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Abstract
In this paper, we consider the optimal control problem for fully coupled
forward–backward stochastic difference equations of mean-field type under weak
convexity assumption. By virtue of employing a suitable product rule and formulating
a mean-field backward stochastic difference equation, we establish the stochastic
maximum principle and also derive, under additional assumptions, that the stochastic
maximum principle is also a sufficient condition. As an application, a Stackelberg
game of mean-field backward stochastic difference equation is presented to
demonstrate our results.
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1 Introduction
Let T > 0 be fixed, (Ω ,F, {Ft}0≤t≤T ,P) be a filtered probability space, on which a martingale
process Wt with independent increments is defined, and Ft = σ {Wl, l = 0, 1, . . . , t – 1}∨NP

(the set of all P-null subsets). Consider the following discrete-time fully coupled stochastic
system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�Xt = b(t, Xt , Yt , Zt ,EXt ,EYt ,EZt , ut)

+ σ (t, Xt , Yt , Zt ,EXt ,EYt ,EZt , ut)�Wt ,

–�Yt = f (t + 1, Xt+1, Yt+1, Zt+1,EXt+1,EYt+1,EZt+1, ut+1) – Zt�Wt – �Mt ,

X0 = x0, YT = l(XT ,EXT ),

(1.1)

with the cost functional

J(u) = E

{T–1∑

t=0

g(t, Xt , Yt , Zt ,EXt ,EYt ,EZt , ut) + h(XT ,EXT )

}

. (1.2)
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Here, we reserve the notation � for the backward difference operator �Xt = Xt+1 – Xt . W ,
M are the square integrable martingale processes and M is strongly orthogonal to W . E
means the expectation operator and f , b, σ , g , h, l are given functions (satisfying some
proper conditions to be elaborated later). Then we could present the following stochastic
optimal control problem.

Problem A. Find ū ∈ Uad (which shall be defined later) such that

J(ū) = inf
u∈Uad

J(u).

For stochastic optimal control problems (see [1]), one of the main topics is to es-
tablish the stochastic maximum principle (SMP). A wide range of concerns have been
given to different versions of SMP (see [2–5]), especially, to forward–backward stochas-
tic control systems (see [6–9]). It is widely recognized that forward–backward stochas-
tic differential equations (FBSDEs) are extensively studied and there are productive re-
sults (see [6, 10, 11]). Nevertheless, discrete-time optimal control problems are more
relevant to economic, engineering, biomedical, operation research problems, optimizing
complex technological systems, etc. As is known to all, Pontryagin maximum principle in
continuous-time framework cannot be extended to discrete-time counterpart, except for
some very special cases, due to the nature of admissible control variations. Naturally, it
motivated us to formulate discrete analog and even some improper results were deduced.
Butkovskii [12] clearly demonstrated some errors in the existing works. The intrinsic rea-
son for the errors is that the significance of convexity has been ignored. Generally speak-
ing, the discrete-time maximum principle fails unless a certain convexity precondition is
imposed on the control system. Pshenichnyi [13] elaborated why discrete-time systems re-
quire a certain convexity assumption for the effectiveness of the necessary condition while
continuous-time systems enjoy it automatically because of the so-called hidden convex-
ity. To the best of our knowledge, the study on the SMP of forward–backward stochastic
difference equations (FBS�Es) is quite rare in the literature. To fill the gap, in this work,
we are devoted to considering the SMP of the forward–backward stochastic difference
systems.

As for the discrete-time framework, recently, Mahmudov [14] derived the first-order
and second-order necessary optimality conditions for discrete-time stochastic optimal
control problems by virtue of new discrete-time backward stochastic equation and back-
ward stochastic matrix equation. Lin and Zhang [15] investigated the SMP where the state
equation was just on a forward S�E with the convex control domain. Xu et al. [16] con-
sidered the solvability of fully coupled FBS�Es, in which the BS�E was given as the con-
ditional expectation form and the coefficients in the backward equation were degenerate.
Some representative works in this direction include [17–20]. Very recently, Ji and Liu [21]
first discussed the SMP for FBS�Es under the convex control domain, which made sub-
stantial progresses in discrete-time forward–backward systems.

In 2009, Buckdahn et al. [22] investigated a special case of backward stochastic differ-
ential equations (BSDEs), the so-called mean-field BSDEs, which were derived by a limit
of high dimensional FBSDEs, parallel to a large stochastic particle system. From then on,
many authors discussed the mean-field system in different frameworks (see [4, 23]).

Motivated by the above discussions, our purpose of this paper is to derive the more
general and constructive SMP for mean-field system (1.1)–(1.2) under weaker convexity
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assumption. From the perspective of the techniques adopted for discrete-time case, the
obstacles encountered are twofold. The first issue entails choosing a suitable expression
of the product rule

�〈Xt , Yt〉 = 〈Xt+1,�Yt〉 + 〈�Xt , Yt〉 = 〈Xt ,�Yt〉 + 〈�Xt , Yt+1〉.

In our setting, the Itô formula in continuous-time framework is invalid. In addition, most
of the methods applied to discuss continuous-time systems cannot be directly adapted to
discrete-time cases. Hence, it is necessary to employ a more characteristic and refined ap-
proach for investigating the discrete-time stochastic optimal control problems. The next
issue entails formulating the discrete-time counterpart BS�E as (1.1), which is distinctly
different from the continuous-time BSDE. Lately, many authors have been devoted to con-
sidering BS�E (see [24–26]). In general, there are two approaches to formulating BS�E.
One is driving by a finite state process (see [25]). In this work, we adopt another formu-
lation as in [24], which is driven by a martingale with independent increments and the
generator f in (1.1) relies on time t + 1. Based on these arguments, we could obtain the
dual principle. It is worth mentioning that our paper differs from [19] in the following as-
pects. Firstly, our work is based on a weaker convexity assumption. Secondly, our results
are obtained in the mean-field framework. Thirdly, we not only establish the SMP, but
also derive, under additional assumptions, the SMP, which turns to be a sufficient con-
dition. Finally, as an application, we present a Stackelberg game of mean-field BS�E to
demonstrate our results. To sum up, this is the first paper to discuss the discrete-time
forward–backward stochastic optimal control problems of mean-field type under weaker
convexity assumption, enabling us to establish the more general and constructive SMP.
Our work generalizes and enhances the previously known SMP of [19, 23]. Meanwhile,
it extends the classical results of [17, 23] to the mean-field theory as well as forward–
backward system. It is interesting to remark that the results of our work also remain for
multi-dimensional driving process; in addition, we could also consider a more general sys-
tem, in which the mean-field terms are allowed to depend on some functional of the law
(see [27]). There is no essential difficulty.

The reminder of the paper is organized as follows. The next section states some prelim-
inaries. Section 3 is devoted to considering MF-FBS�E (1.1). In Sect. 4, we establish the
SMP and the sufficient condition for Problem A. In Sect. 5, a Stackelberg game of mean-
field BS�E is given to illustrate the theoretical results. Section 6 presents some perspec-
tives and open problems.

2 Preliminaries
Let T = {0, 1, . . . , T}. For a vector x, x′ stands for its transpose. I represents the unit matrix
with appropriate dimension. Et means the conditional mathematical expectation E[·|Ft].
F0 = {∅,Ω} and F = FT . For t ∈ {0, . . . , T – 1}, Et[�Wt] = E[�Wt] = 0, E[�Wt�W ′

t ] = I .
Now, we shall introduce some spaces to be used frequently in what follows.

L2(
Ft ;Rn) =

{
Xt : Ω →R

n | Xt is Ft-measurable,E|Xt|2 < ∞}
,

S2(0, T ;Rn) =
{

X : {0, 1, . . . , T} × Ω →R
n | X is {Ft}-adapted,E|Xt|2 < ∞}

,

M2[0, T] := S2(0, T ;Rn)× S2(0, T ;Rn)× S2(0, T – 1;Rn)× S2(0, T ;Rn),
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K2[0, T] := S2(0, T ;Rn)× S2(0, T ;Rn)× S2(0, T – 1;Rn),

H2[0, T] := S2(0, T ;Rn)× S2(0, T – 1;Rn)× S2(0, T ;Rn),

N 2[0, T] := S2(0, T – 1;Rn)× S2(0, T – 1;Rn)× S2(1, T ;Rn).

In addition, we introduce the following admissible control set:

Uad =
{

(u0, u1, . . . , uT ) : ut ∈L2(
Ft ;Rm) and ut ∈ Ut ⊆R

m}.

Definition 2.1 ([28]) A point ȳ ∈ S ⊂ R
m is called a relative interior point of S along the

straight line l(ȳ, ỹ) := {ỹ | ỹ = ȳ+κ(ỹ– ȳ), ỹ ∈ S\{ȳ} = ∅,κ ∈R} if there exists γ = γ (ỹ) ∈ (0, 1]
such that ȳ+ε(ỹ– ȳ) ∈ S holds for all ε ∈ [–γ ,γ ]. Besides, ȳ is called a relative interior point
of S in a broad sense if ȳ is a relative interior point of S along every straight line in the set
{l(ȳ, y) : y ∈ S \ {ȳ}}. The totality of these points is called a relative interior of S in a broad
sense and is denoted by ri S. S is called relatively open in a broad sense if ri S = S.

Definition 2.2 ([18]) A set S ⊂R
m is called γ -convex relative to a point y0 ∈ S if, for each

point y ∈ S, there exists γ = γ (y) ∈ (0, 1] such that, for all ε ∈ [0,γ ], y0 + ε(y – y0) ∈ S holds.
S is γ -convex if S is γ -convex relative to all of its points.

Definition 2.3 A set S ⊂ R
m is called ±γ -convex relative to a point y0 ∈ S if, for each

point y ∈ S, there exists γ = γ (y) ∈ (0, 1] such that, for all ε ∈ [0,γ ] or for all ε ∈ [–γ , 0],
y0 + ε(y – y0) ∈ S holds. S is ±γ -convex if S is ±γ -convex relative to all of its points.

Remark 2.1 It is obvious that a relatively open set in a broad sense, convex and open sets
are a γ -convex set. Besides, a γ -convex set is a ±γ -convex set. Nevertheless, the reverse
does not always hold. For instance, M1 = [1, 2)∪ (3, 4] is γ -convex, but it is neither a convex
set nor an open set. M2 = [1, 2] ∪ [3, 4] is ±γ -convex, but it is not γ -convex.

We proceed to introducing some notations and basic assumptions which shall be as-
sumed throughout the paper. Denote the usual inner product by 〈·, ·〉 and the norm by
| · | of a Euclidean space. For Γ = (x, y, z, x̃, ỹ, z̃), define F(t,Γ , u) = (–f (t,Γ , u), b(t,Γ , u),
σ (t,Γ , u)) and Λ = b,σ , f , g .

