, N)|Fl

]
, l = 0, . . . , N – 1, a.s. (2.10)

Furthermore, we shall show that (2.3)–(2.5) are equivalent to (2.9)–(2.10). Using (2.3)–
(2.5), we can immediately get that the maximum principle can be reformulated as

0 = E

{
(
Sk

uk

)′ + E
(
Sk
Euk

)′ +

(
gk

uk

hk
uk

)′
βk + E

[(
gk
Euk

hk
Euk

)′
βk

]
∣
∣
∣Fk

}

, (2.11)

βk–1 = E

{(
In

0

)
(
Sk

xk
+ ESk

Exk

)′ +
(
g̃k

xk

)′
βk|Fk

}

, k = 0, . . . , N , (2.12)

βN =

(
ψ ′

xN+1
+ Eψ ′

ExN+1

0

)

. (2.13)

Indeed, adding (2.13) to (2.11) and for k = N , we have

E
{(

SN
uN

)′ + E
(
SN
EuN

)′ +
(
gN

uN

)′(ψxN+1 + EψExN+1 )′

+ E
[(

gN
EuN

)′(ψxN+1 + EψExN+1 )′
]|FN

}
= 0,

which is exactly (2.9). Furthermore, by (2.12)–(2.13), we derive

βk–1 = E

{ N∑

j=k

G̃′
x(j – 1, k)

(
Sj

xj
+ ESj

Exj

)′ + G̃′
x(N , k)(ψxN+1 + EψExN+1 )′

∣
∣
∣Fk

}

. (2.14)

Combining (2.3) with (2.14), it follows that

0 = E

⎧
⎨

⎩

(
Sk

uk
+ ESk

Euk

)′ +
N∑

j=k+1

(
gk

uk

hk
uk

)′
[
G̃′

x(j – 1, k + 1)
(
Sj

xj
+ ESj

Exj

)′]

+

(
gk

uk

hk
uk

)′
[
G̃′

x(N , k + 1)(ψxN+1 + EψExN+1 )′
]
}

+ E

⎧
⎨

⎩

N∑

j=k+1

(
gk
Euk

hk
Euk

)′
[
G̃′

x(j – 1, k + 1)
(
Sj

xj
+ ESj

Exj

)′]
⎫
⎬

⎭

+ E

{(
gk
Euk

hk
Euk

)′
[
G̃′

x(N , k + 1)(ψxN+1 + EψExN+1 )′
]∣∣
∣Fk

}

, k = 0, . . . , N ,

which is exactly (2.10). The proof is completed. �

Remark 2.1 Compared with most of previous works, the maximum principle for MF-LQ
optimal control problem was based on the mean-field backward stochastic differential
equation (see [25, 26]), while Proposition 2.1 provides a convenient calculation method
and can be reduced to the standard stochastic LQ case.
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3 GAREs
In this section, we present several results about the GAREs which play a key role in deriving
our main results. Now, we introduce the following GAREs:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pk = Q + A′Pk+1A + σ 2C′Pk+1C – [M(1)
k ]′[ρ(1)

k ]†M(1)
k ,

P̄k = Q̄ + σ 2C′Pk+1C̄ + σ 2C̄′Pk+1C + σ 2C̄′Pk+1C̄ + A′Pk+1Ā + Ā′Pk+1A

+ Ā′Pk+1Ā + (A + Ā)′P̄k+1(A + Ā) + [M(1)
k ]′[ρ(1)

k ]†M(1)
k – [M(2)

k ]′[ρ(2)
k ]†M(2)

k ,

ρ
(i)
k ≥ 0, ρ

(i)
k [ρ(i)

k ]†M(i)
k = M(i)

k , i = 1, 2,

(3.1)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ
(1)
k = B′Pk+1B + σ 2D′Pk+1D + R,

M(1)
k = B′Pk+1A + σ 2D′Pk+1C + G′,

ρ
(2)
k = (B + B̄)′(Pk+1 + P̄k+1)(B + B̄) + σ 2(D + D̄)′Pk+1(D + D̄) + R + R̄,

M(2)
k = (B + B̄)′(Pk+1 + P̄k+1)(A + Ā) + σ 2(D + D̄)′Pk+1(C + C̄) + G′ + Ḡ′.

Definition 3.1 GAREs (3.1) are said to be solvable if ρ
(i)
k [ρ(i)

k ]†M(i)
k = M(i)

k , i = 1, 2, are sat-
isfied for k ∈N.

Motivated by [27] of Ait Rami et al. (2002), we denote

Γ :=

{

(P�, P̄�) =
(
P′

�, P̄′
�

)∣∣
∣

(
W (i) (S(i))′

S(i) λ(i)

)

≥ 0, i = 1, 2

}

,

Γ̄ :=

{

(P�, P̄�) =
(
P′

�, P̄′
�

)∣∣
∣

(
W (i) (S(i))′

S(i) λ(i)

)

≥ 0, Ker
(
λ(i)) ⊆ �(i), i = 1, 2

}

.

Here, �(1) = KerB ∩ KerD, �(2) = Ker(B + B̄) ∩ Ker(D + D̄), and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (1) = Q + A′P�A + σ 2C′P�C – P�,

λ(1) = R + B′P�B + σ 2D′P�D,

S(1) = B′P�A + σ 2D′P�C + G′,

W (2) = Q + Q̄ + σ 2(C + C̄)′P�(C + C̄) + σ 2(A + Ā)′(P� + P̄�)(A + Ā) – P� – P̄�,

λ(2) = (B + B̄)′(P� + P̄�)(B + B̄) + σ 2(D + D̄)′P�(D + D̄) + R + R̄,

S(2) = (B + B̄)′(P� + P̄�)(A + Ā) + σ 2(D + D̄)′P�(C + C̄) + G′ + Ḡ′.

Theorem 3.1 If Γ �= ∅, then for any terminal value (PN+1, P̄N+1) = (P̂, P̌) ∈ Γ , GAREs (3.1)
are solvable and converge to the following GAREs:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P = Q + A′PA + σ 2C′PC – [M(1)]′[ρ(1)]†M(1),

P̄ = Q̄ + A′PĀ + Ā′PA + Ā′PĀ + σ 2C′PC̄ + σ 2C̄′PC + σ 2C̄′PC̄

+ (A + Ā)′P̄(A + Ā) + [M(1)]′[ρ(1)]†M(1) – [M(2)]′[ρ(2)]†M(2),

ρ(i) ≥ 0, ρ(i)[ρ(i)]†M(i) = M(i), i = 1, 2,

(3.2)
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where ρ(i), M(i) are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ(1) = B′PB + σ 2D′PD + R,

M(1) = B′PA + σ 2D′PC + G′,

ρ(2) = (B + B̄)′(P + P̄)(B + B̄) + σ 2(D + D̄)′P(D + D̄) + R + R̄,

M(2) = (B + B̄)′(P + P̄)(A + Ā) + σ 2(D + D̄)′P(C + C̄) + G′ + Ḡ′.

