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1 Introduction
Usually fractional differential equations are considered as a generalization of ordinary dif-
ferential equations, and they have been applied as more appropriate models of real world
problems in engineering, physics, finance, etc. [9, 22]. The applications of fractional cal-
culus have been growing, including anomalous diffusion [5], viscoelastic mechanics [6],
control system [12], petroleum engineering [19], multi-strain tuberculosis model [23], and
many other branches of physics and engineering. A good collection of different fractional
models applied to thermodiffusion, thermodynamics, mechanics, and viscoelasticity is
given in the book [24].

In many processes, such as chemical processes (behaviors in chemical kinetics), techni-
cal processes (electric, pneumatic, and hydraulic networks), biosciences (heredity in pop-
ulation dynamics), economics (dynamics of business cycles), a delay is observed. With the
combination of both fractional derivative and time delay, the topic of fractional order delay
differential equations is enjoying growing interest among mathematicians and physicists
(see, for example, [11] for delayed feedback control).

One of the main qualitative problems is connected with obtaining explicit formulas for
the solutions, especially in the case of linear equations. The generalized Mittag-Leffler
function with matrix arguments is applied for systems of linear Caputo fractional differ-
ential equations (see [8]). Recently, there have been developments on seeking the explicit
formula of solutions to delay Caputo fractional differential equations. Li and Wang [13]
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studied the linear homogenous Caputo fractional delay differential equations and gave a
representation of the solution. Also, in [15, 17] representations of the solution of linear
non-homogeneous Caputo fractional delay differential equations are provided.

However, little is known regarding Riemann–Liouville (RL) fractional differential equa-
tions with delays. For some related contributions about RL factional differential equations,
one can refer to previous works [1, 3]. Note that linear systems of RL fractional differential
equations without any delay are studied in [18] and explicit formulas for the solutions are
obtained. RL fractional differential equations with delays are not well studied. We men-
tion the papers [14, 16] where the lower bound of the RL fractional derivative coincides
with the left side end of the initial interval, but we note that this does not correspond to
the idea in the case of delay differential equations with ordinary derivatives and the idea
of the initial value problem of RL fractional differential equations.

In this paper we study initial value problems of systems of linear RL fractional differential
equations with constant delay of the type

RL
0 Dq

t X(t) = AX(t) + BX(t – τ ) + F(t) for t ∈ (0, T],

where A, B are constant matrices, τ > 0 is a constant delay, and T ≤ ∞. Similar to the
case of the ordinary derivative, the differential equation is given to the right of the initial
time interval. It requires the lower bound of the RL fractional derivative to coincide with
the right side end of the initial interval (usually this point is zero). Note that in this case
any solution of an initial problem (IVP) with RL fractional derivatives is not continuous
at the initial point. That is why RL fractional delay differential equations are convenient
for modeling a process with impulsive types of initial conditions. These types of processes
can be found in physics, chemistry, engineering, biology, and economics. To determine
the law of the initial impulsive reaction, we need to add to the usual initial condition (for
example, x(t) = φ(t) on the initial interval [–τ , 0], τ > 0 is the delay) a fractional condition.
This conclusion is based on the results obtained in [9] and [21] concerning the physical
interpretation of RL fractional derivatives and initial conditions which include derivatives
of the same kind. Based on the above, we set up appropriate IVPs for RL linear fractional
differential equations with the lower limit of the RL derivative equal to the right side point
of the initial interval, i.e., we study initial conditions of the type

X(t) = G(t) for t ∈ [–τ , 0]

and

0I1–q
t X(t)|t=0 = lim

t→0+

1
Γ (1 – q)

∫ t

0

X(s)
(t – s)q ds = C,

where C is a constant vector.
Explicit formulas for the solutions of initial value problems with both zero and nonzero

initial functions are obtained. Also, the cases of homogeneous as well as non-homoge-
neous equations are studied. In the case A = 0 the explicit formulas are comparatively
easy to be applied, and in the case A �= 0 the q-matrix functions (or the matrix Mittag-
Leffler functions) are used. The scalar case of the linear RL fractional differential equations
with the above mentioned initial conditions is studied in [2] and explicit solutions are
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obtained. Note that in [2] the Mittag-Leffler function is applied in all formulas for the
explicit solutions. In the case of systems and vector functions, the Mittag-Leffler function
is not applicable and it is replaced with the q-matrix exponential function defined and used
in [4]. The application of this function not only leads to more complicated calculations but
also to new formulas for the exacts solutions.