(A1) f (t, y, z, ỹ, z̃) is uniformly Lipschitz continuous and independent of z, z̃ at t = T , i.e.,
for any y, y1, z, z1 ∈R

n, there exists a constant c > 0 such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|f (T , y, z, ỹ, z̃) – f (T , y1, z1, ỹ1, z̃1)| ≤ c(|y – y1| + |ỹ – ỹ1|), t = T ,P-a.s.,

|f (t, y, z, ỹ, z̃) – f (t, y1, z1, ỹ1, z̃1)|
≤ c(|y – y1| + |ỹ – ỹ1| + |z – z1| + |z̃ – z̃1|), t ∈ {1, 2, . . . , T – 1},P-a.s.,

f (t, 0, 0, 0, 0) ∈L2(Ft ;Rn), t ∈ {1, 2, . . . , T},P-a.s.

(A2) b, σ , f , g are uniformly Lipschitz continuous and differentiable on Γ , u; l, h are
continuously differentiable on x, x̃, and all the derivatives are uniformly bounded.
Moreover, f is independent of z, z̃ at t = T .

(A3) ∀Γ , u ∈ Uad, Λ(·,Γ , u) is a Ft-adapted process, l(x, x̃) ∈L2(F;Rn),
h(x, x̃) ∈L2(F;R), and F(t, 0, 0) ∈L2(Ft ;Rn ×R

n ×R
n), g(t, 0, 0) ∈L2(Ft ;R).
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(A4) (Monotonic conditions)
For t ∈ {1, . . . , T – 1},

E
〈
F(t,Γ , u) – F(t,Γ1, u),Θ – Θ1

〉≤ –βE|Θ – Θ1|2, P-a.s.,

∀Γ = (x, y, z, x̃, ỹ, z̃),Γ1 = (x1, y1, z1, x̃1, ỹ1, z̃1),Θ = (x, y, z),Θ1 = (x1, y1, z1).

For t = T ,

E
〈
–f (T , x, y, x̃, ỹ, u) + f (T , x1, y1, x̃1, ỹ1, u), x – x1

〉≤ –βE|x – x1|2, P-a.s.

For t = 0,

E
〈
b(0,Γ , u) – b(0,Γ1, u), y – y1

〉
+ E

〈
σ (0,Γ , u) – σ (0,Γ1, u), z – z1

〉

≤ –βE
(|y – y1|2 + |z – z1|2

)
, P-a.s.

Besides,

E
〈
l(x, x̃) – l(x1, x̃1), x – x1

〉≥ cE|x – x1|2,P-a.s.,

where c, β are nonnegative constants.
(A5) The set Ut (t ∈ T) is ±γ -convex.

Throughout the paper, we formally denote
f (0,Γ , u) = b(T ,Γ , u) = σ (T ,Γ , u) = g(T ,Γ , u) ≡ 0. Let π ∈L2(F;Rn), we consider
the following MF-BS�E:

⎧
⎨

⎩

�Yt = –f (t + 1, Yt+1, Zt+1,EYt+1,EZt+1) + Zt�Wt + �Mt ,

YT = π .
(2.1)

Definition 2.4 The triple of processes (Y , Z, M) ∈ H2[0, T] is called a solution of MF-
BS�E (2.1) if it satisfies (2.1) for any t ∈ {0, 1, . . . , T – 1} and M is a martingale process
strongly orthogonal to W .

Theorem 2.1 Assume that (A1) holds, then for any π ∈L2(F;Rn), MF-BS�E (2.1) admits
a unique adapted solution (Y , Z, M).

Proof Firstly, we shall show the existence by using the backward induction method.
From (A1) and π ∈ L2(F;Rn), we have f (T ,π ,Eπ ) ∈ L2(F;Rn). Then E{|ET–1[π +
f (T ,π ,Eπ )]|2} < ∞. Hence, π + f (T ,π ,Eπ ) – ET–1[π + f (T ,π ,Eπ )] is a square integrable
martingale difference. Further, by the Galtchouk–Kunita–Watanabe decomposition in
[29], there are ZT–1 ∈ FT–1, ZT–1�WT–1 ∈ L2(FT–1;Rn), and �MT–1 ∈ L2(FT–1;Rn) such
that ET–1[�MT–1] = ET–1[�MT–1�W ′

T–1] = 0 and

π + f (T ,π ,Eπ ) – ET–1
[
π + f (T ,π ,Eπ )

]
= ZT–1�WT–1 + �MT–1. (2.2)
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Here, �MT–1 is uniquely determined in that decomposition. Multiplying (2.2) by �W ′
T–1

and then applying ET–1 to both sides, we derive

ET–1
[(

π + f (T ,π ,Eπ )
)
�W ′

T–1
]

= ZT–1.

We further obtain

E|ZT–1|2 ≤ E
{
ET–1

[∣
∣π + f (T ,π ,Eπ )

∣
∣2
]
ET–1

[
�W 2

T–1
]}

< ∞.

This implies YT–1 = ET–1[π + f (T ,π ,Eπ )] ∈L2(FT–1;Rn). Thus, we determine YT–1, ZT–1,
�MT–1.

We continue this backward procedure. Assume that Yt+1 ∈L2(Ft+1;Rn), t ∈ {0, 1, . . . , T –
2}. Similarly to the above discussions, we know Zt ∈ Ft , Zt�Wt ∈ L2(Ft ;Rn), �Mt ∈
L2(Ft ;Rn) such that Et[�Mt] = Et[�Mt�W ′

t ] = 0 and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yt+1 + f (t + 1, Yt+1,EYt+1, Zt+1,EZt+1) – Et[Yt+1 + f (t + 1, Yt+1,EYt+1, Zt+1,EZt+1)]

= Zt�Wt + �Mt ,

Zt = Et[(Yt+1 + f (t + 1, Yt+1,EYt+1, Zt+1,EZt+1))�W ′
t ],

Yt = Et[Yt+1 + f (t + 1, Yt+1,EYt+1, Zt+1,EZt+1)].

In summary, we deduce (Yt , Zt ,�Mt) ∈L2(Ft ;Rn)×L2(Ft ;Rn)×L2(Ft ;Rn), 0 ≤ t ≤ T – 2.
Without loss of generality, let M0 = 0 and Mt = M0 +

∑t–1
s=0 �Ms, we see that (2.1) holds for

t ∈ {0, 1, . . . , T – 1}. In addition, M is a square integrable martingale process. Furthermore,
since

Et–1
[
MtW ′

t
]

=
t–2∑

s=0

�MsEt–1
[
W ′

t
]

+ Et–1
[
�Mt–1(Wt–1 + �Wt–1)′

]
= Mt–1W ′

t–1,

we get that M is strongly orthogonal to W . The existence is finished.
Next, we shall prove the uniqueness. Assume that there are two solutions (Y 1

t , Z1
t , Ỹ 1

t ,
Z̃1

t , M1
t ) and (Y 2

t , Z2
t , Ỹ 2

t , Z̃2
t , M2

t ) of MF-BS�E (2.1). Then

Y 1
T–1 – Y 2

T–1 = –f
(
T , YT , Z1

T , ỸT , Z̃1
T
)

+ f
(
T , YT , Z2

T , ỸT , Z̃2
T
)

+ Z1
T–1�WT–1 + �M1

T–1 – Z2
T–1�WT–1 – �M2

T–1. (2.3)

Combining Z1
T–1 = ET–1[(π + f (T ,π ,Eπ ))�W ′

T–1] = Z2
T–1 with (2.2), we have �M1

T–1 =
�M2

T–1. Thus, using (2.3), we can immediately get that Y 1
T–1 = Y 2

T–1. The inductive method
and Z1

0 = Z2
0 = M1

0 = M2
0 = 0 yield (Y 1

t , Z1
t , M1

t ) = (Y 2
t , Z2

t , M2
t ) for t ∈ {0, 1, . . . , T – 1}. �

3 Controlled MF-FBS�Es
In this section, we focus on the fully coupled MF-FBS�E (1.1). Let ūt and (X̄t , Ȳt , Z̄t) be the
optimal control and optimal trajectory of ProblemA, respectively. Assume that (A2)–(A5)
hold, firstly we define a multi-valued mapping:

I(t, vt) =

⎧
⎪⎪⎨

⎪⎪⎩

1, (t, vt) ∈ T× U+
t ,

–1, (t, vt) ∈ T× U–
t ,

±1, (t, vt) ∈ T× U+
t ∩ U–

t ,

(3.1)



Song and Liu Advances in Difference Equations        (2020) 2020:188 Page 7 of 24

where U+
t , U–

t represent that the set Ut is γ -convex and –γ -convex, respectively. Notice
that the set Ut is ±γ -convex, there exists γ > 0 such that, for all ε ∈ (0,γ ], we could find
another admissible control

uε
t = ūt + α(t)ε(vt – ūt), vt ∈ Ut ,

where α(t) ∈ I(t, vt). We construct a needle variation

α(t)ε(vt – ūt) =

⎧
⎨

⎩

αε(vθ – ūθ ), t = θ ,

0, t ∈ T \ {θ},

where α ∈ I(θ , vθ ), (θ , vθ ) ∈ T×Uθ , and ε ∈ (0,γ ∗] with γ ∗ = γ (vθ )
1+α

. Denote that (Xε
t , Y ε

t , Zε
t )

is the state trajectory corresponding to the admissible control uε
t . Now, we give the follow-

ing existence and uniqueness theorem.

Theorem 3.1 Assume that (A2)–(A4) hold, then there exists a unique adapted solution
(X, Y , Z, M) ∈M2[0, T] for mean-field system (1.1).

We shall apply the following two technical lemmas to prove the existence part of Theo-
rem 3.1, and the proof of these lemmas shall be presented in the sequel.

Lemma 3.1 Suppose (r,φ,ϕ) ∈ N 2[0, T], λ ∈ L2(F;Rn), then the following linear MF-
FBS�E

⎧
⎪⎪⎨

⎪⎪⎩

�Xt = –Yt – EYt + rt + (–Zt – EZt + φt)�Wt ,

�Yt = –Xt+1 – EXt+1 – ϕt+1 + Zt�Wt + �Mt ,

X0 = x0, YT = XT + EXT + λ,

(3.2)

has a unique solution (X, Y , Z, M) ∈M2[0, T].
Now, we define a family of MF-FBS�Es parameterized by μ ∈ [0, 1] as follows:

⎧
⎪⎪⎨

⎪⎪⎩

�Xt = bμ(t,Γt , ut) + rt + [σμ(t,Γt , ut) + φt]�Wt ,

�Yt = –f μ(t + 1,Γt+1, ut+1) – ϕt+1 + Zt�Wt + �Mt ,

X0 = x0, YT = lμ(XT ,EXT ) + λ,

(3.3)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

bμ(t,Γt , ut) = μb(t,Γt , ut) + (1 – μ)(–Yt – EYt),

σμ(t,Γt , ut) = μσ (t,Γt , ut) + (1 – μ)(–Zt – EZt),

f μ(t,Γt , ut) = μf (t,Γt , ut) + (μ – 1)(–Xt – EXt),

lμ(Xt ,EXt) = μl(Xt ,EXt) + (μ – 1)(–Xt – EXt),

Γt = (Xt , Yt , Zt ,EXt ,EYt ,EZt).

