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Abstract
In this paper, we use an Ornstein–Uhlenbeck process to describe the environmental
stochasticity and propose a stochastic predator–prey model with modified
Leslie–Gower and Holling-type II schemes. For each species, sharp sufficient
conditions for persistence in the mean and extinction are respectively obtained. The
results demonstrate that the persistence and extinction of the species have close
relationships with the environmental stochasticity. In addition, the theoretical results
are numerically illustrated by some simulations.
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1 Introduction
The well-known predator–prey framework with modified Leslie–Gower and Holling-type
II schemes (PPFMLHS) formulated by Aziz-Alaoui and Okiye [1] can be illustrated as
follows:

⎧
⎨

⎩

dx(t)
dt = x(t)(r1 – ax(t) – cy(t)

h+x(t) ),
dy(t)

dt = y(t)(r2 – fy(t)
h+x(t) ),

(1)

where a, c, f and h are assumed to be positive constants. a means the intraspecific com-
petition strength, c measures the per capita reduction rate, h characterises the safeguard
of the environment and f possesses the like signification of c. In the past two decades,
model (1) and its generalisations have been subjected to intensive research, and a mass
of attractive features have been provided. For example, Aziz-Alaoui and Okiye [1] tested
the boundedness and global stability of model (1); Guo and Song [2] dissected model (1)
perturbed by the impulse; Abid et al. [3] probed into the optimal control of model (1); see
[3–15] for more related outcomes.

The parameters in model (1) are hypothesised to be deterministic, which neglects the
environmental perturbations, and hence model (1) cannot accurately depict the real situa-
tions. A mass of scholars (see [16–23]) introduced stochasticity into deterministic systems
to dissect the functions of stochasticity on population dynamics. Particularly, under the
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hypothesis that the growth rates in model (1) are disturbed by the random perturbations
with ri → ri + σi

dBi(t)
dt , several authors (see [16–18, 20]) tested the following stochastic

PPFMLHS:

⎧
⎨

⎩

dx(t) = x(t)(r1 – ax(t) – cy(t)
h+x(t) ) dt + σ1x(t) dB1(t),

dy(t) = y(t)(r2 – fy(t)
h+x(t) ) dt + σ2y(t) dB2(t),

(2)

where σ 2
i means the intensity of white noise, Bi(t) is a standard Brownian motion defined

on (Ω ,Ft , P), a given complete probability space. Ji et al. [17, 18] probed into several dy-
namical characteristics of system (2) and offered extinct and persistent conditions for the
system. Liu et al. [20] examined the persistence and extinction of model (2) with impulsive
toxicant input.

Model (2) hypothesises that the growth rate in the random environments is linear with
respect to the Gaussian white noise

r̃i(t) = ri + σi
dBi(t)

dt
, i = 1, 2.

Integrating on the interval [0, T] results in

ri =
1
T

∫ T

0
r̃i(t) dt → ri + σi

Bi(T)
T

∼ N
(
ri,σ 2

i /T
)
.

Therefore, the variance of the average per capita growth rate ri over an interval of length
T tends to ∞ as T → 0. This is insufficient to describe the real situation. Several authors
(see [24, 25]) have claimed that using the mean-reverting Ornstein–Uhlenbeck process is
a more appropriate approach to incorporate the environmental perturbations. On account
of this approach, one has

dr̃i(t) = αi
(
ri – r̃i(t)

)
dt + ξi dBi(t), i = 1, 2,

i.e.

r̃i(t) = ri + (ri0 – ri)e–αit + ξi

∫ t

0
e–αi(t–s) dBi(s)

= ri + (ri0 – ri)e–αit + σi(t)
dBi(t)

dt
, i = 1, 2,

where ri0 = r̃i(0), σi(t) = ξi√
2αi

√
1 – e–2αit , αi > 0 characterises the speed of reversion, ξ 2

i

means the intensity of stochastic perturbations. We then derive the following stochastic
PPFMLHS:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t) = x(t)(r1 + (r10 – r1)e–α1t – ax(t) – cy(t)
h+x(t) ) dt

+ σ1(t)x(t) dB1(t),

dy(t) = y(t)(r2 + (r20 – r2)e–α2t – fy(t)
h+x(t) ) dt

+ σ2(t)y(t) dB2(t).