2 Preliminary notes on fractional derivatives and equations
Let m ∈ Lloc

1 ([t0, T],R) and t0, T ≥ 0 : t0 < T ≤ ∞ (in the case T = ∞ the intervals (t0, T]
and [t0, T] are (t0, T) and [t0, T), respectively). In this paper we use the following definitions
for fractional derivatives and integrals:

– Riemann–Liouville fractional integral of order q ∈ (0, 1) [7, 20]

t0 Iq
t m(t) =

1
Γ (q)

∫ t

t0

m(s)
(t – s)1–q ds, t ∈ [t0, T],

where Γ (·) is the gamma function.
Note that sometimes the notation t0 D–q

t m(t) = t0 Iq
t m(t) is used.

– Riemann–Liouville fractional derivative of order q ∈ (0, 1) [7, 20]

RL
t0 Dq

t m(t) =
d
dt

(
t0 I1–q

t m(t)
)

=
1

Γ (1 – q)
d
dt

∫ t

t0

(t – s)–qm(s) ds, t ∈ [t0, T].

We give fractional integrals and RL fractional derivatives of some elementary functions
which will be used later.

Proposition 1 For t > t0 and β > 0, the following equalities are true:

RL
t0 Dq

t (t – t0)β =
Γ (1 + β)

Γ (1 + β – q)
(t – t0)β–q,

t0 I1–q
t (t – t0)β–1 =

Γ (β)
Γ (1 + β – q)

(t – t0)β–q,

t0 I1–q
t (t – t0)q–1 = Γ (q),

RL
t0 Dq

t (t – t0)q–1 = 0.

For m ∈ Lloc
1 ([t0, T],Rn), m = (m1, m2, . . . , mn)T , we use

RL
t0 Dq

t m(t) =
(RL

t0 Dq
t m1(t), RL

t0 Dq
t m2(t), . . . , RL

t0 Dq
t mn(t)

)T

and

t0 Iq
t m(t) =

(
t0 Iq

t m1(t), t0 Iq
t m2(t), . . . , t0 Iq

t mn(t)
)T .

Let Mn×n(R) be the set of all matrices A = {aij}n
i,j=1 with aij ∈R. We will use the notation

I for the unit matrix from Mn×n(R). For any matrix A ∈ Mn×n(R), we will use the notation
A0 = I and define the q-matrix exponential function [4] by

eA(t–t0)
q = (t – t0)q–1

∞∑
k=0

Ak (t – t0)kq

Γ ((k + 1)q)
, t ≥ t0,
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and the Mittag-Leffler matrix function by

Eq
(
A(t – t0)q) =

∞∑
k=0

Ak (t – t0)kq

Γ ((k + 1)q)
.

Therefore,

eA(t–t0)
q = (t – t0)q–1Eq

(
A(t – t0)q).

The definitions of the initial condition for systems of fractional differential equations
with RL-derivatives are based on the following result for the linear RL matrix fractional
equation:

RL
t0 Dq

t X(t) = AX(t), t ∈ (t0, T], (1)

with X ∈ Lloc
1 ([t0, T],Rn) and A ∈ Mn×n(R).

Proposition 2 (Theorem 3.1 [25]) Let q ∈ (0, 1). Then problem (1) with the initial condi-
tion

t0 I1–q
t X(t)|t=t0 := lim

t→t0+ t0 I1–q
t m(t) = C, C ∈ Mn×n(R) (2)

is equivalent to problem (1) with the initial condition

lim
t→t0+

[
(t – t0)q–1X(t)

]
=

C
Γ (q)

. (3)

Remark 1 According to Proposition 2, it is enough to study one of the initial conditions
(2) or (3). Following this result, we will study only the initial condition of type (2).