Proof For any (P̂, P̌) ∈ Γ , define the new GAREs (NGAREs)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tk = A′Tk+1A + σ 2C′Tk+1C – [H (1)
k ]′[α(1)

k ]†H (1)
k + W (1),

T̄k = σ 2C′Tk+1C̄ + σ 2C̄′Tk+1(N)C + σ 2C̄′Tk+1C̄ + A′Tk+1Ā

+ Ā′Tk+1A + Ā′Tk+1Ā + (A + Ā)′T̄k+1(A + Ā)

+ [H (1)
k ]′[α(1)

k ]†H (1)
k – [H (2)

k ]′[α2
k ]†H (2)

k + W (2) – W (1),

α
(i)
k ≥ 0, α

(i)
k [α(i)

k ]†H (i)
k = H (i)

k , i = 1, 2,

(3.3)

where TN+1 = T̄N+1 = 0 and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α
(1)
k = B′Tk+1B + σ 2D′Tk+1D + λ(1),

H (1)
k = B′Tk+1A + σ 2D′Tk+1C + S(1),

α
(2)
k = (B + B̄)′(Tk+1 + T̄k+1)(B + B̄) + σ 2(D + D̄)′Tk+1(D + D̄) + λ(2),

H (2)
k = (B + B̄)′(Tk+1 + T̄k+1)(A + Ā) + σ 2(D + D̄)′Tk+1(C + C̄) + S(2).

(3.4)

The corresponding new cost functional is given by

J̄T (l, ξ ; u) := E

N∑

k=l

{(
Exk

Euk

)′ (
W (1) (S(1))′

S(1) λ(1)

)(
Exk

Euk

)

+

(
xk – Exk

uk – Euk

)′ (
W (2) (S(2))′

S(2) λ(2)

)(
xk – Exk

uk – Euk

)}

≥ 0. (3.5)

To make the time horizon N specific in the finite horizon MF-LQ problem, we denote Tk ,
T̄k in (3.3) as Tk(N), T̄k(N). Set

V (l, ξ ) = E
[
x′

lTl(N)xl
]

+ (Exl)′T̄l(N)Exl, (3.6)

where xl = ξ . According to (3.5), for l1 < l2, we get

Tl1 (N) ≥ Tl2 (N), Tl1 (N) + T̄l1 (N) ≥ Tl2 (N) + T̄l2 (N). (3.7)

Seeing the time-invariance of the coefficient matrices, it is obtained that Tl(N) = T0(N –
l), T̄l(N) = T̄0(N – l). Combining (3.5) with (3.6), for any x0 = ξ ∈ X and any stabilizing
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controller uk = Lxk + L̄Exk , it follows that

E
[
x′

0T0(N – l)x0
]

+ (Ex0)′T̄0(N – l)Ex0

≤ E

N–l∑

k=0

{(
Exk

(L + L̄)Exk

)′ (
W (1) (S(1))′

S(1) λ(1)

)(
Exk

(L + L̄)Exk

)

+

(
xk – Exk

L(xk – Exk)

)′ (
W (2) (S(2))′

S(2) λ(2)

)(
xk – Exk

L(xk – Exk)

)}

≤ cE
N–l∑

k=0

|xk|2, (3.8)

where c > 0 is a constant. Selecting x0 ∈ R
n, we claim that, for any N , l,

x′
0
[
T0(N – l) + T̄0(N – l)

]
x0 < ∞. (3.9)

Meanwhile, let x0 = ϕδ with ϕ ∈ R
n and P(δ = –1) = P(δ = 1) = 1

2 . By virtue of (3.8), we
obtain

E
[
(x0 – Ex0)′Tl(N)(x0 – Ex0)

]
= ϕ′T0(N – l)ϕ < ∞. (3.10)

From (3.7) and (3.9)–(3.10), we get

lim
l→–∞

Tl(N) = lim
N–l→∞

T0(N – l) = C1, lim
l→–∞

T̄l(N) = lim
N–l→∞

T̄0(N – l) = C̄1.

Here, C1, C̄1 are bounded. Taking l → –∞ and letting Pk = Tk + P̂, P̄k = T̄k + P̌, then Pk ,
P̄k increase with respect to k, and (Pk , P̄k) converges to (P, P̄) with (P, P̄) satisfying GAREs
(3.2). �

Remark 3.1 In view of the regular conditions in (3.3), we have

[
H (1)

k
]′[

α
(1)
k

]†H (1)
k = –

[
H (1)

k
]′Lk – L′

kH (1)
k – L′

kα
(1)
k Lk ,

[
H (2)

k
]′[

α
(2)
k

]†H (2)
k = –

[
H (2)

k
]′(Lk + L̄k) – (Lk + L̄k)′H (2)

k – (Lk + L̄k)′α(2)
k (Lk + L̄k),

where Lk , L̄k satisfy

Lk = –
[
α

(1)
k

]†H (1)
k , L̄k = –

[
α

(2)
k

]†H (2)
k +

[
α

(1)
k

]†H (1)
k . (3.11)

Besides,

Tk = Q + A′Tk+1A + σ 2C ′Tk+1C,

Tk + T̄k = Q̄ + Ā′(Tk+1 + T̄k+1)Ā + σ 2C̄ ′Tk+1C̄,

where

A = A + BLk , Ā = A + Ā + (B + B̄)(Lk + L̄k),
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C = C + DLk , C̄ = C + C̄ + (D + D̄)(Lk + L̄k),

Qk = W (1) + L′
kλ

(1)Lk +
[
S(1)]′Lk + L′

kS(1) =
(

I L′
k

)
(

W (1) (S(1))′

S(1) λ(1)

)(
I
Lk

)

≥ 0,

Q̄k = W (2) + (Lk + L̄k)′λ(2)(Lk + L̄k) +
[
S(2)]′(Lk + L̄k) + (Lk + L̄k)′S(2)

=
(

I L′
k + L̄′

k

)
(

W (2) (S(2))′

S(2) λ(2)

)(
I

Lk + L̄k

)

≥ 0.

Proposition 3.1 Under Γ �= ∅, for NGAREs (3.3) with the terminal conditions TN+1(N) =
T̄N+1(N) = 0, assume that α

(i)
k [α(i)

k ]†H (i)
k = H (i)

k , i = 1, 2. Then the optimal controller is de-
signed as u�

k = Lkxk + L̄kExk , where Lk , L̄k are given as (3.11), and the optimal value is
derived by

J̄∗
T (0, ξ ; u) = E

[
x′

0T0(N)x0
]

+ (Ex0)′T̄0(N)Ex0.