(3)
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As far as we know, little research has been conducted to explore model (3). For this reason,
we delve into the properties of model (3).

The arrangement of this paper is as follows. In Sect. 2, the persistence and extinction
threshold for each population are proffered. In Sect. 3, some numerical simulations are
performed to evidence the theoretical outcomes. In Sect. 4, a number of concluding re-
marks are put forward.

2 Main results
Define

R2
+ =

{
z ∈ R2|zi > 0, i = 1, 2

}
, bi(t) = ri –

ξ 2
i

4αi
+

ξ 2
i

4αi
e–2αit ,

b̄i = lim
t→+∞ t–1

∫ t

0
bi(s) ds = ri –

ξ 2
i

4αi
, i = 1, 2.

Lemma 1 For arbitrary (x(0), y(0)) ∈ R2
+, model (3) possesses a unique solution (x(t), y(t)) ∈

R2
+ for all t ≥ 0 a.s. (almost surely).

Proof Pay attention to the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du(t) = (b1(t) + (r10 – r1)e–α1t – aeu(t) – cev(t)

h+eu(t) ) dt

+ σ1(t) dB1(t),

dv(t) = (b2(t) + (r20 – r2)e–α2t – fev(t)

h+eu(t) ) dt

+ σ2(t) dB2(t),

(4)

and u(0) = ln x(0), v(0) = ln y(0). Due to the fact that the coefficients of system (4) ad-
here to the Lipschitz condition, system (4) possesses a unique local solution (u(t), v(t))
on [0, τ∗) (see Theorems 3.15–3.17 in [26]), where τ∗ means the explosion time. Then
we can deduce from Itô’s formula that on [0, τ∗) model (3) possesses a unique solution
(x(t), y(t)) = (eu(t), ev(t)) which is positive. Now we validate τ∗ = +∞. Focus on the following
systems:

dΦ(t) = Φ(t)
(
r1 + (r10 – r1)e–α1t – aΦ(t)

)
dt

+ σ1(t)Φ(t) dB1(t), Φ(0) = x(0); (5)

dψ(t) = ψ(t)
(

r2 + (r20 – r2)e–α2t –
f
h
ψ(t)

)

dt

+ σ2(t)ψ(t) dB2(t), ψ(0) = y(0); (6)

dϕ(t) = ϕ(t)
(

r2 + (r20 – r2)e–α2t –
f

h + Φ(t)
ϕ(t)

)

dt

+ σ2(t)ϕ(t) dB2(t), Φ(0) = x(0). (7)

On the basis of the comparison theorem [27], for t ∈ [0, τ∗),

x(t) ≤ Φ(t), ψ(t) ≤ y(t) ≤ ϕ(t), a.s. (8)
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In accordance to Theorem 2.2 in [22],

Φ(t) =
e
∫ t

0 b1(s) ds– r10–r1
α1

(e–α1t–1)+
∫ t

0 σ1(s) dB1(s)

x–1(0) + a
∫ t

0 e
∫ s

0 b1(τ ) dτ– r10–r1
α1

(e–α1s–1)+
∫ s

0 σ1(τ ) dB1(τ ) ds
, (9)

ψ(t) =
e
∫ t

0 b2(s) ds– r20–r2
α2

(e–α2t–1)+
∫ t

0 σ2(s) dB2(s)

y–1(0) + f
h
∫ t

0 e
∫ s

0 b2(τ ) dτ– r20–r2
α2

(e–α2s–1)+
∫ s

0 σ2(τ ) dB2(τ ) ds
(10)

and

ϕ(t) =
e
∫ t

0 b2(s) ds– r20–r2
α2

(e–α2t–1)+
∫ t

0 σ2(s) dB2(s)

y–1(0) +
∫ t

0
f

h+Φ(s) e
∫ s

0 b2(τ ) dτ– r20–r2
α2

(e–α2s–1)+
∫ s

0 σ2(τ ) dB2(τ ) ds
. (11)