Lemma 3.2 For a given μ0 ∈ [0, 1) and any (r,φ,ϕ) ∈N 2[0, T], λ ∈L2(F;Rn), MF-FBS�Es
(3.3) have a unique solution. Then there exists δ0 ∈ (0, 1) such that, for any μ ∈ [μ0,μ0 + δ0]
and (r,φ,ϕ) ∈N 2[0, T], λ ∈L2(F;Rn), MF-FBS�Es (3.3) have a unique solution.
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Proof of Theorem 3.1 Uniqueness. Suppose that (X, Y , Z, M) and (X̌, Y̌ , Ž, M̌) are two so-
lutions of (1.1), we denote

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ̂ = (X̂, Ŷ , Ẑ,EX̂,EŶ ,EẐ) = Γ – Γ̌

= (X – X̌, Y – Y̌ , Z – Ž,EX – EX̌,EY – EY̌ ,EZ – EŽ),

b̂(t) = b(t,Γt , ut) – b(t, Γ̌t , ut), σ̂ (t) = σ (t,Γt , ut) – σ (t, Γ̌t , ut),

f̂ (t) = f (t,Γt , ut) – f (t, Γ̌t , ut),

Θ̂ = (X̂, Ŷ , Ẑ) = Θ – Θ̌ = (X – X̌, Y – Y̌ , Z – Ž), M̂ = M – M̌.

For t ∈ {0, 1, . . . , T – 1}, it yields that

�〈X̂t , Ŷt〉 = 〈X̂t+1,�Ŷt〉 + 〈�X̂t , Ŷt〉
=
〈
b̂(t), Ŷt

〉
–
〈
X̂t+1, f̂ (t + 1)

〉
+
〈
σ̂ (t)�Wt , Ẑt�Wt

〉
+ Ψt ,

where

Ψt =
〈
σ̂ (t)�Wt , Ŷt

〉
+ 〈�X̂t + X̂t ,�M̂t〉 +

〈
X̂t + b̂(t), Ẑt�Wt

〉
.

Notice that W , M, M̌ are square integrable martingale processes and M, M̌ are strongly
orthogonal to W , we obtain E[Ψt] = 0. Furthermore,

E
〈
XT – X̌T , l(XT ,EXT ) – l(X̌T ,EX̌T )

〉

= E〈X̂T , ŶT 〉 = E

T–1∑

t=0

�〈X̂t , Ŷt〉 = E

T–1∑

t=0

{〈
X̂t+1, –f̂ (t + 1)

〉
+
〈
σ̂ (t), Ẑt

〉
+
〈
b̂(t), Ŷt

〉}

= E

{T–1∑

t=1

〈
F(t,Γt , ut) – F(t, Γ̌t , ut),Θt – Θ̌t

〉
+
〈
b̂(0), Ŷ0

〉
+
〈
σ̂ (0), Ẑ0

〉
–
〈
X̂T , f̂ (T)

〉
}

.

Using the monotonic conditions, it follows that

cE|XT – X̌T |2

≤ E
〈
XT – X̌T , l(XT ,EXT ) – l(X̌T ,EX̌T )

〉

= E

{T–1∑

t=1

〈
F(t,Γt , ut) – F(t, Γ̌t , ut),Θt – Θ̌t

〉
+
〈
b̂(0), Ŷ0

〉
+
〈
σ̂ (0), Ẑ0

〉
–
〈
X̂T , f̂ (T)

〉
}

≤ –c1E

{ T∑

t=0

|Xt – X̌t|2 +
T–1∑

t=0

|Yt – Y̌t|2 +
T–1∑

t=0

|Zt – Žt|2
}

,

which further implies

E

{ T∑

t=0

|Xt – X̌t|2 +
T–1∑

t=0

|Yt – Y̌t|2 +
T–1∑

t=0

|Zt – Žt|2
}

= 0.

Besides, it is easy to see E|YT – Y̌T |2 = 0 and E
∑T

t=0 |Mt – M̌t|2 = 0. Thereby, Θ = Θ̌ .
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Existence. By Lemma 3.1, we can immediately get that, when μ = 0, for any (r,φ,ϕ) ∈
N 2[0, T], λ ∈ L2(F;Rn), MF-FBS�Es (3.3) have a unique solution. By Lemma 3.2,
for any (r,φ,ϕ) ∈ N 2[0, T], λ ∈ L2(F;Rn), (3.3) can be solved successively for μ ∈
[0, δ0], [δ0, 2δ0], . . . . Hence, we can deduce that when μ = 1, for any (r,φ,ϕ) ∈ N 2[0, T],
λ ∈ L2(F;Rn), MF-FBS�Es (3.3) have a unique solution. Let rt = φt = ϕt = λ = 0, we con-
clude that MF-FBS�E (1.1) has a solution. �

Proof of Lemma 3.1 We consider the following BS�E:

⎧
⎨

⎩

�Y ∗
t = Y ∗

t + EY ∗
t – rt – ϕt+1 + (2Z∗

t + EZ∗
t – φt)�Wt + �M∗

t ,

Y ∗
T = λ.

Using Theorem 2.1, the above equation admits a unique solution (Y ∗, Z∗, M∗). Then we
solve the following forward equation:

⎧
⎨

⎩

�Xt = –Xt+1 – EXt+1 – Y ∗
t – EY ∗

t + rt + (–Z∗
t – EZ∗

t + φt)�Wt ,

X0 = x0.

Let Y = Y ∗ + X, Z = Z∗, and M = M∗, we can see that (X, Y , Z, M) is a solution of (3.2).
Thus, the existence is finished. With regards to the uniqueness, it suffices to apply the
method of the proof of uniqueness in Theorem 3.1; here, we omit it. �

Proof of Lemma 3.2 Notice that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bμ0+δ(t,Γt , ut) = bμ0 (t,Γt , ut) + δ[b(t,Γt , ut) + Yt + EYt],

σμ0+δ(t,Γt , ut) = σμ0 (t,Γt , ut) + δ[σ (t,Γt , ut) + Zt + EZt],

f μ0+δ(t,Γt , ut) = f μ0 (t,Γt , ut) + δ[f (t,Γt , ut) – Xt – EXt],

lμ0+δ(Xt ,EXt) = lμ0 (Xt ,EXt) + δ[l(Xt ,EXt) – Xt – EXt].

Set Λi = (Xi, Y i,EXi,EY i), Θ i = (Xi, Y i, Zi), Γ i = (Xi, Y i, Zi,EXi,EY i,EZi), and Γ 0 = 0 to
solve iteratively the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Xi+1
t = bμ0 (t,Γ i+1

t , ut) + δ{b(t,Γ i
t , u) + Y i

t + EY i
t } + rt

+ {σμ0 (t,Γ i+1
t , ut) + δ[σ (t,Γ i

t , u) + Zi
t + EZi

t] + φt}�Wt ,

�Y i+1
t = –f μ0 (t + 1,Γ i+1

t+1 , ut+1) – δ{f (t + 1,Γ i
t+1, ut+1) – Xi

t+1 – EXi
t+1}

– ϕt+1 + Zi+1
t �Wt + �Mi+1

t ,

X0 = x0, Y i+1
T = lμ0 (Xi+1

T ,EXi+1
T ) + δ{l(Xi

T ,EXi
T ) – Xi

T – EXi
T } + λ.

(3.4)

Then we apply the product rule to X̂i+1
t Ŷ i+1

t yielding

E
〈
X̂i+1

T , lμ0
(
Xi+1

T ,EXi+1
T
)

– lμ0
(
Xi

T ,EXi
T
)〉

+ E
〈
X̂i+1

T , δ
[
Xi–1

T – Xi
T + EXi–1

T – EXi
T
]〉

+ E
〈
X̂i+1

T , δ
[
l
(
Xi

T ,EXi
T
)

– l
(
Xi–1

T ,EXi–1
T
)]〉

= E
〈
X̂i+1

T , Ŷ i+1
T
〉
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= E

T–1∑

t=1

〈
Fμ0

(
t,Γ i+1

t , ut
)

– Fμ0
(
t,Γ i

t , ut
)
, Θ̂ i+1

t
〉

+ E

T–1∑

t=1

δ
〈
F
(
t,Γ i

t , ut
)

– F
(
t,Γ i–1

t , ut
)

+ Θ̂ i
t , Θ̂

i+1
t
〉

+ E
〈
bμ0

(
0,Γ i+1

0 , u0
)

– bμ0
(
0,Γ i

0 , u0
)
, Ŷ i+1

0
〉

+ Eδ
〈
b
(
0,Γ i

0 , u0
)

– b
(
0,Γ i–1

0 , u0
)

+ Ŷ i
0, Ŷ i+1

0
〉

+ E
〈
σμ0

(
0,Γ i+1

0 , u0
)

– σμ0
(
0,Γ i

0 , u0
)
, Ẑi+1

0
〉

+ Eδ
〈
σ
(
0,Γ i

0 , u0
)

– σ
(
0,Γ i–1

0 , u0
)

+ Ẑi
0, Ẑi+1

0
〉

– E
〈
f μ0

(
T ,Λi+1

T , uT
)

– f μ0
(
T ,Λi

T , uT
)
, X̂i+1

T
〉

– Eδ
〈
f
(
T ,Λi

T , uT
)

– f
(
T ,Λi–1

T , uT
)

+ X̂i
T , X̂i+1

T
〉
,

where Γ̂ i
t = Γ i

t – Γ i–1
t and Θ̂ i

t = Θ i
t – Θ i–1

t . Set β0 = min{1,β}, we claim that

E

{

2
∣
∣X̂i+1

T
∣
∣2 +

T–1∑

t=0

∣
∣Θ̂ i+1

t
∣
∣2
}

≤ δ(1 + c)
β0

{

2E
∣
∣X̂i

T
∣
∣
∣
∣X̂i+1

T
∣
∣ + E

T–1∑

t=0

∣
∣Θ̂ i

t
∣
∣
∣
∣Θ̂ i+1

t
∣
∣

}

.