Proof Denote

J̄(k) := E

N∑

j=k

[
x′

jW
(1)xj + (Exj)′

(
W (2) – W (1))

Exj + u′
jλ

(1)uj + (Euj)′
(
λ(2) – λ(1))

Euj

+ 2x′
j
(
S(1))′uj + 2(Exj)′

(
S(2) – S(1))′

Euj
]
,

let k = N , by Γ �= ∅, it yields that

J̄(N) = E

{(
ExN

EuN

)′ (
W (2) (S(2))′

S(2) λ(2)

)(
ExN

EuN

)

+

(
xN – ExN

uN – EuN

)′ (
W (1) (S(1))′

S(1) λ(1)

)(
xN – ExN

uN – EuN

)}

= E
[
(uN – EuN )′α(1)

N (uN – EuN )
]

+ (EuN )′α(2)
N EuN ≥ 0. (3.12)

Indeed, ifEuN = 0, uN �= 0, then J̄(N) = E[u′
Nα

(1)
N uN ] > 0; further, we have α

(1)
N > 0. Similarly,

if uN = EuN �= 0, we have α
(2)
N > 0. Using the maximum principle in Proposition 2.1, it

follows that

E

{(
xk

Exk

)′
βk–1 –

(
xk+1

Exk+1

)′
βk

}

= E

{(
xk

Exk

)′ (
W (1)xk + (W (2) – W (1))Exk + (S(1))′uk + (S(2) – S(1))′Euk

0

)

–

(
xk

Exk

)′ (
A + ωkC Ā + ωkC̄

0 A + Ā

)′
βk

+

(
xk

Exk

)′
E

[(
A + ωkC Ā + ωkC̄

0 A + Ā

)′
βk

∣
∣
∣Fk

]
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– u′
k

(
B + ωkD

0

)′
βk – u′

kE

[(
B̄ + ωkD̄

B + B̄

)′
βk

]}

= E
[
x′

kW (1)xk + (Exk)′
(
W (2) – W (1))

Exk + u′
kλ

(1)uk + (Euk)′
(
λ(2) – λ(1))

Euk

+ 2x′
k
(
S(1))′uk + 2(Exk)′

(
S(2) – S(1))′

Euk
]
.

Adding from k = l + 1 to k = N on both sides of the above equation, we obtain

E

[(
xl+1

Exl+1

)′
βl – x′

N+1TN+1xN+1 – (ExN+1)′T̄N+1ExN+1

]

= E

N∑

k=l+1

[
x′

kW (1)xk + (Exk)′
(
W (2) – W (1))

Exk + u′
kλ

(1)uk + (Euk)′
(
λ(2) – λ(1))

Euk

+ 2x′
k
(
S(1))′uk + 2(Exk)′

(
S(2) – S(1))′

Euk
]
.

Furthermore,

J̄(l) = E

N∑

k=l+1

[
x′

kW (1)xk + (Exk)′
(
W (2) – W (1))

Exk + u′
kλ

(1)uk + (Euk)′
(
λ(2) – λ(1))

Euk

+ 2x′
k
(
S(1))′uk + 2(Exk)′

(
S(2) – S(1))′

Euk
]

+ E
[
x′

lW
(1)xl + (Exl)′

(
W (2) – W (1))

Exl

+ 2x′
k
(
S(1))′uk + 2(Exk)′

(
S(2) – S(1))′

Euk + u′
lλ

(1)ul + (Eul)′
(
λ(2) – λ(1))

Eul
]

= E

[

x′
lW

(1)xl + (Exl)′
(
λ(2) – λ(1))

Exl + u′
lλ

(1)ul + (Eul)′
(
λ(2) – λ(1))

Eul

+2x′
l
(
S(1))′ul + 2(Exl)′

(
S(2) – S(1))′

Eul +

(
xl+1

Exl+1

)′
βl

]

= E
[
x′

lTl(N)xl
]

+ (Exl)′T̄l(N)Exl +
[
Eul – (Ll + L̄l)Exl

]′
α

(2)
l

[
Eul – (Ll + L̄l)Exl

]

+ E
{[

ul – Eul – Ll(xl – Exl)
]′
α

(1)
l

[
ul – Eul – Ll(xl – Exl)

]}
.

Now we prove α
(1)
l > 0 and α

(2)
l > 0. Let xl = 0,

J̄(l) = E
[
(ul – Eul)′α(1)

l (ul – Eul) + (Eul)′α(2)
l Eul

]
,

then for any ul �= 0, J̄(l) > 0. Following the discussion of (3.12), it implies that α
(1)
l > 0 and

α
(2)
l > 0. Namely, α(1)

k ≥ 0, α(2)
k ≥ 0 for k ≥ 0. Furthermore,

J̄T (0, ξ ; u)

= E

N∑

k=0

{[
uk – Euk – Lk(xk – Exk)

]′
α

(1)
k

[
uk – Euk – Lk(xk – Exk)

]}
+ E

[
x′

0T0(N)x0
]

+ E

N∑

k=0

[
Euk – (Lk + L̄k)Exk

]′
α

(2)
k

[
Euk – (Lk + L̄k)Exk

]
+ (Ex0)′T̄0(N)Ex0.

Therefore, J̄∗
T (0, ξ ; u) = E[x′

0T0(N)x0] + (Ex0)′T̄0(N)Ex0. The proof is completed. �
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Generally speaking, the uniqueness of the solution to the GAREs is not guaranteed.
Next, we shall focus on the properties of the maximal solution and its relation with the
stabilizing solution.

Definition 3.2 A solution of GAREs (3.2) is called the maximal solution, denoted by
(P∗, P̄∗), if for any solution (P, P̄) of GAREs (3.2), P∗ ≥ P, P̄∗ ≥ P̄ hold.

By Definition 3.2, it is clear that the maximal solution must be unique if it exists.

Definition 3.3 ([13]) A solution (P, P̄) of GAREs (3.2) is called a stabilizing solution if the
closed-loop control

uk = –
[
ρ(2)]†M(2)

Exk –
[
ρ(1)]†M(1)(xk – Exk), k ∈ Ñ,

stabilizes the mean-field system (1.1).

Now, we introduce a compact form of GAREs (3.2). Let P̃ =
( P+P̄ 0

0 P

)
, then

⎧
⎨

⎩

P̃ = Q̃ + A′
1P̃A1 + C′

1P̃C1 + C′
2P̃C2 – M′ρ†M,

ρ ≥ 0, ρρ†M – M = 0,
(3.13)

where

⎧
⎨

⎩

M = B′
1P̃A1 + σ 2D′

1P̃C1 + σ 2D′
2P̃C2 + G̃′,

ρ = R̃ + B′
1P̃B1 + σ 2D′

1P̃D1 + σ 2D′
2P̃D2,

with

R̃ =

(
R + R̄ 0

0 R

)

, Q̃ =

(
Q + Q̄ 0

0 Q

)

, G̃ =

(
G + Ḡ 0

0 G

)

,

A1 =

(
A + Ā 0

0 A

)

, B1 =

(
B + B̄ 0

0 B

)

, C1 =

(
0 0
0 C

)

,

C2 =

(
0 0

C + C̄ 0

)

, D1 =

(
0 0
0 D

)

, D2 =

(
0 0

D + D̄ 0

)

.