Due to the fact that Φ(t), ψ(t), ϕ(t) are global, we can deduce that τ∗ = +∞. �

Lemma 2 ([28]) Let Γ (t) ∈ C(Ω × [0, +∞), [0, +∞)).
(I) If one can find out three positive constants κ , μ and μ0 such that, for all t ≥ κ ,

lnΓ (t) ≤ μt – μ0
∫ t

0 Γ (s) ds + F(t), where F(t)/t → 0 as t → +∞, then
lim supt→+∞ t–1 ∫ t

0 Γ (s) ds ≤ μ

μ0
a.s.

(II) If one can find out three positive constants κ , μ and μ0 such that, for all t ≥ κ ,
lnΓ (t) ≥ μt – μ0

∫ t
0 Γ (s) ds + F(t), where F(t)/t → 0 as t → +∞, then

lim inft→+∞ t–1 ∫ t
0 Γ (s) ds ≥ μ

μ0
a.s.

Lemma 3 If b̄1 > 0 and b̄2 > 0, then limt→+∞ t–1 ln y(t) = 0 a.s.

Proof Choose sufficiently large T which fulfils that, for t ≥ T ,

(b̄i – ε)t ≤
∫ t

0
bi(s) ds ≤ (b̄i + ε)t, e(b̄i–ε)t ≥ 2e(b̄i–ε)T .

For t ≥ T , one can deduce from (9) that

Φ(t) =
e
∫ t

0 b1(s) ds– r10–r1
α1

(e–α1t–1)+
∫ t

0 σ1(s) dB1(s)

x–1(0) + a
∫ t

0 e
∫ s

0 b1(τ ) dτ– r10–r1
α1

(e–α1s–1)+
∫ s

0 σ1(τ ) dB1(τ ) ds

≤ e
∫ t

0 b1(s) ds– r10–r1
α1

(e–α1t–1)+
∫ t

0 σ1(s) dB1(s)

a
∫ t

0 e
∫ s

0 b1(τ ) dτ– r10–r1
α1

(e–α1s–1)+
∫ s

0 σ1(τ ) dB1(τ ) ds

≤ e(b̄1+ε)t– r10–r1
α1

(e–α1t–1)+
∫ t

0 σ1(s) dB1(s)

aemin0≤v≤t{
∫ v

0 σ1(τ ) dB1(τ )– r10–r1
α1

(e–α1v–1)} ∫ t
T e(b̄1–ε)s ds

=
(b̄1 – ε)e(b̄1+ε)t– r10–r1

α1
(e–α1t–1)+

∫ t
0 σ1(s) dB1(s)

a(e(b̄1–ε)t – e(b̄1–ε)T )emin0≤v≤t{
∫ v

0 σ1(τ ) dB1(τ )– r10–r1
α1

(e–α1v–1)}

≤ 2(b̄1 – ε)e(b̄1+ε)t– r10–r1
α1

(e–α1t–1)+
∫ t

0 σ1(s) dB1(s)

ae(b̄1–ε)temin0≤v≤t{
∫ v

0 σ1(τ ) dB1(τ )– r10–r1
α1

(e–α1v–1)}

=
2(b̄1 – ε)

a
e2εtL1(t),
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where

L1(t) =
e
∫ t

0 σ1(s) dB1(s)– r10–r1
α1

(e–α1t–1)

emin0≤v≤t{
∫ v

0 σ1(τ ) dB1(τ )– r10–r1
α1

(e–α1v–1)} .