Let ε = β0
δ(1+c) , by means of ab ≤ a2

2ε
+ εb2

2 , we have

E

{

2
∣
∣X̂i+1

T
∣
∣2 +

T–1∑

t=0

∣
∣Θ̂ i+1

t
∣
∣2
}

≤ 1
2

(
δ(1 + c)

β0

)2
{

2E
∣
∣X̂i

T
∣
∣2 + E

T–1∑

t=0

∣
∣Θ̂ i

t
∣
∣2
}

+
1
2

{

2E
∣
∣X̂i+1

T
∣
∣2 + E

T–1∑

t=0

∣
∣Θ̂ i+1

t
∣
∣

}

,

which indicates

2E
∣
∣X̂i+1

T
∣
∣2 + E

T–1∑

t=0

∣
∣Θ̂ i+1

t
∣
∣2 ≤

(
δ(1 + β)

β0

)2
{

2E
∣
∣X̂i

T
∣
∣2 + E

T–1∑

t=0

∣
∣Θ̂ i

t
∣
∣2
}

.

Then

E
∣
∣X̂i

T
∣
∣2 = E

∣
∣
∣
∣
∣

T–1∑

t=0

�X̂i
t

∣
∣
∣
∣
∣

2

≤ T
∣
∣�X̂i

t
∣
∣2 ≤ β1E

T–1∑

t=0

(∣
∣Θ̂ i

t
∣
∣2 +

∣
∣Θ̂ i–1

t
∣
∣2
)
,

where β1 > 0 and it only relies on c and T . Thus, there exists β2 > 0 relying on c, β , and T
such that

E

T–1∑

t=0

∣
∣Θ̂ i+1

t
∣
∣2 ≤ β2δ

2

{

E

T–1∑

t=0

∣
∣Θ̂ i

t
∣
∣2 + E

T–1∑

t=0

∣
∣Θ̂ i–1

t
∣
∣2
}

.

Furthermore, there exists δ̄ ∈ (0, 1) relying on c, β , and T such that, for 0 < δ ≤ δ̄,

E

T–1∑

t=0

∣
∣Θ̂ i+1

t
∣
∣2 ≤ 1

4
E

T–1∑

t=0

∣
∣Θ̂ i

t
∣
∣2 +

1
8
E

T–1∑

t=0

∣
∣Θ̂ i–1

t
∣
∣2, ∀i ≥ 1.
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By [30, Lemma 4.1], we see that {Θ i
t}T–1

t=0 is a Cauchy sequence in K2[0, T]. Denote its limit
by Θ = (X, Y , Z). Taking the limit in (3.4), we can derive that, when 0 < δ ≤ δ̄, Θ = (X, Y , Z)
solves (3.3) for μ = μ0 + δ. The proof is completed. �

For simplicity, for ρ = b,σ , f , g and a = x, y, z, x̃, ỹ, z̃, u, we use the following abbreviations:

⎧
⎪⎪⎨

⎪⎪⎩

Γ̄t = (X̄t , Ȳt , Z̄t ,EX̄t ,EȲt ,EZ̄t), Γ ε
t = (Xε

t , Y ε
t , Zε

t ,EXε
t ,EY ε

t ,EZε
t ),

ρ̄(t) = ρ(t, Γ̄t , ūt), ρε(t) = ρ(t,Γ ε
t , uε

t ),

ρ̃ε(t) = ρ(t, Γ̄t , uε
t ), ρa(t) = ρa(t, Γ̄t , ūt).

Let (k, m, n, N) be a solution of the following variational equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�kt = b̄x(t)kt + b̄y(t)mt + b̄z(t)nt + b̄x̃(t)Ekt + b̄ỹ(t)Emt + b̄z̃(t)Ent

+ α(t)b̄u(t)ε(vt – ūt)

+ {σ̄x(t)kt + σ̄y(t)mt + σ̄z(t)nt + α(t)σ̄u(t)ε(vt – ūt)}�Wt

+ {σ̄x̃(t)Ekt + σ̄ỹ(t)Emt + σ̄z̃(t)Ent}�Wt ,

�mt = –f̄x(t + 1)kt+1 – f̄y(t + 1)mt+1 – f̄z(t + 1)nt+1

– α(t + 1)f̄u(t + 1)ε(vt+1 – ūt+1)

– f̄x̃(t + 1)Ekt+1 – f̄ỹ(t + 1)Emt+1 – f̄z̃(t + 1)Ent+1 + nt�Wt + �N̄t ,

k0 = 0, mT = {lx(X̄T ,EX̄T ) + Elx̃(X̄T ,EX̄T )}kT .

(3.5)

We proceed to introducing the following adjoint equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ηt = –b̄′
x(t + 1)ηt+1 – σ̄ ′

x(t + 1)ζt+1 + f̄ ′
x(t + 1)ξt+1 + ḡx(t + 1) + ζt�Wt

+ �V̄t + E{–b̄′
x̃(t + 1)ηt+1 – σ̄ ′

x̃(t + 1)ζt+1 + f̄ ′
x̃(t + 1)ξt+1 + ḡx̃(t + 1)},

�ξt = {f̄ ′
z (t)ξt – b̄′

z(t)ηt – σ̄ ′
z(t)ζt + ḡz(t)

+ E(f̄ ′
z̃ (t)ξt – b̄′

z̃(t)ηt – σ̄ ′
z̃(t)ζt + ḡz̃(t))}�Wt

+ f̄ ′
y (t)ξt – b̄′

y(t)ηt – σ̄ ′
y(t)ζt + ḡy(t)

+ E{f̄ ′
ỹ (t)ξt – b̄′

ỹ(t)ηt – σ̄ ′
ỹ(t)ζt + ḡỹ(t)},

ηT = –hx(X̄T ,EX̄T ) – Ehx̃(X̄T ,EX̄T ) – lx(X̄T ,EX̄T )ξT – E{lx̃(X̄T ,EX̄T )ξT },
ξ0 = 0.

(3.6)

Here, W , N , V are square integrable martingale processes and N , V are strongly orthog-
onal to W . Set

⎧
⎨

⎩

X̂t = Xε
t – X̄t , Ŷt = Y ε

t – Ȳt , Ẑt = Zε
t – Z̄t , M̂t = Mε

t – M̄t ,

X̃t = X̂t – kt , Ỹt = Ŷt – mt , Z̃t = Ẑt – nt , M̃t = M̂t – Nt ,

then we get

⎧
⎪⎪⎨

⎪⎪⎩

�X̂t = bε(t) – b̄(t) + (σ ε(t) – σ̄ (t))�Wt ,

�Ŷt = –f ε(t + 1) + f̄ (t + 1) + Ẑt�Wt + �M̂t ,

X̂0 = 0, ŶT = 0.

(3.7)
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For MF-FBS�E (1.1), we give the following estimates.

Lemma 3.3 Assume that (A2)–(A5) hold, we get

E

{ T∑

t=0

|X̂t|2 +
T∑

t=0

|Ŷt|2 +
T–1∑

t=0

|Ẑt|2
}

≤ cε2
E|vθ – ūθ |2.

Proof According to (3.7), we have

0 = E〈X̂T , ŶT 〉 – E〈X̂0, Ŷ0〉 = E

T–1∑

t=0

�〈X̂t , Ŷt〉

= E

T∑

t=0

{〈
X̂t , f̃ ε(t) – f ε(t)

〉
+
〈
Ŷt , bε(t) – b̃ε(t)

〉
+
〈
Ẑt ,σ ε(t) – σ̃ ε(t)

〉

+
〈
X̂t , –f̃ ε(t) + f̄ (t)

〉
+
〈
Ŷt , b̃ε(t) – b̄(t)

〉
+
〈
Ẑt , σ̃ ε(t) – σ̄ (t)

〉}

= E

T–1∑

t=1

〈
F
(
t,Γ ε

t , uε
t
)

– F
(
t, Γ̄t , uε

t
)
, Θ̂t

〉

+ E

T∑

t=0

{〈
X̂t , f̄ (t) – f̃ ε(t)

〉
+
〈
Ŷt , b̃ε(t) – b̄(t)

〉
+
〈
Ẑt , σ̃ ε(t) – σ̄ (t)

〉}

+ E
{〈

X̂T , –f ε(T) + f̃ ε(T)
〉
+
〈
Ŷ0, bε(0) – b̃ε(0)

〉
+
〈
Ẑ0,σ ε(0) – σ̃ ε(0)

〉}
.

Combining the above equation with the monotonic conditions, we obtain

E

T∑

t=0

{〈
X̂t , –f̃ ε(t) + f̄ (t)

〉
+
〈
Ŷt , b̃ε(t) – b̄(t)

〉
+
〈
Ẑt , σ̃ ε(t) – σ̄ (t)

〉}

= –E
T–1∑

t=1

〈
F
(
t,Γ ε

t , uε
t
)

– F
(
t, Γ̄t , uε

t
)
, Θ̂t

〉

– E
{〈

X̂T , –f ε(T) + f̃ ε(T)
〉
+
〈
Ŷ0, bε(0) – b̃ε(0)

〉
+
〈
Ẑ0,σ ε(0) – σ̃ ε(0)

〉}

≥ βE

{ T∑

t=0

|X̂t|2 +
T∑

t=0

|Ŷt|2 +
T–1∑

t=0

|Ẑt|2
}

. (3.8)

On the other hand, there is a constant c1 > 0 such that

E

T∑

t=0

〈
X̂t , –f̃ ε(t) + f̄ (t)

〉 ≤ E

T∑

t=0

(
β

2
|X̂t|2 +

1
2β

∣
∣f̄ (t) – f̃ ε(t)

∣
∣2
)

≤ E

T∑

t=0

(
β

2
|X̂t|2 +

c1

2β
ε2|vθ – ūθ |2

)

.
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Similarly, we can deduce

E

T∑

t=0

{〈
X̂t , –f̃ ε(t) + f̄ (t)

〉
+
〈
Ŷt , b̃ε(t) – b̄(t)

〉
+
〈
Ẑt , σ̃ ε(t) – σ̄ (t)

〉}

≤ β

2
E

{ T∑

t=0

|X̂t|2 +
T∑

t=0

|Ŷt|2 +
T–1∑

t=0

|Ẑt|2
}

+
3c1

2β
ε2
E|vθ – ūθ |2. (3.9)

Using (3.8)–(3.9), we finally get

E

{ T∑

t=0

|X̂t|2 +
T∑

t=0

|Ŷt|2 +
T–1∑

t=0

|Ẑt|2
}

≤ cε2
E|vθ – ūθ |2.

The proof is completed. �

Remark 3.1 Under (A2)–(A5), we have the following results.
If t = 1, 2, . . . , T – 1,

⎛

⎜
⎝

–f̄x(t) –f̄y(t) –f̄z(t)
b̄x(t) b̄y(t) b̄z(t)
σ̄x(t) σ̄y(t) σ̄z(t)

⎞

⎟
⎠≤ –βI3n,

⎛

⎜
⎝

–f̄x̃(t) –f̄ỹ(t) –f̄z̃(t)
b̄x̃(t) b̄ỹ(t) b̄z̃(t)
σ̄x̃(t) σ̄ỹ(t) σ̄z̃(t)

⎞

⎟
⎠≤ –βI3n.