By considering GARE (3.13), we can immediately show the existence of the maximal so-
lution to GAREs (3.2).

Proposition 3.2 Suppose that GAREs (3.2) and GARE (3.13) have the maximal solutions
and the stabilizing solutions, then the following statements hold.

(i) P̃∗ = diag{P∗ + P̄∗, P∗} is the maximal solution to GARE (3.13) if and only if (P∗, P̄∗)
is the maximal solution to GAREs (3.2).

(ii) P̃ = diag{P + P̄, P} is a stabilizing solution to GARE (3.13) if and only if (P, P̄) is the
stabilizing solution to GAREs (3.2).
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Proof (i) It is clear.
(ii) Seeing that ρ†M =

( [ρ(2)]†M(2) 0
0 [ρ(1)]†M(1)

)
and resorting to the method in

[13, Lemma 5.1], {νk = –ρ†M, k ∈ Ñ} is a stabilizing control of the following system:

⎧
⎨

⎩

yk+1 = (A1yk + B1νk) + (C1yk + D1νk)ϕk + (C2yk + D2νk)θk , k ∈ Ñ,

y0 = τ ,

where ϕ = {ϕk , k ∈ Ñ} and θ = {θk , k ∈ Ñ} are two mutually independent martingale dif-
ference sequences if and only if {uk = –[ρ(2)]†M(2)

Exk – [ρ(1)]†M(1)(xk – Exk), k ∈ Ñ} is a
stabilizing control of (1.1). Thus, the conclusion holds. �

Proposition 3.3 If Γ �= ∅ and (A1) are satisfied, then a stabilizing solution to GARE (3.13)
is the maximal solution.

Proof Let z = (z′
1 z′

2 z′
3 z′

4)′ ∈R
2(n+m), z1, z3 ∈R

n, z2, z4 ∈R
m, we get that

z′
(

Q̃ + A′
1P̃�A1 + C′

1P̃�C1 + C′
2P̃�C2 M′

M ρ

)

z

= z′
1
[
M(2)]′[

ρ(2)]†M(2)z1 + z′
1
[
M(2)]′z3 + z′

3
[
M(2)]z1 + z′

3
[
ρ(2)]z3

+ z′
2
[
M(1)]′[

ρ(1)]†M(1)z2 + z′
2
[
M(1)]′z4 + z′

4
[
M(1)]′z2 + z′

4
[
ρ(1)]z4

=

(
z1

z3

)′ (
W (2) (S(2))′

S(2) λ(2)

)(
z1

z3

)

+

(
z2

z4

)′ (
W (1) (S(1))′

S(1) λ(1)

)(
z2

z4

)

,

thus, it immediately yields that

Γ =

{

(P�, P̄�) =
(
P′

�, P̄′
�

)∣∣
∣

(
Q̃ + A′

1P̃�A1 + C′
1P̃�C1 + C′

2P̃�C2 M′

M ρ

)

≥ 0

}

.

Then, by the method in [28, Theorem 5.3.1] of Damn (2004), and [29] of Abou-Kandil et al.
(2003). This statement is standard due to the space limitations, here we omit the proof. �

Corollary 3.1 If Γ �= ∅ and (A1) are satisfied, then the following statements hold.
(i) GAREs (3.2) admit at most one stabilizing solution.

(ii) If there is (P�, P� + P̄�) such that
( W (i) (S(i))′

S(i) λ(i)

)
> 0, i = 1, 2, then GAREs (3.2) admit a

stabilizing solution.

Proof (i) Combining Propositions 3.2 with 3.3 and noticing the uniqueness of the maximal
solution, we could immediately get the result.

(ii) We could resort to the method in [30, Theorem 4.3] of Ait Rami et al. (2001). Owing
to the space limitations, here we omit the proof. �

4 MF-LQ optimal control
Now, we return to the infinite horizon stochastic MF-LQ optimal control problems.
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Theorem 4.1 If Γ �= ∅ and (A1) are satisfied, then Problem A has an optimal control

uk = –
[(

ρ(2))∗]†[M(2)]∗
Exk –

[(
ρ(1))∗]†[M(1)]∗(xk – Exk), k ∈ Ñ, (4.1)

and the optimal value is given by

V (x0) = E
(
x′

0P∗x0
)

+ (Ex0)′P̄∗
Ex0. (4.2)

Here, (P∗, P̄∗) is the maximal solution to GAREs (3.2), and (ρ(i))∗, (M(i))∗ (i = 1, 2) are those
in Theorem 3.1 with (P, P̄) replaced by (P∗, P̄∗).

Proof By means of completing the squares, it yields that

J(ξ , u) = E

∞∑

k=0

{
(xk – Exk)′

{
Q + A′P∗A + σ 2C′P∗C –

[(
M(1))∗]′[(

ρ(1))∗]†[M(1)]∗ – P∗}

× (xk – Exk) +
{

uk – Euk +
[(

ρ(1))∗]†[M(1)]∗(xk – Exk)
}′(

ρ(1))∗

× {
uk – Euk +

[(
ρ(1))∗]†[M(1)]∗(xk – Exk)

}

+
{
Euk +

[(
ρ(2))∗]†[M(2)]∗

Exk
}′(

ρ(2))∗

× {
Euk +

[(
ρ(2))∗]†[M(2)]∗

Exk
}

+ (Exk)′
{

Q + Q̄ + σ 2(C + C̄)′P∗(C + C̄)

+ (A + Ā)′
(
P∗ + P̄∗)(A + Ā) – P∗ – P̄∗ –

[(
M(2))∗]′[(

ρ(2))∗]†[M(2)]∗}
Exk

}

+ E
[
(x0 – Ex0)′P∗(x0 – Ex0)

]
+ (Ex0)′

(
P∗ + P̄∗)

Ex0

– lim
N→∞E

[
(xN – ExN )′P∗(xN – ExN )

]
– lim

N→∞(ExN )′
(
P∗ + P̄∗)

ExN

= E
[
(x0 – Ex0)′P∗(x0 – Ex0)

]
+ (Ex0)′

(
P∗ + P̄∗)

Ex0

+ E

∞∑

k=0

{
uk – Euk +

[(
ρ(1))∗]†[M(1)]∗(xk – Exk)

}′(
ρ(1))∗

× {
uk – Euk +

[(
ρ(1))∗]†[M(1)]∗(xk – Exk)

}

+ E

∞∑

k=0

{{
Euk +

[(
ρ(2))∗]†[M(2)]∗

Exk
}′(

ρ(2))∗{
Euk +

[(
ρ(2))∗]†[M(2)]∗

Exk
}}

.