It then follows from L1(t) ≥ 1 that

∫ t

T

f
h + Φ(s)

e
∫ s

0 b2(τ ) dτ– r20–r2
α2

(e–α2s–1)+
∫ s

0 σ2(τ ) dB2(τ ) ds

≥
∫ t

T

fe(b̄2–ε)s– r20–r2
α2

(e–α2s–1)+
∫ s

0 σ2(τ ) dB2(τ )

h + 2(b̄1–ε)
a e2εsL1(s)

ds

≥
∫ t

T

fe(b̄2–ε)s– r20–r2
α2

(e–α2s–1)+
∫ s

0 σ2(τ ) dB2(τ )

(h + 2(b̄1–ε)
a )e2εsL1(s)

ds

=
af

ah + 2(b̄1 – ε)

∫ t

T
e(b̄2–3ε)s+

∫ s
0 σ2(τ ) dB2(τ )– r20–r2

α2
(e–α2s–1)L–1

1 (s) ds

≥ af
ah + 2(b̄1 – ε)

1
b̄2 – 3ε

(
e(b̄2–3ε)t – e(b̄2–3ε)T)

min
0≤v≤t

{
L2(v)

}

= L3(t)
(
e(b̄2–3ε)t – e(b̄2–3ε)T)

,

where

L2(t) = L–1
1 (t)e

∫ t
0 σ2(τ ) dB2(τ )– r20–r2

α2
(e–α2t–1),

L3(t) =
af

ah + 2(b̄1 – ε)
1

b̄2 – 3ε
min

0≤v≤t

{
L2(v)

}
.

Thus (11) implies that

1
ϕ(t)

≥ e–
∫ t

T b2(s) ds+ r20–r2
α2

(e–α2(t–T)–1)–
∫ t

T σ2(s) dB2(s)

× L3(t)
(
e(b̄2–3ε)t – e(b̄2–3ε)T)

≥ e–
∫ t

T b2(s) ds+ r20–r2
α2

(e–α2(t–T)–1)–
∫ t

T σ2(s) dB2(s) × 1
2

L3(t)e(b̄2–3ε)t

≥ L4(t) × e–4εt ,

where

L4(t) =
1
2

L3(t)e
∫ T

0 b2(s) ds+ r20–r2
α2

(e–α2(t–T)–1)–
∫ t

T σ2(s) dB2(s).

For this reason,

t–1 lnϕ(t) < –t–1 ln L4(t) + 4ε. (12)

We then deduce from limt→+∞ t–1 ∫ t
0 σi(s) dBi(s) = 0 (i = 1, 2) that if b̄2 > 0,

lim
t→+∞ t–1 ln L4(t) = 0 a.s.
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This, together with (12), indicates

lim sup
t→+∞

t–1 ln y(t) ≤ lim sup
t→+∞

t–1 lnϕ(t) ≤ 0 a.s.

Taking advantage of Itô’s formula to (6) deduces

d lnψ(t) =
(

b2(t) + (r20 – r2)e–α2t –
f
h
ψ(t)

)

dt + σ2(t) dB2(t),

namely,

t–1 lnψ(t) = t–1 ln y(0) + t–1
∫ t

0
b2(s) ds –

(r20 – r2)
α2t

(
e–α2t – 1

)

–
f
h

t–1
∫ t

0
ψ(s) ds + t–1

∫ t

0
σ2(s) dB2(s). (13)

For arbitrary ε > 0, one can find out T > 0 such that, for t ≥ T ,

b̄2 – ε/2 ≤ t–1
[

ln y(0) –
(r20 – r2)

α2

(
e–α2t – 1

)
+

∫ t

0
b2(s) ds

]

≤ b̄2 + ε/2.

We then deduce from (13) that, for t ≥ T ,

t–1 lnψ(t) ≤ b̄2 + ε –
f
h

t–1
∫ t

0
ψ(s) ds + t–1

∫ t

0
σ2(s) dB2(s), (14)

t–1 lnψ(t) ≥ b̄2 – ε –
f
h

t–1
∫ t

0
ψ(s) ds + t–1

∫ t

0
σ2(s) dB2(s). (15)

Choose 0 < ε < b̄2. Making use of (I) and (II) in Lemma 2 yields that

h(b̄2 – ε)
f

≤ lim inf
t→+∞ t–1

∫ t

0
ψ(s) ds ≤ lim sup

t→+∞
t–1

∫ t

0
ψ(s) ds

≤ h(b̄2 + ε)
f

a.s.