If t = 0,

(
b̄y(0) b̄z(0)
σ̄y(0) σ̄z(0)

)

≤ –βI2n,

(
b̄ỹ(0) b̄z̃(0)
σ̄ỹ(0) σ̄z̃(0)

)

≤ –βI2n.

If t = T ,

–f̄x(T) ≤ –βIn, –f̄x̃(T) ≤ –βIn.

Consequently, the coefficients of (3.5) satisfy the monotonic conditions and there exists a
unique solution (k, m, n, N) to (3.5). Following the proof of Lemma 3.3, it is easy to check

E

{ T∑

t=0

|kt|2 +
T∑

t=0

|mt|2 +
T–1∑

t=0

|nt|2
}

≤ cε2
E|vθ – ūθ |2.

Lemma 3.4 Assume that (A2)–(A5) hold, we get

E

{ T∑

t=0

|X̃t|2 +
T∑

t=0

|Ỹt|2 +
T–1∑

t=0

|Z̃t|2
}

= o
(
ε2).

Proof Observe that

Λε(t) – Λ̄(t) = Λ̃x(t)X̂t + Λ̃y(t)Ŷt + Λ̃z(t)Ẑt + Λ̃x̃(t)EX̂t

+ Λ̃ỹ(t)EŶt + Λ̃z̃(t)EẐt + α(t)Λ̃u(t)ε(vt – ūt),
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where

Λ̃a(t) =
∫ 1

0
Λa
(
t, Γ̄t + λΓ̂t , ūt + λ

(
uε

t – ūt
))

dλ,

with a = x, y, z, x̃, ỹ, z̃, u, then we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�X̃t = b̄x(t)X̃t + b̄y(t)Ỹt + b̄z(t)Z̃t + κ1(t) + b̄x̃(t)EX̃t

+ b̄ỹ(t)EỸt + b̄z̃(t)EZ̃t + κ̃1(t)

+ {σ̄x̃(t)EX̃t + σ̄ỹ(t)EỸt + σ̄z̃(t)EZ̃t + κ̃2(t)}�Wt

+ {σ̄x(t)X̃t + σ̄y(t)Ỹt + σ̄z(t)Z̃t + κ2(t)}�Wt ,

�Ỹt = –f̄x(t + 1)X̃t+1 – f̄y(t + 1)Ỹt+1 – f̄z(t + 1)Z̃t+1 – κ3(t + 1) + Z̃t�Wt

+ �M̃t – f̄x̃(t + 1)EX̃t+1 – f̄ỹ(t + 1)EỸt+1 – f̄z̃(t + 1)EZ̃t+1 – κ̃3(t + 1),

X̃0 = 0, ỸT = 0,

(3.10)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ1(t) = {b̃x(t) – b̄x(t)}X̂t + {b̃y(t) – b̄y(t)}Ŷt + {b̃z(t) – b̄z(t)}Ẑt

+ α(t){b̃u(t) – b̄u(t)}ε(vt – ūt),

κ̃1(t) = {b̃x̃(t) – b̄x̃(t)}EX̂t + {b̃ỹ(t) – b̄ỹ(t)}EŶt + {b̃z̃(t) – b̄z̃(t)}EẐt ,

κ2(t) = {σ̃x(t) – σ̄x(t)}X̂t + {σ̃y(t) – σ̄y(t)}Ŷt + {σ̃z(t) – σ̄z(t)}Ẑt

+ α(t){σ̃u(t) – σ̄u(t)}ε(vt – ūt),

κ̃2(t) = {σ̃x̃(t) – σ̄x̃(t)}EX̂t + {σ̃ỹ(t) – σ̄ỹ(t)}EŶt + {σ̃z̃(t) – σ̄z̃(t)}EẐt ,

κ3(t) = –{f̃x(t) – f̄x(t)}X̂t – {f̃y(t) – f̄y(t)}Ŷt – {f̃z(t) – f̄z(t)}Ẑt

– α(t){f̃u(t) – f̄u(t)}ε(vt – ūt),

κ̃3(t) = –{f̃x̃(t) – f̄x̃(t)}EX̂t – {f̃ỹ(t) – f̄ỹ(t)}EŶt – {f̃z̃(t) – f̄z̃(t)}EẐt .

From (3.10), it yields that

0 = E〈X̃T , ỸT 〉 – E〈X̃0, Ỹ0〉 = E

T–1∑

t=0

�〈X̃t , Ỹt〉

= E

T∑

t=0

{〈
X̃t , –f̄Γ (t)Γ̃t

〉
+
〈
Ỹt , b̄Γ (t)Γ̃t

〉
+
〈
Z̃t , σ̄Γ (t)Γ̃t

〉

–
〈
X̃t ,κ3(t) + κ̃3(t)

〉
+
〈
Ỹt ,κ1(t) + κ̃1(t)

〉
+
〈
Z̃t ,κ2(t) + κ̃2(t)

〉}
,

where

Γ̃t =
(
X̃ ′

t , Ỹ ′
t , Z̃′

t ,EX̃ ′
t ,EỸ ′

t ,EZ̃′
t
)′,

ρ̄Γ (t) =
(
ρ̄x(t), ρ̄y(t), ρ̄z(t), ρ̄x̃(t), ρ̄ỹ(t), ρ̄z̃(t)

)
.
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Noticing Remark 3.1, we derive

E

T∑

t=0

{〈
X̃t , –κ3(t) – κ̃3(t)

〉
+
〈
Ỹt ,κ1(t) + κ̃1(t)

〉
+
〈
Z̃t ,κ2(t) + κ̃2(t)

〉}

≥ βE

{ T∑

t=0

|X̃t|2 +
T∑

t=0

|Ỹt|2 +
T–1∑

t=0

|Z̃t|2
}

.

On the other hand,

E
〈
X̃t , –κ3(t) – κ̃3(t)

〉
= E

〈
X̃t ,

[
f̃x(t) – f̄x(t)

]
X̂t
〉
+ E

〈
X̃t ,

[
f̃y(t) – f̄y(t)

]
Ŷt
〉

+ E
〈
X̃t ,

[
f̃z(t) – f̄z(t)

]
Ẑt
〉
+ E

〈
X̃t ,

[
f̃z̃(t) – f̄z̃(t)

]
EẐt

〉

+ E
〈
X̃t ,

[
f̃x̃(t) – f̄x̃(t)

]
EX̂t

〉
+ E

〈
X̃t ,

[
f̃ỹ(t) – f̄ỹ(t)

]
EŶt

〉

+ E
〈
X̃t ,α(t)

[
f̃u(t) – f̄u(t)

]
ε(vt – ūt)

〉
.

Let ε = 1
β

, by virtue of ab ≤ a2

8ε
+ 2εb2, we have

E
〈
X̃t , –κ3(t) – κ̃3(t)

〉

≤ 7β

8
E|X̃t|2 +

2
β
E
{∥
∥f̃x(t) – f̄x(t)

∥
∥2|X̂t|2 +

∥
∥f̃y(t) – f̄y(t)

∥
∥2|Ŷt|2 +

∥
∥f̃z(t) – f̄z(t)

∥
∥2|Ẑt|2

+ ε2∥∥f̃u(t) – f̄u(t)
∥
∥2|vt – ūt|2 +

∥
∥f̃x̃(t) – f̄x̃(t)

∥
∥2|EX̂t|2

+
∥
∥f̃ỹ(t) – f̄ỹ(t)

∥
∥2|EŶt|2 +

∥
∥f̃z̃(t) – f̄z̃(t)

∥
∥2|EẐt|2

}
.

Combining limε→0 ‖f̃Γ (t) – f̄Γ (t)‖ = 0 with Lemma 3.3, we obtain

E
〈
X̃t , –κ3(t) – κ̃3(t)

〉≤ 7β

8
E|X̃t|2 + o

(
ε2).

In a similar way, we have

E
〈
Ỹt ,κ1(t) + κ̃1(t)

〉≤ 7β

8
E|Ỹt|2 + o

(
ε2),

E
〈
Z̃t ,κ2(t) + κ̃2(t)

〉≤ 7β

8
E|Z̃t|2 + o

(
ε2).

Thus,

E

{ T∑

t=0

|X̃t|2 +
T∑

t=0

|Ỹt|2 +
T–1∑

t=0

|Z̃t|2
}

≤ o
(
ε2).

The proof is completed. �
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Remark 3.2 From Lemma 3.4, we see that kt is the first-order variation of Xt , and mt is the
first-order variation of Yt . It is easy to derive

J
(
uε

t
)

– J(ūt) = E

T–1∑

t=0

{〈
ḡx(t) + Eḡx̃(t), kt

〉
+
〈
ḡy(t) + Eḡỹ(t), mt

〉
+
〈
ḡz(t) + Eḡz̃(t), nt

〉

+ α(t)ε
〈
ḡu(t), vt – ūt

〉}
+ E

〈
hx(X̄T ,EX̄T ) + Ehx̃(X̄T ,EX̄T ), kT

〉

+ o(ε). (3.11)

4 Stochastic maximum principle
In this section, we are devoted to establishing the stochastic maximum principle for fully
coupled MF-FBS�E (1.1). Define the following Hamiltonian function:

H (t, x, y, z, x̃, ỹ, z̃,η, ζ , ξ , u) =
〈
η, b(t, x, y, z, x̃, ỹ, z̃, u)

〉
+
〈
ζ ,σ (t, x, y, z, x̃, ỹ, z̃, u)

〉

–
〈
ξ , f (t, x, y, z, x̃, ỹ, z̃, u)

〉
– g(t, x, y, z, x̃, ỹ, z̃, u).