Since ρ(1), ρ(2) ≥ 0, we can immediately get that J(ξ , u) ≥ E(x′
0P∗x0) + (Ex0)′P̄∗

Ex0. Thus,

V (x0) = inf
u∈U∞

J(ξ , u) ≥ E
(
x′

0P∗x0
)

+ (Ex0)′P̄∗
Ex0. (4.3)

Next, we shall show V (x0) = infu∈U∞ J(ξ , u) ≤ E(x′
0P∗x0) + (Ex0)′P̄∗

Ex0 by the standard
perturbation method. For a positive decreasing sequence {εi, i = 0, 1, 2, . . .}, we consider
the GAREs with Q, R replaced by Q + εiI , R + εiI , respectively. And the corresponding
stabilizing solution to the GAREs is written as (Pεi , P̄εi ), which is the maximal solution.
Indeed, Pε0 ≥ · · · ≥ Pεi ≥ Pεi+1 ≥ · · · ≥ P, P̄ε0 ≥ · · · ≥ P̄εi ≥ P̄εi+1 ≥ · · · ≥ P̄. Moreover,
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limi→∞ Pεi = P, limi→∞ P̄εi = P̄. Set ui
k = –[ρ(2)

i ]†M(2)
i Exk – [ρ(1)

i ]†M(1)
i (xk – Exk), then

V (x0) ≤ E

∞∑

k=0

[
x′

k(Q + εiI)xk + (Exk)′Q̄Exk + 2x′
kGuk

+ 2(Exk)′ḠEuk + u′
k(R + εiI)uk + (Euk)′R̄Euk

]

= E
[
(x0 – Ex0)′Pεi (x0 – Ex0)

]
+ (Ex0)′(Pεi + P̄εi )Ex0.

Let i → ∞, we have

V (x0) ≤ E
(
x′

0P∗x0
)

+ (Ex0)′P̄∗
Ex0. (4.4)

Combining (4.3) with (4.4), we have V (x0) = E(x′
0P∗x0) + (Ex0)′P̄∗

Ex0. Meanwhile, the op-
timal controller uk satisfies

⎧
⎨

⎩

uk – Euk + [(ρ(1))∗]†(M(1))∗(xk – Exk) = 0,

Euk + [(ρ(2))∗]†(M(2))∗Exk = 0.

Thus, uk = –[(ρ(2))∗]†[M(2)]∗Exk – [(ρ(1))∗]†[M(1)]∗(xk – Exk). �

Remark 4.1 In Theorem 4.1, we show that the optimal value of Problem A can be pre-
sented by virtue of the maximal solution to GAREs (3.2).

A classical problem in optimal control theory is the so-called LQ stabilization problem.
Now, we consider the stabilization of the indefinite discrete-time MF-LQ control problem.

Problem B Find a Fk-measurable uk to minimize the cost functional (1.2), simultane-
ously, to stabilize the mean-field system (1.1).

Definition 4.1 NGAREs (3.3) are said to have a positive semi-definite (definite) solution
if they admit T ≥ 0, T + T̄ ≥ 0 (T > 0, T + T̄ > 0) satisfying NGAREs (3.3).

Theorem 4.2 If Γ̄ �= ∅ and (A2) are satisfied, then system (1.1) is L2-stabilizable if and
only if there exists a solution to GAREs (3.2), which is also the maximal solution. In this
case, the optimal stabilizing solution and the optimal value can be designed as (4.1)–(4.2),
respectively.

Proof Necessity: Under (A2) and Γ̄ �= ∅, assume that system (1.1) is L2-stabilizable, we shall
show that GAREs (3.2) have a solution (P, P̄), which is also a maximal solution. Notice that
Remark 3.1 and TN+1(N) = T̄N+1(N) = 0, by virtue of the induction, we can immediately
get that Tk(N) ≥ 0, T̄k(N) ≥ 0 for 0 ≤ k ≤ N .

Step 1. We shall state that α
(i)
k [α(i)

k ]†H (i)
k = H (i)

k , i = 1, 2. Since α
(1)
k ≥ 0, we obtain that

[α(1)
k ]† =

(

U1
k U2

k

)
(

V –1
k 0
0 0

)
(

U1
k U2

k

)′
,

in which (U1
k U2

k ) is an orthogonal matrix, Vk > 0 and dim(Vk) = R(α(1)
k ), and the columns

of the matrix U2
k form a basis of Ker(α(1)

k ). Combining λ(1) ≥ 0 with (3.4), we derive
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Ker(α(1)
k ) ∈ Ker(λ(1)). Moreover, in view of α

(1)
k U2

k (U2
k )′ = 0, then λ(1)U2

k (U2
k )′ = 0. We can

easily calculate

[
A′Tk+1(N)B + σ 2C′Tk+1(N)D +

(
S(1))′][I – α

(1)
k

(
α

(1)
k

)†]

=
[
A′(Tk+1(N) + P�

)
B + σ 2C′(Tk+1(N) + P�

)
D

]
U2

k
(
U2

k
)′.

Meanwhile, since Ker(�(1)) ⊆ (KerB ∩ KerD), we deduce that α
(1)
k [α(1)

k ]†H (1)
k = H (1)

k . Simi-
larly, α(2)

k [α(2)
k ]†H (2)

k = H (2)
k follows.

Step 2. We shall prove that Tk(N), T̄k(N) are convergent. Using Proposition 3.1, it is clear
that the optimal controller and optimal cost value of (3.5) subject to (1.1) are, respectively,
designed by

u�
k = –α

(1)
k H (1)

k xk +
[
α

(1)
k H (1)

k – α
(2)
k H (2)

k
]
Exk ,

J̄∗
T (0, ξ ; u) = E

[
x′

0T0(N)x0
]

+ (Ex0)′T̄0(N)Ex0.
(4.5)

Accordingly, for any N , it yields that

E
[
x′

0T0(N)x0
]

+ (Ex0)′T̄0(N)Ex0 ≤ E
[
x′

0T0(N + 1)x0
]

+ (Ex0)′T̄0(N + 1)Ex0.

Let x0 �= 0, Ex0 = 0, then T0(N) ≤ T0(N + 1). Similarly, let x0 �= 0, Ex0 = x0, we have T0(N) +
T̄0(N) ≤ T0(N + 1) + T̄0(N + 1). Namely, T0(N), T0(N) + T̄0(N) increase with respect to N .

Next, we state that T0(N), T0(N) + T̄0(N) are bounded. Since system (1.1) is L2-
stabilizable, there exists uk = Lxk +L̄Exk such that system (1.1) satisfies limk→+∞ E(x′

kxk) =
0. Notice that

(Exk)′Exk + E
[
(xk – Exk)′(xk – Exk)

]
= E

(
x′

kxk
)
, (4.6)

thus, limk→+∞(Exk)′Exk = 0. Resorting to [30, Lemma 4.1], we obtain E
∑∞

k=0(x′
kxk) < +∞.