We then deduce from the arbitrariness of ε that

lim
t→+∞ t–1

∫ t

0
ψ(s) ds =

hb̄2

f
a.s., (16)

which indicates that limt→+∞ t–1 lnψ(t) = 0 a.s. In accordance to (8),

lim inf
t→+∞ t–1 ln y(t) ≥ lim

t→+∞ t–1 lnψ(t) = 0 a.s. (17)
�

Theorem 1 ([28]) For model (3), the following conclusions hold:
(i) If b̄1 < 0, b̄2 < 0, then both x and y become extinct, i.e. limt→+∞ x(t) = 0,

limt→+∞ y(t) = 0 a.s.



Zhou et al. Advances in Difference Equations        (2020) 2020:179 Page 7 of 15

(ii) If b̄1 < 0, b̄2 > 0, then x becomes extinct and y is persistent in the mean, i.e.
limt→+∞ t–1 ∫ t

0 y(s) ds = hb̄2/f a.s.
(iii) If b̄1 > 0, b̄2 < 0, then y becomes extinct and x is persistent in the mean, i.e.

limt→+∞ t–1 ∫ t
0 x(s) ds = b̄1/a a.s.

(iv) When b̄1 > 0, b̄2 > 0, (a) if b̄1 < cb̄2/f , then x becomes extinct and y is persistent in
the mean, i.e. limt→+∞ t–1 ∫ t

0 y(s) ds = hb̄2/f a.s.; (b) if b̄1 > cb̄2/f , then
limt→+∞ t–1 ∫ t

0 x(s) ds = b̄1/a – cb̄2/(af ), limt→+∞ t–1 ∫ t
0

y(s)
h+x(s) ds = b̄2/f a.s.

Proof (i). Taking advantage of Itô’s formula to (3) results in

d ln x(t) =
(

b1(t) + (r10 – r1)e–α1t – ax(t) –
cy(t)

h + x(t)

)

dt + σ1(t) dB1(t),

d ln y(t) =
(

b2(t) + (r20 – r2)e–α2t –
fy(t)

h + x(t)

)

dt + σ2(t) dB2(t).

As a consequence,

ln x(t) – ln x(0) =
∫ t

0
b1(s) ds –

r10 – r1

α1

(
e–α1t – 1

)
– a

∫ t

0
x(s) ds

– c
∫ t

0

y(s)
h + x(s)

ds +
∫ t

0
σ1(s) dB1(s), (18)

ln y(t) – ln y(0) =
∫ t

0
b2(s) ds –

r20 – r2

α2

(
e–α2t – 1

)

– f
∫ t

0

y(s)
h + x(s)

ds +
∫ t

0
σ2(s) dB2(s). (19)

We then deduce from (18) that, for sufficiently large t,

t–1 ln
x(t)
x(0)

≤ b̄1 + ε + t–1
∫ t

0
σ1(s) dB1(s) –

r10 – r1

tα1

(
e–α1t – 1

)
. (20)

In accordance to limt→+∞ t–1 ∫ t
0 σ1(s) dB1(s) = 0 and b̄1 + ε < 0, we derive limt→+∞ x(t) = 0

a.s. Analogously, b̄2 < 0 means that limt→+∞ y(t) = 0 a.s.
(ii). Note that b̄1 < 0, hence (i) indicates that limt→+∞ x(t) = 0. As a result, for sufficiently

large t,

ln y(t) – ln y(0) ≤ (b̄2 + ε)t –
f

h + ε

∫ t

0
y(s) ds +

∫ t

0
σ2(s) dB2(s), (21)

ln y(t) – ln y(0) ≥ (b̄2 – ε)t –
f

h – ε

∫ t

0
y(s) ds +

∫ t

0
σ2(s) dB2(s). (22)

Making use of Lemma 2 to (21) and (22) results in

lim sup
t→+∞

t–1
∫ t

0
y(s) ds ≤ (h + ε)(b̄2 + ε)

f
, lim inf

t→+∞ t–1
∫ t

0
y(s) ds ≥ (h – ε)(b̄2 – ε)

f
.

We then deduce from the arbitrariness of ε that limt→+∞ t–1 ∫ t
0 y(s) ds = hb̄2/f a.s.
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(iii). Since b̄2 < 0, then analogous to the proof of (i), one can validate that limt→+∞ y(t) = 0.
The proof of (iii) is analogous to that of (ii), thus is left out.