Theorem 4.1 (Stochastic maximum principle) Assume that (A2)–(A5) hold. Let ūt be the
optimal control and (X̄t , Ȳt , Z̄t) be the corresponding optimal trajectory of Problem A, then
for vt ∈ Ut and α(t) ∈ I(t, vt), one has

α(t)
〈
Hu(t, X̄t , Ȳt , Z̄t ,EX̄t ,EȲt ,EZ̄t ,ηt , ζt , ξt , ūt), vt – ūt

〉≤ 0, P-a.s. (4.1)

Proof By (3.5)–(3.6), for t ∈ {0, 1, . . . , T – 1}, we obtain

�〈kt ,ηt〉 = 〈kt+1,�ηt〉 + 〈�kt ,ηt〉
=
〈
kt+1, –b̄′

x(t + 1)ηt+1 – σ̄ ′
x(t + 1)ζt+1 + f̄ ′

x(t + 1)ξt+1 + ḡx(t + 1)
〉

+
〈
kt+1,E

[
–b̄′

x̃(t + 1)ηt+1 – σ̄ ′
x̃(t + 1)ζt+1 + f̄ ′

x̃(t + 1)ξt+1 + ḡx̃(t + 1)
]〉

+
〈
b̄x(t)kt + b̄y(t)mt + b̄z(t)nt + b̄x̃(t)Ekt + b̄ỹ(t)Emt

+ b̄z̃(t)Ent + α(t)εb̄u(t)(vt – ūt),ηt
〉

+
〈[
σ̄x(t)kt + σ̄y(t)mt + σ̄z(t)nt + α(t)εσ̄u(t)(vt – ūt)

]
�Wt , ζt�Wt

〉

+
〈[
σ̄x̃(t)Ekt + σ̄ỹ(t)Emt + σ̄z̃(t)Ent

]
�Wt , ζt�Wt

〉
+ Φt ,

where

Φt =
〈
kt + b̄x(t)kt + b̄y(t)mt + b̄z(t)nt + b̄x̃(t)Ekt + b̄ỹ(t)Emt

+ b̄z̃(t)Ent + α(t)εb̄u(t)(vt – ūt), ζt�Wt
〉

+
〈[
σ̄x(t)kt + σ̄y(t)mt + σ̄z(t)nt + σ̄x̃(t)Ekt + σ̄ỹ(t)Emt

+ σ̄z̃(t)Ent + α(t)εσ̄u(t)(vt – ūt)
]
�Wt ,ηt

〉

+
〈
kt + b̄x(t)kt + b̄y(t)mt + b̄z(t)nt + b̄x̃(t)Ekt + b̄ỹ(t)Emt

+ b̄z̃(t)Ent + α(t)εb̄u(t)(vt – ūt),�V̄t
〉
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+
〈[
σ̄x(t)kt + σ̄y(t)mt + σ̄z(t)nt + σ̄x̃(t)Ekt + σ̄ỹ(t)Emt + σ̄z̃(t)Ent

+ α(t)εσ̄u(t)(vt – ūt)
]
�Wt ,�V̄t

〉
.

Since W , V are martingale processes and V is strongly orthogonal to W , then E[Φt] = 0.
Similarly,

�〈mt , ξt〉 = 〈mt ,�ξt〉 + 〈�mt , ξt+1〉
= –

〈
f̄x̃(t + 1)Ekt+1 + f̄ỹ(t + 1)Emt+1 + f̄z̃(t + 1)Ent+1, ξt+1

〉

–
〈
f̄x(t + 1)kt+1 + f̄y(t + 1)mt+1 + f̄z(t + 1)nt+1

+ α(t + 1)f̄u(t + 1)ε(vt+1 – ūt+1), ξt+1
〉

+
〈
nt�Wt , f̄ ′

z (t)ξt – b̄′
z(t)ηt – σ̄ ′

z(t)ζt + ḡz(t)

+ E
[
f̄ ′
z̃ (t)ξt – b̄′

z̃(t)ηt – σ̄ ′
z̃(t)ζt + ḡz̃(t)

]
�Wt

〉

+
〈
mt , f̄ ′

y (t)ξt – b̄′
y(t)ηt – σ̄ ′

y(t)ζt + ḡy(t)

+ E
[
f̄ ′
ỹ (t)ξt – b̄′

ỹ(t)ηt – σ̄ ′
ỹ(t)ζt + ḡỹ(t)

]〉
+ Υt ,

where

Υt =
〈
nt�Wt , ξt + f̄ ′

y (t)ξt – b̄′
y(t)ηt – σ̄y(t)ζt + ḡy(t)

+ E
[
f̄ ′
ỹ (t)ξt – b̄′

ỹ(t)ηt – σ̄ỹ(t)ζt + ḡỹ(t)
]〉

+
〈
mt ,

{
f̄ ′
z (t)ξt – b̄′

z(t)ηt – σ̄ ′
z(t)ζt + ḡz(t)

+ E
[
f̄ ′
z̃ (t)ξt – b̄′

z̃(t)ηt – σ̄ ′
z̃(t)ζt + ḡz̃(t)

]}
�Wt

〉

+
〈
ξt + f̄ ′

y (t)ξt – b̄′
y(t)ηt – σ̄ ′

y(t)ζt + ḡy(t)

+ E
[
f̄ ′
ỹ (t)ξt – b̄′

ỹ(t)ηt – σ̄ ′
ỹ(t)ζt + ḡỹ(t)

]
,�N̄t

〉

+
〈{

f̄ ′
z (t)ξt – b̄′

z(t)ηt – σ̄ ′
z(t)ζt + ḡz(t)

+ E
[
f̄ ′
z̃ (t)ξt – b̄′

z̃(t)ηt – σ̄z̃(t)ζt + ḡz̃(t)
]}

�Wt ,�N̄t
〉
.

We further derive

E�
{〈kt ,ηt〉 + 〈mt , ξt〉

}

= E
{〈

kt+1, –b̄′
x(t + 1)ηt+1 – E

[
b̄′

x̃(t + 1)ηt+1
]〉

+
〈
b̄x(t)kt + b̄x̃(t)Ekt ,ηt

〉

–
〈
kt+1, σ̄ ′

x(t + 1)ζt+1 + E
[
σ̄ ′

x̃(t + 1)ζt+1
]〉

+
〈
σ̄x(t)kt + σ̄x̃(t)Ekt , ζt

〉

–
〈
f̄y(t + 1)mt+1 + f̄ỹ(t + 1)Emt+1, ξt+1

〉
+
〈
mt , f̄ ′

y (t)ξt + E
[
f̄ ′
ỹ (t)ξt

]〉

–
〈
f̄z(t + 1)nt+1 + f̄z̃(t + 1)Ent+1, ξt+1

〉
+
〈
nt , f̄ ′

z (t)ξt + E
[
f̄ ′
z̃ (t)ξt

]〉

+ ε
〈
α(t)b̄u(t)(vt – ūt),ηt

〉
+ ε

〈
α(t)σ̄u(t)(vt – ūt), ζt

〉
+
〈
ḡx(t + 1) + Eḡx̃(t + 1), kt+1

〉

+
〈
ḡz(t) + Eḡz̃(t), nt

〉
+
〈
ḡy(t) + Eḡỹ(t), mt

〉
– ε

〈
α(t + 1)f̄u(t + 1)(vt+1 – ūt+1), ξt+1

〉}
.
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Accordingly,

–E
〈
hx(X̄T ,EX̄T ) + Ehx̃(X̄T ,EX̄T ), kT

〉

= E
{〈kT ,ηT 〉 + 〈mT , ξT 〉 – 〈k0,η0〉 – 〈m0, ξ0〉

}
= E

T–1∑

t=0

�
{〈kt ,ηt〉 + 〈mt , ξt〉

}

= E

T–1∑

t=0

{〈
ḡx(t) + Eḡx̃(t), kt

〉
+
〈
ḡy(t) + Eḡỹ(t), mt

〉
+
〈
ḡz(t) + Eḡz̃(t), nt

〉}

+ E

T∑

t=0

εα(t)
〈
b̄′

u(t)ηt + σ̄ ′
u(t)ζt – f̄ ′

u(t)ξt , vt – ūt
〉
+ E

{〈
b̄x(0)k0 + b̄x̃(0)Ek0,η0

〉

+
〈
k0, σ̄ ′

x(0)Eζ0 + σ̄ ′
x̃(0)Eζ0

〉
+
〈
f̄y(0)m0 + f̄ỹ(0)Em0, ξ0

〉
+
〈
f̄z(0)n0 + f̄z̃(0)En0, ξ0

〉}
.

Since k0 = 0, ξ0 = 0, then the above equation leads to

E

T–1∑

t=0

{〈
ḡx(t) + Eḡx̃(t), kt

〉
+
〈
ḡy(t) + Eḡỹ(t), mt

〉
+
〈
ḡz(t) + Eḡz̃(t), nt

〉}

+ E
〈
hx(X̄T ,EX̄T ) + Ehx̃(X̄T ,EX̄T ), kT

〉

= –εαE
〈
b̄′

u(θ )ηθ + σ̄ ′
u(θ )ζθ – f̄ ′

u(θ )ξθ , vθ – ūθ

〉
.

Combining limε→0
1
ε
[J(uε

t ) – J(ūt)] ≥ 0 with (3.11), we have

αE
〈
b̄′

u(θ )ηθ + σ̄ ′
u(θ )ζθ – f̄ ′

u(θ )ξθ – ḡu(θ ), vθ – ūθ

〉≤ 0,

then (4.1) holds owing to the arbitrariness of θ . �

Remark 4.1 Theorem 4.1 establishes a more general and constructive stochastic maxi-
mum principle under weakened convexity assumption. To be specific, if the set Ut is not
convex, then the discrete-time stochastic maximum principles in [15, 21] are invalid. In
this sense, our work generalizes and strengthens the discrete-time stochastic maximum
principle of the existing works.

Corollary 4.1 Assume that (A2)–(A4) hold. Let ūt be the optimal control and (X̄t , Ȳt , Z̄t)
be the corresponding optimal trajectory of Problem A. Moreover, assume that the set Ut is
γ -convex, t ∈ T, then for vt ∈ Ut , one has

〈
Hu(t, X̄t , Ȳt , Z̄t ,EX̄t ,EȲt ,EZ̄t ,ηt , ζt , ξt , ūt), vt – ūt

〉≤ 0, P-a.s.

Corollary 4.2 Assume that (A2)–(A4) hold. Let ūt be the optimal control and (X̄t , Ȳt , Z̄t)
be the corresponding optimal trajectory of Problem A. Moreover, assume that Ut = ri Ut ,
t ∈ T, then for vt ∈ Ut , one has

〈
Hu(t, X̄t , Ȳt , Z̄t ,EX̄t ,EȲt ,EZ̄t ,ηt , ζt , ξt , ūt), vt – ūt

〉
= 0, P-a.s.

In what follows, we discuss assumptions, under which the necessary condition (4.1)
turns into a sufficient one.
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Theorem 4.2 (Sufficient conditions for optimality) Under (A2)–(A5), assume that h(·, ·)
is convex and H (t, ·, ·, ·, ·, ·, ·,ηt , ζt , ξt , ·) is convex. Then ūt is an optimal control of Problem
A if (4.1) holds.