Using (4.6), we get
∑∞

k=0(Exk)′Exk < +∞. On the other hand, noticing Γ̄ �= ∅, there exists
a constant b such that

( W (1) (S(1))′
S(1) λ(1)

) ≤ bI ,
( W (2) (S(2))′

S(2) λ(2)

) ≤ bI . Hence, we claim that

J̄∗
T (0, ξ ; u) ≤ J̄

:= E

∞∑

k=0

[(
Exk

Euk

)′ (
W (1) (S(1))′

S(1) λ(1)

)(
Exk

Euk

)

+

(
xk – Exk

uk – Euk

)′ (
W (2) (S(2))′

S(2) λ(2)

)(
xk – Exk

uk – Euk

)]

≤ E

∞∑

k=0

[(
Exk

(L + L̄)Exk

)′ (
W (1) (S(1))′

S(1) λ(1)

)(
Exk

(L + L̄)Exk

)

+

(
xk – Exk

L(xk – Exk)

)′ (
W (2) (S(2))′

S(2) λ(2)

)(
xk – Exk

L(xk – Exk)

)]

≤ bcE
(
x′

0x0
)
.
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By (4.5), we have

E
[
x′

0T0(N)x0
]

+ (Ex0)′T̄0(N)Ex0 ≤ bcE
(
x′

0x0
)
.

Let Ex0 = 0, we have 0 ≤ T0(N) ≤ bcI . Similarly, let x0 = Ex0, we get 0 ≤ T0(N) + T̄0(N) ≤
bcI . Consequently, T0(N) and T0(N) + T̄0(N) are bounded. Furthermore, T0(N) and
T0(N) + T̄0(N) are convergent. Observe the time-invariance, we derive

lim
N→∞ Tk(N) = lim

N→∞ T0(N – k) = T , lim
N→∞ T̄k(N) = lim

N→∞ T̄0(N – k) = T̄ .

In this case, limN→∞ α
(i)
k = α(i), limN→∞ H (i)

k = H (i), i = 1, 2. Consequently, we deduce that
(T , T̄) is the solution to the following NGAREs:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T = A′TA + σ 2C′TC – [H (1)]′[α(1)]†H (1) + W (1),

T̄ = σ 2C′TC̄ + σ 2C̄′TC + σ 2C̄′TC̄ + A′TĀ + Ā′TA + Ā′TĀ

+ (A + Ā)′T̄(A + Ā) + [M(1)]′[α(1)]†M(1) – [H (2)]′[α2]†H (2) + W (2) – W (1),

α(i) ≥ 0, α(i)[α(i)]†H (i) = H (i), i = 1, 2,

(4.7)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α(1) = B′TB + σ 2D′TD + ρ(1),

H (1) = B′TA + σ 2D′TC + M(1),

α(2) = (B + B̄)′(T + T̄)(B + B̄) + σ 2(D + D̄)′T(D + D̄) + ρ(2),

H (2) = (B + B̄)′(T + T̄)(A + Ā) + σ 2(D + D̄)′T(C + C̄) + M(2).

Step 3. We shall prove T > 0, T̄ > 0. In view of Tk(N) ≥ 0, T̄k(N) ≥ 0, we get that T ≥ 0,
T̄ ≥ 0. Specifically, suppose it does not hold. Seeing that E(x′

0x0) = E(X′
0X0), then there

is X0 �= 0 such that E(X′
0T̃X0) = 0 with T̃ = diag(T , T + T̄). Define the Lyapunov function

candidate as

VT (k, xk) = E
[
(xk – Exk)′T(xk – Exk)

]
+ (Exk)′(T + T̄)Exk ≥ 0.

Using (4.7), it follows that

VT (k, xk) – VT (k + 1, xk+1)

= E
[
(xk – Exk)′

(
W (1) + L′λ(1)L

)
(xk – Exk)

+ (Exk)′
[
W (2) + (L + L̄)′

(
λ(1) + λ(2))(L + L̄)

]
Exk

]

= E

[

X
′
k

(
Q0
0Q̄

)

Xk

]

,

where
⎧
⎨

⎩

Q = W (1) + L′λ(1)L + [S(1)]′L + L′S(1),

Q̄ = W (2) + (L + L̄)′λ(2)(L + L̄) + [S(2)]′(L + L̄) + (L + L̄)′S(2).
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According to Remark 3.1, we have Q≥ 0, Q̄≥ 0; further, it is obtained that

VT (k, xk) – VT (k + 1, xk+1) = E

[

X
′
k

(
Q 0
0 Q̄

)

Xk

]

:= E
(
X

′
kQ̃Xk

) ≥ 0. (4.8)

Adding from 0 to N on both sides of (4.8), then

0 ≤ E

N∑

k=0

(
X

′
kQ̃Xk

)
= E

(
X

′
0T̃X0

)
– E

(
X

′
N+1T̃XN+1

)
= –E

(
X

′
N+1T̃XN+1

) ≤ 0.

Consequently,

Q̃1/2
Xk = 0, k ≥ 0. (4.9)

Resorting to the method of [31, Theorem 4, Proposition 1], we get that the exact observ-
ability of system (A, Ā, C, C̄,Q1/2) is equivalent to the exact observability of the following
system:

⎧
⎨

⎩

Xk+1 = AXk + CXkwk ,

Yk = Q̃1/2
Xk .

Here,

A =

(
A + BL 0

0 A + C + (B + D)(L + L̄)

)

,

C =

(
Ā + B̄L Ā + C̄ + (B̄ + D̄)(L + L̄)

0 0

)

.

Thus, by (4.9), we get X0 = 0, which is contradiction. In summary, T > 0 and T + T̄ > 0
hold.

Step 4. From Theorem 3.1, we see Pk(N) = Tk(N) + P̂, P̄k(N) = T̄k(N) + P̌. Recall the con-
vergences of Pk(N), P̄k(N), then P = T + P̂, P̄ = T̄ + P̌. Besides, combining the arbitrariness
of P̂, P̌ with T , T̄ > 0, we derive P ≥ P̂, P̄ ≥ P̌, namely (P, P̄) is the maximal solution to
GAREs (3.2).

Sufficiency. Under (A2) and Γ̄ �= ∅, assume that GAREs (3.2) have a solution, we shall
prove that system (1.1) is L2-stabilizable. Following the proof of the necessity, we claim that
if GAREs (3.2) have a solution (P, P̄), then NGAREs (4.7) have a positive definite solution
(T , T̄). In addition, P = T + P̂, P̄ = T̄ + P̌. Notice that K = L, K̄ = L̄, the stabilization of
system (1.1) with uk = Kxk + K̄Exk is equivalent to the stabilization of system (1.1) with
uk = Lxk + L̄Exk . Together with Remark 3.1, (4.8) can be reformulated as

VT (k, xk) – VT (k + 1, xk+1) = E

{(
Exk

Euk

)′ (
W (1) (S(1))′

S(1) λ(1)

)(
Exk

Euk

)

+

(
xk – Exk

uk – Euk

)′ (
W (2) (S(2))′

S(2) λ(2)

)(
xk – Exk

uk – Euk

)}

≥ 0,
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which implies that VT (k, xk) is decreasing with respect to k. Along with VT (k, xk) ≥ 0, we
can deduce that VT (k, xk) is convergent. Adding from m to m + N on both sides of the
above equation and taking limitation, we get

0 = lim
m→∞E

m+N∑

k=m

[(
Exk

Euk

)′ (
W (1) (S(1))′

S(1) λ(1)

)(
Exk

Euk

)

+

(
xk – Exk

uk – Euk

)′ (
W (2) (S(2))′

S(2) λ(2)

)(
xk – Exk

uk – Euk

)]

.