(iv). (a). Compute that (18) × f – (19) × c,

t–1f ln
x(t)
x(0)

= ct–1 ln
y(t)
y(0)

+ ft–1
∫ t

0
b1(s) ds – ct–1

∫ t

0
b2(s) ds

–
r10 – r1

α1t
(
e–α1t – 1

)
f +

r20 – r2

α2t
(
e–α2t – 1

)
c

– aft–1
∫ t

0
x(s) ds + ft–1

∫ t

0
σ1(s) dB1(s)

– ct–1
∫ t

0
σ2(s) dB2(s).

On the basis of Lemma 3, for arbitrary ε > 0, we can find out T > 0 such that, for t ≥ T ,
ct–1 ln y(t)

y(0) ≤ ε/5. For this reason,

t–1f ln x(0) ≤ ε/5,
r20 – r2

α2t
(
e–α2t – 1

)
c –

r10 – r1

α1t
(
e–α1t – 1

)
f ≤ ε/5,

ft–1
∫ t

0
σ1(s) dB1(s) – ct–1

∫ t

0
σ2(s) dB2(s) ≤ ε/5,

ft–1
∫ t

0
b1(s) ds – ct–1

∫ t

0
b2(s) ds ≤ f b̄1 – cb̄2 + ε/5.

As a result, for t ≥ T ,

t–1f ln x(t) ≤ ε + f b̄1 – cb̄2. (23)

Choose 0 < ε < cb̄2 – f b̄1. Consequently, limt→+∞ x(t) = 0. The proof of

lim
t→+∞ t–1

∫ t

0
y(s) ds = hb̄2/f

is analogous to that of (ii) and thereby is left out.
(b). On the basis of (19),

t–1 ln y(t) – t–1 ln y(0) = t–1
∫ t

0
b2(s) ds –

r20 – r2

α2t
(
e–α2t – 1

)

– ft–1
∫ t

0

y(s)
h + x(s)

ds

+ t–1
∫ t

0
σ2(s) dB2(s). (24)

We then deduce from Lemma 3 and limt→+∞ t–1 ∫ t
0 σ2(s) dB2(s) = 0 that

lim
t→+∞ t–1

∫ t

0

y(s)
h + x(s)

ds =
b̄2

f
. (25)
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As a consequence, for any ε > 0, we can find out T > 0 such that, for t ≥ T ,

–
cb̄2

f
– ε ≤ –

r10 – r1

α1t
(
e–α1t – 1

)
– ct–1

∫ t

0

y(s)
h + x(s)

ds + t–1 ln x(0)

≤ –
cb̄2

f
+ ε. (26)

Applying (26) to (18) gives that, for t ≥ T ,

t–1 ln x(t) ≥ b̄1 –
cb̄2

f
– 2ε – at–1

∫ t

0
x(s) ds + t–1

∫ t

0
σ1(s) dB1(s),

t–1 ln x(t) ≤ b̄1 –
cb̄2

f
+ 2ε – at–1

∫ t

0
x(s) ds + t–1

∫ t

0
σ1(s) dB1(s).

Choose 0 < ε < (b̄1 – cb̄2/f )/2. On the basis of Lemma 2,

b̄1

a
–

cb̄2

af
–

2ε

a
≤ lim inf

t→+∞ t–1
∫ t

0
x(s) ds ≤ lim sup

t→+∞
t–1

∫ t

0
x(s) ds

≤ b̄1

a
–

cb̄2

af
+

2ε

a
.