The explicit formula of the initial value problem (IVP) (1), (2) is given by (see Theo-
rem 3.2 [25])

X(t) = eA(t–t0)
q C. (4)

In the case of a system of non-homogeneous fractional differential equations with RL-
derivatives

RL
t0 Dq

t X(t) = AX + F(t)(t), t ∈ (t0, T], (5)

with F ∈ C([t0, T],Rn), the explicit formula of IVP (5), (2) is given by (see Theorem 3 and
Remark 1 [18])

X(t) = eA(t–t0)
q C +

∫ t

t0

eA(t–s)
q F(s) ds for t ∈ (t0, T]. (6)

In the case of a scalar linear RL fractional differential equation, we have the following
result.
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Proposition 3 (Example 4.1 [10]) The solution of the Cauchy type problem

RL
t0 Dq

t x(t) = λx(t) + f (t) for t ∈ (t0, T],

t0 I1–q
t x(t)|t=t0 = b

with b ∈R, f ∈ ([t0, T],R) has the following form (formula 4.1.14 [10]):

x(t) =
b

(t – t0)1–q Eq,q
(
λ(t – t0)q) +

∫ t

t0

(t – s)q–1Eq,q
(
λ(t – s)q)f (s) ds, (7)

where Ep,q(z) =
∑∞

j=0
zj

Γ (jp+q) is the Mittag-Leffler function with two parameters (see, for ex-
ample, [20]).

In the case of a system of RL fractional differential equations with constant coefficients,
we have the following result, which is a special case of Theorem 3 [18].

Proposition 4 ([18]) The solution to the initial value problem for the system

RL
t0 Dq

t X(t) = AX(t) + F(t) for t ∈ (t0, T],

t0 I1–q
t X(t)|t=t0 = C

with A ∈ Mn×n(R), F ∈ ([t0, T],Rn) has the following form:

X(t) = eA(t–t0)
q C +

∫ t

t0

eA(t–s)
q F(s) ds, t ∈ (t0, T], (8)

or its equivalent form

X(t) = (t – t0)q–1Eq
(
A(t – t0)q)C +

∫ t

t0

(t – s)q–1Eq
(
A(t – s)q)F(s) ds, t ∈ (t0, T]. (9)

3 Explicit formula for the solutions of scalar linear RL fractional equations with
delays and zero initial values

Throughout the paper we assume
∑l

i=n(∗) = 0 for the integers n, l, n > l.

3.1 Homogeneous linear RL fractional differential equation
Consider the system of linear Riemann–Liouville fractional differential equations with
constant delay (HFrDE):

RL
0 Dq

t X(t) = BX(t – τ ) for t ∈ (0, T], (10)

where q ∈ (0, 1), B ∈ Mn×n(R), B = {bij}, τ > 0 is a real constant, X = (X1, X2, . . . , Xn)T , Xk ∈
R, k = 1, 2, . . . , n.

Remark 2 Without loss of generality we assume that there exists a natural number N ≤ ∞
such that T = (N + 1)τ .
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We will consider the zero initial value

X(t) = 0 for t ∈ [–τ , 0], (11)

and

0I1–q
t X(t)|t=0 = lim

t→0+

1
Γ (1 – q)

∫ t

0

X(s)
(t – s)q ds = 1, (12)

with 1 = (1, 1, . . . , 1)T .

Remark 3 Note that the IVP for HFrDE (10), (11) with the zero fractional initial condition,
i.e., limt→0+(t1–qX(t)) = 0, has only a zero solution.