By a time-shift, it yields that

0 ≥ lim
m→∞E

[
x′

mTm(m + N)xm
]

+ lim
m→∞

[
(Exm)′T̄m(m + N)Exm

]

= lim
m→∞E

[
(xm – Exm)′T0(N)(xm – Exm)

]
+ lim

m→∞
[
(Exm)′

(
T0(N) + T̄0(N)

)
Exm

] ≥ 0.

We further obtain

lim
m→+∞E

[
(xm – Exm)′(xm – Exm)

]
= 0, lim

m→+∞(Exm)′Exm = 0,

hence, limm→+∞ E(x′
mxm) = 0. Namely, system (1.1) is L2-stabilizable. Using Theorem 4.1,

the optimal controller and optimal value can be designed as (4.1)–(4.2), respectively. �

Remark 4.2 Our results extend and improve the ones in [16]. Besides, Theorem 4.2 makes
it clear that the solvability of GAREs (3.2) with indefinite weighting matrices is equivalent
to the solvability of NGAREs (4.7) with positive semi-definite weighting matrices. Simul-
taneously, it also indicates that the stabilization problems with indefinite weighting ma-
trices can be reduced to a positive semi-definite case. So to speak, these conclusions will
give us fresh ideas to consider the indefinite MF-LQ optimal control problems, especially
to consider their stabilization problems.

Remark 4.3 Theorem 4.2 presents the necessary and sufficient stabilization condition for
the indefinite MF-LQ optimal control problem, while for most of previous works, stabi-
lization was the precondition for the indefinite control problems. In other words, their
conclusions were only to discuss the existence of the stabilizing solution to the GAREs
based on the assumption of the stabilization.

5 Characterizing MF-LQ problem via SDP
In this section, we present some results with respect to the SDP problem. Meanwhile,
we establish the relations among the GAREs, the SDP, and the MF-LQ optimal control
problems.

Definition 5.1 Let a vector a = (a1, a2, . . . , am)′ ∈ R
m and matrices F0, F1, . . . , Fm ∈ T

n be
given. The following optimization problem:

min a′x,

subject to F(x) = F0 +
m∑

i=1

xiFi ≥ 0,
(5.1)
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is called a SDP. Besides, the dual problem of SDP (5.1) is defined as

max –Tr(F0Z),

subject to Z ∈ T
n, Tr(ZFi) = ai, i = 1, 2, . . . , m, Z ≥ 0.

Specifically, we consider the following SDP problem:

max Tr(P) + Tr(P̄),

subject to (P, P̄) ∈ Γ .
(5.2)

Theorem 5.1 A unique optimal solution is admitted to SDP problem (5.2), which is also
the maximal solution to GAREs (3.2).

Proof Let (P∗, P̄∗) be an optimal solution to SDP problem (5.2). In order to show that it is
indeed a maximal solution, denote

⎧
⎪⎪⎨

⎪⎪⎩

K1 = –(R + B′P∗B + σ 2D′P∗D)†(B′P∗A + σ 2D′P∗C + G′),

K2 = –[R + R̄ + (B + B̄)′(P∗ + P̄∗)(B + B̄) + σ 2(D + D̄)′P∗(D + D̄)]†

× [(B + B̄)′(P∗ + P̄∗)(A + Ā) + σ 2(D + D̄)′P∗(C + C̄) + G′ + Ḡ′].

By a simple calculation, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A + BK1)′P∗(A + BK1) + σ 2(C + DK1)′P∗(C + DK1) + K′
1G′ + GK1

= P∗ – Q – K′
1RK1,

(G′ + Ḡ′)K2 + K′
2(G + Ḡ) + σ 2(C + C̄ + DK2 + D̄K2)′P∗(C + C̄ + DK2 + D̄K2)

+ (A + Ā + BK2 + B̄K2)′(P∗ + P̄∗)(Ā + A + BK2 + B̄K2)

= P∗ + P̄∗ – Q – Q̄ – K′
2(R + R̄)K2.

On the other hand, u∗ = K1xk +(K2 –K1)Exk is a stabilizing control. Following the proof of
[11, Theorem 6.7], it follows that (P∗, P̄∗) is the upper bound of the set Γ ; in other words,
(P∗, P̄∗) is the maximal solution. Furthermore, the uniqueness of the solution to SDP (5.2)
follows from the maximality. The proof is completed. �

Corollary 5.1 The following statements are equivalent: (i) Γ �= ∅; (ii) There is a solution to
GAREs (3.2).

Besides, while either (i) or (ii) holds, GAREs (3.2) have a maximal solution (P∗, P̄∗), which
is the unique optimal solution to SDP problem (5.2).

Corollary 5.2 Let (A1) and Γ �= ∅ hold, then Problem B admits an optimal control uk =
K∗xk + K̄∗

Exk , k ∈ Ñ, and the optimal value is given as V (x0) = E(x′
0P∗x0) + (Ex0)′P̄∗

Ex0.
Here, (P∗, P̄∗) is the maximal solution to GAREs (3.2), which is the unique optimal solution
to SDP problem (5.2).
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6 Numerical results
In this section, we give some numerical examples to illustrate our main results.

Example 6.1 Consider system (1.1) and cost functional (1.2) with

A =

(
1.0 0.5
0.0 0.8

)

, Ā =

(
0.5 0.6
0.0 0.8

)

, B =

(
1.0 1.0
0.0 1.0

)

,

B̄ =

(
1.0 0.0
0.0 1.0

)

; C =

(
1.0 0.6
0.0 1.0

)

, C̄ =

(
1.0 0.0
0.4 1.0

)

,

D =

(
1.0 1.0
0.0 1.0

)

, D̄ =

(
1.0 0.0
0.5 0.6

)

; G =

(
1.0 0.0
0.0 1.0

)

,

Ḡ =

(
1.0 0.0
0.0 1.0

)

, R =

(
1.0 0.0
0.0 1.0

)

, R̄ =

(
1.0 0.0
0.0 1.0

)

;

Q =

(
3.0000 0.0000
0.0000 2.8476

)

, Q̄ =

(
3.5845 0.3870
0.3870 2.9894

)

.

After running the calculation of the SDP theory via Matlab software, we obtain that

P∗ =

(
2 0
0 2

)

, P̄∗ =

(
3 0
0 3

)

.