We then deduce from the arbitrariness of ε that limt→+∞ t–1 ∫ t
0 x(s) ds = b̄1/a – cb̄2/(af ). �

3 Discussions and numerical simulations
Now we test the functions of the mean-reverting Ornstein–Uhlenbeck process on the
persistence and extinction of model (3). There are two key parameters in the Ornstein–
Uhlenbeck process: the speed of reversion αi and the intensity of the perturbation ξi. In
light of Theorem 1, the persistence and extinction of system (3) are entirely dominated by
the signs of b̄1, b̄2 and b̄1 – cb̄2/f . Clearly,

∂ b̄i

∂αi
> 0,

∂(b̄1 – cb̄2/f )
∂α1

> 0,
∂(b̄1 – cb̄2/f )

∂α2
< 0,

∂ b̄i

∂(ξ 2
i )

< 0,
∂(b̄1 – cb̄2/f )

∂(ξ 2
1 )

< 0,
∂(b̄1 – cb̄2/f )

∂(ξ 2
2 )

> 0.

For this reason, with the rise of αi (respectively, ξi), species i tends to be persistent (re-
spectively, extinct), i = 1, 2. Furthermore, due to the fact that ∂(b̄1–cb̄2/f )

∂α2
< 0 (respectively,

∂(b̄1–cb̄2/f )
∂(ξ2

2 ) > 0), thus sufficiently large α2 (respectively, ξ2) could make the prey population

extinct (respectively, persistent) provided b̄1 > 0 and b̄2 > 0.
Now we numerically validate the above outcomes (here we only provide the functions

of αi since the functions of ξi can be proffered analogously). On the basis of the Milstein
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method offered in [29], model (3) can be discretized as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + xk(r1 + (r10 – r1)e–α1(k�t) – axk – cyk

h+xk )�t

+ ξ1√
2α1

√
1 – e–2α1(k�t)xk√�tξ k

+ ξ2
1

4α1
(1 – e–2α1(k�t))xk((ξ k)2�t – �t),

yk+1 = yk + yk(r2 + (r20 – r2)e–α2(k�t) – cyk

h+xk )�t

+ ξ2√
2α2

√
1 – e–2α2(k�t)yk√�tηk

+ ξ2
2

4α2
(1 – e–2α2(k�t))yk((ηk)2�t – �t),

where ξ k , ηk , k = 1, 2, . . . , K , mean independent Gaussian random variables.
Choose r1 = 0.6, r2 = 0.4, r10 = 0.3, r20 = 0.2, ξ 2

1 = 1.43, ξ 2
2 = 0.63, a = 0.4, c = 0.36, f =

0.25, h = 1 (these and the following parameter values are hypothesised). Now, we let α1

and α2 vary.
• Choose α1 = 0.55, α2 = 0.35. Then b̄1 = –0.05, b̄2 = –0.05. On the basis of (i) in

Theorem 1, both x and y become extinct. See Fig. 1.
• Choose α1 = 0.55, α2 = 0.525. Then b̄1 = –0.05, b̄2 = 0.1. On the basis of (ii) in

Theorem 1, x becomes extinct and limt→+∞ t–1 ∫ t
0 y(s) ds = hb̄1/f = 0.4. See Fig. 2.

• Choose α1 = 0.65, α2 = 0.35. Then b̄1 = 0.05, b̄2 = –0.05. On the basis of (iii) in
Theorem 1, y becomes extinct and limt→+∞ t–1 ∫ t

0 x(s) ds = b̄1/a = 0.125. See Fig. 3.
Comparing Fig. 1 with Fig. 2, one could perceive that with the rise of α2, the predator
population inclines to be persistent. Analogously, comparing Fig. 1 with Fig. 3, one
could perceive that with the rise of α1, the prey population inclines to be persistent.

Figure 1 Solutions of model (3) with r1 = 0.6, r2 = 0.4, r10 = 0.3, r20 = 0.2, ξ 2
1 = 1.43, ξ 2

2 = 0.63, a = 0.4, c = 0.36,
f = 0.25, h = 1. With α1 = 0.55, α2 = 0.35
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Figure 2 Solutions of model (3) with r1 = 0.6, r2 = 0.4, r10 = 0.3, r20 = 0.2, ξ 2
1 = 1.43, ξ 2

2 = 0.63, a = 0.4, c = 0.36,
f = 0.25, h = 1. With α1 = 0.55, α2 = 0.525

Figure 3 Solutions of model (3) with r1 = 0.6, r2 = 0.4, r10 = 0.3, r20 = 0.2, ξ 2
1 = 1.43, ξ 2