Proof Let ut be an arbitrary admissible control and (Xt ,EXt , Yt ,EYt , Zt ,EZt) be the corre-
sponding trajectory. Set X́t = Xt – X̄t and Ýt = Yt – Ȳt . Since X́0 = ÝT = ξ0 = 0, it is derived
that

–E〈ηT , X́T 〉 = E
{〈ηT , X́T 〉 + 〈ξT , ÝT 〉 – 〈η0, X́0〉 – 〈ξ0, Ý0〉

}

= E

T–1∑

t=0

{
�〈ηt , X́t〉 + �〈ξt , Ýt〉

}

= E

T–1∑

t=0

{〈
ξt , –f (t) + f̄ (t)

〉
+
〈
ηt , b(t) – b̄(t)

〉
+
〈
ζt ,σ (t) – σ̄ (t)

〉

–
〈
X́t ,H̄x(t) + EH̄x̃(t)

〉
–
〈
Ýt ,H̄y(t) + EH̄ỹ(t)

〉
–
〈
Źt ,H̄z(t) + EH̄z̃(t)

〉}
.

Denote by (∂(x,y,z,x̃,ỹ,z̃,u)H̄ )(t), etc., the Clarke generalized gradients of H evaluated at
(X̄t , Ȳt , Z̄t ,EX̄t ,EȲt ,EZ̄t , ūt). Together with the stochastic maximum principle (4.1), it fol-
lows that

0 ∈ (∂uH̄ )(t), a.e. t.

By [31, Lemma 2.3], ((∂aH̄ )(t), 0) ∈ (∂a,uH̄ )(t), a.e. t. Besides, from [31, Lemma 2.2(4)],
we get

H (t) – H̄ (t) ≤ (∂xH̄ )(t)X́t + (∂x̃H̄ )(t)EX́t + (∂yH̄ )(t)Ýt

+ (∂ỹH̄ )(t)EÝt + (∂zH̄ )(t)Źt + (∂z̃H̄ )(t)EŹt .

Therefore, along with the Hamiltonian function, it yields that

–E〈ηT , X́T 〉 ≤ E

T–1∑

t=0

{〈
ξt , f̄ (t) – f (t)

〉
+
〈
ηt , b(t) – b̄(t)

〉
+
〈
ζt ,σ (t) – σ̄ (t)

〉
+ H̄ (t) – H (t)

}

= E

T–1∑

t=0

{
g(t,Γt , ūt , vt) – g(t, Γ̄t , ūt , v̄t)

}
.

On the other hand, using the convexity assumption on h(·, ·), we claim that

E
{

h(XT ,EXT ) – h(X̄T ,EX̄T )
}≥ E

{(
∂h̄
∂x

)

(t)X́T +
(

∂h̄
∂ x̃

)

(t)EX́T

}

= E〈ηT , X́T 〉.

Thus,

E
{

h(XT ,EXT ) – h(X̄T ,EX̄T )
}

+ E

T–1∑

t=0

{
g(t,Γt , ut , vt) – g(t, Γ̄t , ūt , v̄t)

}≥ 0.

The proof is completed. �
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5 A Stackelberg game of MF-BS�E
As an application, in this section, we consider a Stackelberg game of MF-BS�E:

⎧
⎨

⎩

�Yt = –f (t + 1, Yt+1, Zt+1,EYt+1,EZt+1, ut+1, vt+1) + Zt�Wt + �Mt ,

YT = κ , ut , vt ∈ Ut ⊆R
m.

(5.1)

The cost functionals for the follower and the leader are given, respectively, as follows:

J1(ut , vt ;κ) = E

{ T∑

t=1

g1(t, Yt , Zt ,EYt ,EZt , ut , vt) + h1(Y0,EY0)

}

,

J2(ut , vt ;κ) = E

{ T∑

t=1

g2(t, Yt , Zt ,EYt ,EZt , ut , vt) + h2(Y0,EY0)

}

.

Here, ut , vt denote the control processes of the follower and leader, respectively. The ad-
missible control sets are given by

U1[0, T] =
{

ut , t ∈ T | ut ∈L2(
Ft ;Rm), ut ∈ Ut

}
,

U2[0, T] =
{

vt , t ∈ T | vt ∈L2(
Ft ;Rm), vt ∈ Ut

}
.

In this section, we make the following assumptions. Set Γ = (y, z, ỹ, z̃), i = 1, 2.
(H1) (a) ∀Γ , u ∈ U1[0, T], v ∈ U2[0, T], f (·,Γ , u, v), gi(·,Γ , u, v) are Ft-adapted

processes.
(b) gi(t, 0, 0, 0) ∈L2(Ft ;R), f (t, 0, 0, 0) ∈L2(Ft ;Rn), hi(y, ỹ) ∈L2(F0;R).
(c) ∀t ∈ T, f (t, ·, ·, ·), gi(t, ·, ·, ·) are uniformly Lipschitz continuous and

differentiable on Γ , u, v; hi(·, ·) are continuously differentiable on y, ỹ and all
derivatives are uniformly bounded.

(d) The function f is independent of z, z̃ at t = T .
(H2) The functions f (t, ·, ·, ·), gi(t, ·, ·, ·) are twice continuously differentiable on Γ , u, v;

hi(·, ·) are twice continuously differentiable on y, ỹ, and all derivatives are
uniformly bounded.

(H3) The set Ut (t ∈ T) is ±γ -convex.
Besides, throughout this section, we formally denote f (0,Γ , u, v) = gi(0,Γ , u, v) ≡ 0, i =

1, 2. The optimal control problem to be solved can be stated in the following definition.

Definition 5.1 The pair (ū, v̄) ∈ U1[0, T] × U2[0, T] is called an optimal solution to the
Stackelberg game of MF-BS�E if it satisfies the following statements:

(a) Given κ ∈L2(F;Rn), there is a mapping l : U2[0, T] ×L2(F;Rn) → U1[0, T] such
that

J1
(
l(vt , ξ ), vt ;κ

)
= min

ut∈U1[0,T]
J1(ut , vt ;κ), ∀vt ∈ U2[0, T].

(b) There exists unique v̄t ∈ U2[0, T] such that

J2
(
l(v̄t ,κ), v̄t ;κ

)
= min

vt∈U2[0,T]
J2
(
l(v̄t ,κ), vt ;κ

)
.

(c) The optimal strategy of the follower is ūt = l(v̄t ,κ).
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5.1 Optimization for the follower
In view of the hierarchy property of the leader-follower game, the follower’s optimization
problem is firstly considered in this subsection. Denote by ūt and (Ȳt , Z̄t), respectively, the
optimal control and optimal trajectory. To begin with, we consider the admissible control
uε

t = ūt + α(t)ε(ut – ūt), where ut ∈ Ut , α(t) ∈ I(t, ut). We construct a needle variation

α(t)ε(ut – ūt) =

⎧
⎨

⎩

αε(uθ – ūθ ), t = θ ,

0, t ∈ T \ {θ},

where α ∈ I(θ , uθ ), (θ , uθ ) ∈ T × Uθ , and ε ∈ (0,γ ∗
1 ]. Let (Y ε

t , Zε
t ) be the state trajectory

corresponding to the control uε
t . Set Γt = (Yt ,EYt , Zt ,EZt). We introduce the following

variational equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�mt = –fy(t + 1, Γ̄t+1, ūt+1, vt+1)mt+1 – fz(t + 1, Γ̄t+1, ūt+1, vt+1)nt+1

– fỹ(t + 1, Γ̄t+1, ūt+1, vt+1)Emt+1 – fz̃(t + 1, Γ̄t+1, ūt+1, vt+1)Ent+1

– α(t + 1)fu(t + 1, Γ̄t+1, ūt+1, vt+1)ε(ut+1 – ūt+1) + nt�Wt + �N̄t ,

mT = 0,

and the adjoint equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�Xt = f ′
y (t, Γ̄t , ūt , vt)Xt + g1y(t, Γ̄t , ūt , vt) + E{f ′

ỹ (t, Γ̄t , ūt , vt)Xt + g1ỹ(t, Γ̄t , ūt , vt)}
+ {f ′

z (t, Γ̄t , ūt , vt)Xt + g1z(t, Γ̄t , ūt , vt)

+ E[f ′
z̃ (t, Γ̄t , ūt , vt)Xt + g1z̃(t, Γ̄t , ūt , vt)]}�Wt ,

X0 = h1y(Ȳ0,EȲ0) + Eh1ỹ(Ȳ0,EȲ0).

Define the Hamiltonian function

H1(t, y, z, ỹ, z̃, u, v, x) = –
〈
x, f (t, y, z, ỹ, z̃, u, v)

〉
– g1(t, y, z, ỹ, z̃, u, v).

Using Theorems 4.1–4.2, we can immediately obtain the following statements.

Theorem 5.1 (Stochastic maximum principle) Let (H1), (H3) hold and κ ∈ L2(F;Rn).
Given the leader’s strategy vt ∈ U2[0, T], assume that (Ȳt , Z̄t) is the optimal trajectory and
ūt is the optimal control of the follower, then for any ut ∈ Ut , one has

α(t)
〈
H1u(t, Ȳt , Z̄t ,EȲt ,EZ̄t , ūt , vt , Xt), ut – ūt

〉≤ 0, P-a.s. (5.2)

Theorem 5.2 (Sufficient conditions for optimality) Let (H1), (H3) hold and κ ∈L2(F;Rn).
Given the leader’s strategy vt ∈ U2[0, T], assume that h1(·, ·) is convex and H1(t, ·, ·, ·, ·, ·,
vt , Xt) is concave and Lipschitz continuous. Then ūt is an optimal control of the follower’s
problem if it satisfies (5.2).
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5.2 Optimization for the leader
Notice that the follower’s optimal response ūt can be determined by the leader, the state
equation of the leader turns to be a MF-FBS�E:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Xt = f ′
y (t, Γ̄t , ūt , vt)Xt + g1y(t, Γ̄t , ūt , vt)

+ E{f ′
ỹ (t, Γ̄t , ūt , vt)Xt + g1ỹ(t, Γ̄t , ūt , vt)}

+ {f ′
z (t, Γ̄t , ūt , vt)Xt + g1z(t, Γ̄t , ūt , vt)

+ E[f ′
z̃ (t, Γ̄t , ūt , vt)Xt + g1z̃(t, Γ̄t , ūt , vt)]}�Wt ,

�Ȳt = –f (t + 1, Ȳt+1, Z̄t+1,EȲt+1,EZ̄t+1, ūt+1, vt+1) + Z̄t�Wt + �M̄t ,

X0 = h1y(Ȳ0,EȲ0) + Eh1ỹ(Ȳ0,EȲ0), ȲT = κ .