Furthermore, we have

W (1) =

(
5 2.2

2.2 5.3476

)

, λ(1) =

(
5 4
8 9

)

, S(1) =

(
4 5.8
8 11.6

)

,

W (2) =

(
21.1545 12.637
12.637 28.407

)

, λ(2) =

(
30.5 15.6
15.6 34.12

)

, S(2) =

(
25.8 17.4

7.828 30.5

)

.

It is clear that Ker(λ(1)) ⊆ KerB ∩ KerD, Ker(λ(2)) ⊆ Ker(B + B̄) ∩ Ker(D + D̄). Using
Lemma 2.1, it is easy to see

( W (i) (S(i))′
S(i) λ(i)

) ≥ 0, i = 1, 2. In other words, Γ̄ �= ∅. Thus, by The-
orem 4.2, we deduce that system (1.1) is L2-stabilizable, and the optimal controller is de-
signed by

uk = K∗xk + K̄∗
Exk , k ∈ Ñ, (6.1)

where

K∗ =

(
–1.0000 0.2552

0.000 –0.8690

)

, K̄∗ =

(
0.1631 –0.3057
0.0081 –0.0194

)

.

A curve of E|xk|2 under control (6.1) is shown in Fig. 1. As expected, the curve is conver-
gent.
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Figure 1 Curve of E|xk|2 with initial state x0 = [–5 20]′

Example 6.2 Consider system (1.1) and cost functional (1.2) with

A =

(
1.0 2
0.0 2.5

)

, Ā =

(
2.0 0.5
0.0 0.5

)

, B =

(
1.0 1.0
0.0 1.0

)

, B̄ =

(
1.0 0.0
0.0 1.0

)

;

C =

(
1.0 0.5
0.0 1.0

)

, C̄ =

(
1.0 0.0
0.5 1.0

)

, D =

(
2.0 1.0
0.0 2.0

)

, D̄ =

(
1.0 0.0
0.5 2.0

)

;

G =

(
1.0 0.0
0.0 1.0

)

, Ḡ =

(
1.0 0.0
0.0 1.0

)

, R =

(
–1.0 0.0
0.0 –1.0

)

,

R̄ =

(
–1.0 0.0
0.0 –1.0

)

; Q =

(
3.2667 –1.0333

–1.0333 0.5667

)

, Q̄ =

(
6.3067 –2.3170

–2.3170 –3.1531

)

.

By virtue of SDP theory, we have

P∗ =

(
1 0
0 1

)

, P̄∗ =

(
4 0
0 4

)

.

Furthermore,

W (1) =

(
1 2.5

2.5 10.5

)

, λ(1) =

(
4 3
3 6

)

, S(1) =

(
4 3
2 8

)

,

W (2) =

(
53.8234 36.1497
36.1497 41.6636

)

, λ(2) =

(
27.25 15

15 40

)

, S(2) =

(
38.25 27.5

19 73

)

.

Similar to Example 6.1, it is easy to verify Γ̄ = ∅. In this case,

K∗ =

(
–1.2000 0.4000
0.2667 –1.5333

)

, K̄∗ =

(
–0.2393 –0.7526
–0.2019 0.3406

)

.

According to Theorem 4.2, we know that system (1.1) is not L2-stabilizable. A curve of
E|xk|2 under control (6.1) is shown in Fig. 2. As expected, the curve is not convergent.
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Figure 2 Curve of E|xk|2 with initial state x0 = [15 0.1]′

To further illustrate Theorem 4.2, we give the following two examples as well.

Example 6.3 Consider system (1.1) and cost functional (1.2) with

A = 1.2, Ā = 0.3, B = 0.5, B̄ = 0.1, C = 1, C̄ = 0.5,

D = 0.8, D̄ = 0.2; Q = 2, Q̄ = 1, R = 1, R̄ = 1,

G = 1, Ḡ = 1, σ 2 = 1, x0 ∼ N(0, 1).

Likewise, by virtue of the SDP theory, we deduce that P∗ = 1.5625, P̄∗ = 0.7722. Then

W (1) = 4.25, λ(1) = 2.390625, S(1) = 3.1875,

W (2) = 9.434, λ(2) = 8.815575, S(2) = 6.44498.

Since Γ̄ �= ∅, by Theorem 4.2, there is a unique optimal controller to stabilize system
(1.1); meanwhile, to minimize cost functional (1.2), the optimal controller is given as
uk = –1.3333xk – 0.1305Exk , k ≥ 0. According to the optimal controller, the simulation
of the system state and the curve of E|xk|2 are shown in Fig. 3. As expected, the curve is
convergent.

Example 6.4 Consider system (1.1) and cost functional (1.2) with

A = 2, Ā = 1, B = 2, B̄ = 1, C = 1, C̄ = 1,

D = –1, D̄ = 1; Q = 2, Q̄ = 2, R = 1, R̄ = 1,

G = 1, Ḡ = 1, σ 2 = 1, x0 ∼ N(0, 1).

By GAREs (3.2), we get that P has two different negative roots P = –0.1604, P = –0.5670,
and P̄ has a negative root P̄ = –0.1548. Then we have the following two sets of solutions:

W (1)
1 = 1.3584, λ

(1)
1 = 0.198, S(1)

1 = 0.6792,
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Figure 3 Curve of E|xk|2 with initial state x0 ∼ N(0, 1)

Figure 4 Curve of E|xk|2 with initial state x0 ∼ N(0, 1)

W (2)
1 = 1.249, λ

(2)
1 = –0.8368, S(2)

1 = –0.8368;

W (1)
2 = –0.835, λ

(1)
2 = –1.835, S(1)

2 = –0.701,

W (2)
2 = –4.0424, λ

(2)
2 = –4.4962, S(2)

2 = –4.4962.

In the above two cases, Γ̄ = ∅. Furthermore, when P = –0.1604, we can get K = –0.1027,
K̄ = –0.5975. Similarly, when P = –0.5670, we get K = –1.2863, K̄ = –19.0322. Thus, the
controllers are presented as uk = –0.1027xk – 0.5975Exk , uk = –1.2863xk – 19.0322Exk ,
respectively. Simulation results for the curve of E|xk|2 with the corresponding optimal
controller are shown as in Fig. 4 and Fig. 5, respectively. As expected, the curves are not
convergent.

7 Concluding remarks
We have investigated the exact observability of a linear stochastic time-invariant system in
this work. How to extend various definitions to the linear stochastic time-varying system
is a meaningful topic that merits further discussions. Compared with the time-invariant
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Figure 5 Curve of E|xk|2 with initial state x0 ∼ N(0, 1)

system, defining the exact observability for the time-varying stochastic system is much
more difficult and sophisticated. In addition, the necessary and sufficient stabilization con-
ditions also deserve to be systematically studied. Thus, we attempt to discuss the linear
time-varying system deeply in the future.
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