2 = 0.63, a = 0.4, c = 0.36,
f = 0.25, h = 1. With α1 = 0.65, α2 = 0.35

• Choose α1 = 0.715, α2 = 0.7875. Then b̄1 = 0.1, b̄1 = 0.2, b̄1 < cb̄2/f = 0.288. On the
basis of (a) in Theorem 1, x becomes extinct and limt→+∞ t–1 ∫ t

0 y(s) ds = hb̄2/f = 0.8.
See Fig. 4.
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Figure 4 Solutions of model (3) with r1 = 0.6, r2 = 0.4, r10 = 0.3, r20 = 0.2, ξ 2
1 = 1.43, ξ 2

2 = 0.63, a = 0.4, c = 0.36,
f = 0.25, h = 1. With α1 = 0.715, α2 = 0.7875

Figure 5 Solutions of model (3) with r1 = 0.6, r2 = 0.4, r10 = 0.3, r20 = 0.2, ξ 2
1 = 1.43, ξ 2

2 = 0.63, a = 0.4, c = 0.36,
f = 0.25, h = 1. With α1 = 0.715, α2 = 0.45

• Choose α1 = 0.715, α2 = 0.45. Then b̄1 = 0.1, b̄2 = 0.05, b̄1 > cb̄2/f = 0.072. On the
basis of (b) in Theorem 1, limt→+∞ t–1 ∫ t

0 x(s) ds = b̄1/a – cb̄2/(af ) = 0.07.
limt→+∞ t–1 ∫ t

0
y(s)

h+x(s) ds = b̄2/f = 0.2. See Fig. 5. In comparison with Fig. 4, one could
perceive that with the rise of α2, the prey population inclines to become extinct.
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4 Concluding remarks
In the present article, we took advantage of a mean-reverting Ornstein–Uhlenbeck pro-
cess to portray the random perturbations in the environment and formulated a stochastic
PPFMLHS which might be more appropriate than model (2). We offered the persistence-
and-extinction threshold of the model and uncovered some significant functions of
Ornstein–Uhlenbeck process: sufficiently large αi (the speed of reversion) could make
species i persistent; furthermore, in some cases sufficiently large α2 could make species 1
(the prey population) become extinct.

Several problems remain to be solved. First, the present article tests the predator–prey
framework, it would be interesting to dissect the food-chain framework (see [30]). Second,
the present article probed into the white noises, one could examine other random noises
such as the telephone noise (see [31]), the Lévy noise (see [32]) etc. When the telephone
noise is considered, model (3) is replaced with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t) = x(t)(r1(λ(t)) + (r10(λ(t)) – r1(λ(t)))e–α1(λ(t))t – a(λ(t))x(t)

– c(λ(t))y(t)
h(λ(t))+x(t) ) dt + σ1(t,λ(t))x(t) dB1(t),

dy(t) = y(t)(r2(λ(t)) + (r20(λ(t)) – r2(λ(t)))e–α2(λ(t))t – f (λ(t))y(t)
h(λ(t))+x(t) ) dt

+ σ2(t,λ(t))y(t) dB2(t),

where λ(t) is a Markov chain with finite states. When the Lévy noise is considered, model
(3) is replaced with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t) = x(t–)(r1 + (r10 – r1)e–α1t– – ax(t–) – cy(t–)
h+x(t–) ) dt

+ σ1(t–)x(t–) dB1(t) +
∫

Ξ
η2(ξ )Γ̃ (dt, dξ ),

dy(t) = y(t–)(r2 + (r20 – r2)e–α2t– – fy(t–)
h+x(t–) ) dt

+ σ2(t–)y(t–) dB2(t) +
∫

Ξ
η2(ξ )Γ̃ (dt, dξ ),

where μ(t–) means the left limit of μ(t), Γ̃ is the compensating measure of a Poisson
measure Γ , Ξ ⊆ (0, +∞) adheres to γ (Ξ ) < +∞, where γ is the characteristic measure
of Γ̃ . Finally, one could take the intraspecific competition of the predator population into
account, which was neglected in model (3).
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