(5.3)

In this subsection, for a = y, ỹ, z, z̃, v, x, x̃, we use the following abbreviations:

b̄(t) = f ′
y (t, Γ̄t , ūt , v̄t)X̄t + g1y(t, Γ̄t , ūt , v̄t) + E

{
f ′
ỹ (t, Γ̄t , ūt , v̄t)X̄t + g1ỹ(t, Γ̄t , ūt , v̄t)

}
,

σ̄ (t) = f ′
z (t, Γ̄t , ūt , v̄t)X̄t + g1z(t, Γ̄t , ūt , v̄t) + E

{
f ′
z̃ (t, Γ̄t , ūt , v̄t)X̄t + g1z̃(t, Γ̄t , ūt , v̄t)

}
,

H̄2a(t) = H2a(t, Γ̄t , ūt , v̄t , X̄t ,EX̄t , pt , ζt , qt),

f̄a(t) = fa(t, Γ̄t , ūt , v̄t), ḡ2a(t) = g2a(t, Γ̄t , ūt , v̄t).

Likewise, we consider the admissible control

vε
t =

⎧
⎨

⎩

v̄θ + αε(vθ – v̄θ ), t = θ ,

0, t ∈ T \ {θ},

where α ∈ I(θ , vθ ), (θ , vθ ) ∈ T× Uθ , and ε ∈ (0,γ ∗
2 ]. Let (Xε

t , Y ε
t , Zε

t ) be the state trajectory
corresponding to the admissible control vε

t . Let (k,η,ρ, N) be a solution of the following
variational equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�kt = b̄x(t)kt + b̄y(t)ηt + b̄z(t)ρt + b̄x̃(t)Ekt + b̄ỹ(t)Eηt + b̄z̃(t)Eρt + α(t)b̄v(t)ε(vt – v̄t)

+ [σ̄x(t)kt + σ̄y(t)ηt + σ̄z(t)ρt + α(t)σ̄v(t)ε(vt – v̄t)]�Wt

+ [σ̄x̃(t)Ekt + σ̄ỹ(t)Eηt + σ̄z̃(t)Eρt]�Wt ,

�ηt = –f̄y(t + 1)ηt+1 – f̄z(t + 1)ρt+1 – α(t + 1)f̄v(t + 1)ε(vt+1 – v̄t+1)

– f̄ỹ(t + 1)Eηt+1 – f̄z̃(t + 1)Eρt+1 + ρt�Wt + �Nt ,

k0 = {h1yy(Ȳ0,EȲ0) + h1yỹ(Ȳ0,EȲ0) + Eh1yỹ(Ȳ0,EȲ0) + Eh1ỹỹ(Ȳ0,EȲ0)}η0, ηT = 0.

We define the Hamiltonian

H2(t, y, z, ỹ, z̃, u, v, x, x̃, p, ζ , q) =
〈
p, b(t, y, z, ỹ, z̃, u, v, x, x̃)

〉
+
〈
ζ ,σ (t, y, z, ỹ, z̃, u, v, x, x̃)

〉

–
〈
q, f (t, y, z, ỹ, z̃, u, v)

〉
– g2(t, y, z, ỹ, z̃, u, v).
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Similarly, we proceed to introducing the following adjoint equations associated with MF-
FBS�E (5.3):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�pt = –H̄2x(t) – EH̄2x̃(t) + ζt�Wt + �Vt , pT = 0,

�qt = –H̄2y(t) – EH̄2ỹ(t) – {H̄2z(t) + EH̄2z̃(t)}�Wt ,

q0 = h2y(Ȳ0,EȲ0) + Eh2ỹ(Ȳ0,EȲ0) – {h1yy(Ȳ0,EȲ0)p0 + Eh1ỹy(Ȳ0,EȲ0)p0}
– E{h1yỹ(Ȳ0,EȲ0)p0 + Eh1ỹỹ(Ȳ0,EȲ0)p0}.

Here, W , N , V are square integrable martingale processes and N , V are strongly orthog-
onal to W .

The following conclusions are straightforward with the aid of Theorems 4.1–4.2.

Theorem 5.3 (Stochastic maximum principle) Assume that (H1)–(H3) hold. Let v̄t and
(X̄t , Ȳt , Z̄t) be the optimal control, optimal trajectory, respectively. Then, for vt ∈ Ut , one has

α(t)
〈
H2v(t, Ȳt , Z̄t ,EȲt ,EZ̄t , ūt , v̄t , X̄t ,EX̄t , pt , ζt , qt), vt – v̄t

〉≤ 0, P-a.s. (5.4)

Theorem 5.4 (Sufficient conditions for optimality) Under (H1)–(H3), assume that h2(·, ·)
is convex and H2(t, ·, ·, ·, ·, ūt , ·, ·, ·, pt , ζt , qt) is convex, then v̄t is an optimal control of the
leader’s problem if (5.4) holds.

6 Perspectives and open problems
In this section, we give a brief exposition on the prospects that are open to the researchers.
The following topics shall be explored in our future works.

Firstly, we see that the effectiveness of optimality conditions obtained in this paper sub-
stantially relies on the structure of the set Ut . So it is pregnant to discuss more general
and essential convexity assumptions for the discrete-time forward–backward stochastic
system.

Secondly, there are many more partially observable cases which are more constructive
and inevitable for applications and are technologically demanding in their filtering proce-
dure.

Acknowledgements
The authors would like to thank the anonymous referees and editor very much for helpful comments and suggestions
which led to the improvement of presentation and quality of the work.

Funding
This work is partially supported by the National Natural Science Foundation of China (Grant No. 11971185).

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in this manuscript, and they read and approved the final manuscript.



Song and Liu Advances in Difference Equations        (2020) 2020:188 Page 24 of 24

Author details
1School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China. 2Hubei Key
Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan,
China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 September 2019 Accepted: 16 April 2020

References
1. Yong, J.M., Zhou, X.Y.: Stochastic Controls, Hamiltonian Systems and HJB Equations. Springer, Berlin (1999)
2. Bismut, J.M.: An introductory approach to duality in optimal stochastic control. SIAM Rev. 20, 62–78 (1978)
3. Dokuchaev, N., Zhou, X.Y.: Stochastic controls with terminal contingent conditions. J. Math. Anal. Appl. 238(1),

143–165 (1999)
4. Ma, H.P., Liu, B.: Optimal control of mean-field jump-diffusion systems with noisy memory. Int. J. Control 92(4),

816–827 (2019)
5. Peng, S.G.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28, 966–979

(1990)
6. Li, R.J., Liu, B.: A maximum principle for fully coupled stochastic control systems of mean-field type. J. Math. Anal.

Appl. 415(2), 902–930 (2014)
7. Wu, Z.: A general maximum principle for optimal control problems of forward–backward stochastic control systems.

Automatica 49, 1473–1480 (2013)
8. Xu, R.M., Zhang, L.Q.: Stochastic maximum principle for mean-field controls and non-zero summean-field game

problems for forward–backward systems. arXiv:1207.4326
9. Yong, J.M.: Optimality variational principle for controlled forward–backward stochastic differential equations with

mixed initial-terminal conditions. SIAM J. Control Optim. 48(6), 4119–4156 (2010)
10. Antonelli, F.: Backward–forward stochastic differential equations. Ann. Appl. Probab. 3, 777–793 (1993)
11. Ma, J., Yong, J.M.: Forward–Backward Stochastic Differential Equations and Their Applications. Springer, Berlin (1999)
12. Butkovskii, A.G.: On necessary and sufficient optimality conditions for impulse control systems. Avtom. Telemeh.

24(8), 1056–1064 (1963)
13. Pshenichnyi, B.N.: Necessary Conditions for an Extremum. Nauka, Moscow (1968). English translation in Dekker, New

York (1971)
14. Mahmudov, N.I.: Necessary first-order and second-order optimality conditions in discrete-time stochastic systems.

J. Optim. Theory Appl. 182, 1001–1018 (2019)
15. Lin, X.Y., Zhang, W.H.: A maximum principle for optimal control of discrete-time stochastic systems with multiplicative

noise. IEEE Trans. Autom. Control 60(4), 1121–1126 (2015)
16. Xu, J.J., Zhang, H.S., Xie, L.H.: General linear forward and backward stochastic difference equations with applications.

Automatica 96, 40–50 (2018)
17. Mahmudov, N.I.: Maximum principle for stochastic discrete-time Itô equations. In: Brownian Motion: Elements,

Dynamics and Applications, Chap. 6, pp. 1–22 (2015)
18. Mardanov, M.J., Melikov, T.K.: A new discrete analogue of Pontryagin’s maximum principle. Dokl. Math. 98(3), 549–551

(2018)
19. Mardanov, M.J., Melikov, T.K., Malik, S.T.: On strengthening of optimality conditions in discrete control systems. Proc.

Inst. Math. Mech. 44(1), 135–154 (2018)
20. Mardanov, M.J., Melikov, T.K., Malik, S.T., Malikov, K.: First- and second-order necessary conditions with respect to

components for discrete optimal control problems. J. Comput. Appl. Math. 364, 112342 (2020)
21. Ji, S.L., Liu, H.D.: Maximum principle for stochastic optimal control problem of forward–backward stochastic

difference systems. arXiv:1812.11283
22. Buckdahn, R., Djehiche, B., Li, J., Peng, S.G.: Mean-field backward stochastic differential equations: a limit approach.

Ann. Probab. 37, 1524–1565 (2009)
23. Ma, H.P., Liu, B.: Maximum principle for partially observed risk-sensitive optimal control problems of mean-field type.

Eur. J. Control 32, 16–23 (2016)
24. Bielecki, T.R., Cialenco, I., Chen, T.: Dynamic conic finance via backward stochastic difference equations. SIAM J.

Financ. Math. 6(1), 1068–1122 (2015)
25. Cohen, S.N., Elliott, R.J.: A general theory of finite state backward stochastic difference equations. Stoch. Process. Appl.

120(4), 442–466 (2010)
26. Cohen, S.N., Elliott, R.J.: Backward stochastic difference equations and nearly time-consistent nonlinear expectations.

SIAM J. Control Optim. 49(1), 125–139 (2011)
27. Andersson, A., Djehiche, B.: A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63, 341–356 (2011)
28. Leichtweis, K.: Convex Sets. Nauka, Moscow (1985)
29. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, extended edn. de Gruyter Studies in

Mathematics, vol. 27. de Gruyter, Berlin (2004)
30. Hu, Y., Peng, S.G.: Solution of forward–backward stochastic differential equations. Probab. Theory Relat. Fields 103(2),

273–283 (1995)
31. Zhou, X.Y.: Sufficient conditions of optimality for stochastic systems with controllable diffusions. IEEE Trans. Autom.

Control 41, 1176–1179 (1996)

http://arxiv.org/abs/arXiv:1207.4326
http://arxiv.org/abs/arXiv:1812.11283

	A maximum principle for fully coupled controlled forward-backward stochastic difference systems of mean-ﬁeld type
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Controlled MF-FBSDeltaEs
	Stochastic maximum principle
	A Stackelberg game of MF-BSDeltaE
	Optimization for the follower
	Optimization for the leader

	Perspectives and open problems
	Acknowledgements
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