Theorem 1 The solution of IVP (10), (11), (12) is given by

X(t) =
n∑

i=0

Bi

Γ ((i + 1)q)
(t – iτ )(i+1)q–11, t ∈ (

nτ , (n + 1)τ
]
, n = 0, 1, 2, . . . , N . (13)

Proof Let t ∈ (0, τ ]. Then from (10) we have RL fractional differential equations RL
0 Dq

t x ×
Xi(t) = 0 for t ∈ (0, τ ], i = 1, 2, . . . , n, whose solution is given by

X(t) =
tq–1

Γ (q)
1, t ∈ (0, τ ], (14)

since from Proposition 1 we have 0I1–qtq–1 = Γ (q), i.e., 0I1–q
t X(t)|t=0 = 1 and

RL
0 Dq

t
tq–1

Γ (q)
= 0. (15)

Let t ∈ (τ , 2τ ]. Then from (10), (14) we have the following system of RL fractional equa-
tions:

RL
0 Dq

t X(t) = B
(t – τ )q–1

Γ (q)
1 for t ∈ (τ , 2τ ]. (16)

Then the solution of IVP (10), (11), (12) is given by

X(t) =
tq–1

Γ (q)
1 +

B
Γ (2q)

(t – τ )2q–11, t ∈ (τ , 2τ ]. (17)

Indeed, from Proposition 1 with β = 2q – 1, we have for t ∈ (τ , 2τ ] that

RL
0 Dq

t X(t) =
1

Γ (1 – q)
d
dt

(∫ τ

0
(t – s)–qX(s) ds +

∫ t

τ

(t – s)–qX(s) ds
)

=
1

Γ (1 – q)
d
dt

∫ τ

0
(t – s)–q sq–1

Γ (q)
ds1

+
1

Γ (1 – q)
d
dt

∫ t

τ

(t – s)–q
(

sq–1

Γ (q)
1 +

B
Γ (2q)

(s – τ )2q–11
)

ds
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=
1

Γ (1 – q)
d
dt

∫ t

0
(t – s)–q sq–1

Γ (q)
ds1

+
B

Γ (2q)Γ (1 – q)
d
dt

∫ t

τ

(t – s)–q(s – τ )2q–1 ds1

=
B

Γ (q)
(t – τ )q–11. (18)

Therefore, X(t) satisfies (16) for t ∈ (τ , 2τ ].
Let t ∈ (2τ , 3τ ]. Then from (10), (14), (17) we have

RL
0 Dq

t X(t) = B
(t – τ )q–1

Γ (q)
1 +

B2

Γ (2q)
(t – 2τ )2q–11 for t ∈ (2τ , 3τ ]. (19)

Then the solution of IVP (10), (11), (12) is given by

X(t) =
tq–1

Γ (q)
1 +

B
Γ (2q)

(t – τ )2q–11 +
B2

Γ (3q)
(t – 2τ )3q–11, t ∈ (2τ , 3τ ], (20)

since from Proposition 1 with β = 2q – 1 and the equality

d
dt

∫ t

a
(t – s)–q(s – a)kq–1 ds =

(t – a)(k–1)q–1Γ (1 – q)Γ (kq)
Γ ((k – 1)q)

(21)

we have for t ∈ (2τ , 3τ ] that

RL
0 Dq

t X(t) =
1

Γ (1 – q)
d
dt

(∫ τ

0
(t – s)–qX(s) ds +

∫ 2τ

τ

(t – s)–qX(s) ds

+
∫ t

2τ

(t – s)–qX(s) ds
)

=
1

Γ (1 – q)
d
dt

∫ τ

0
(t – s)–q sq–1

Γ (q)
ds1

+
1

Γ (1 – q)
d
dt

∫ 2τ

τ

(t – s)–q
(

sq–1

Γ (q)
1 +

B
Γ (2q)

(s – τ )2q–11
)

ds

+
1

Γ (1 – q)
d
dt

∫ t

2τ

(t – s)–q

×
(

sq–1

Γ (q)
1 +

B
Γ (2q)

(s – τ )2q–11 +
B2

Γ (3q)
(s – 2τ )3q–11

)
ds

=
1

Γ (1 – q)
d
dt

∫ t

0
(t – s)–q sq–1

Γ (q)
ds1

+
B

Γ (2q)Γ (1 – q)
d
dt

∫ t

τ

(t – s)–q(s – τ )2q–11 ds

+
B2

Γ (3q)Γ (1 – q)
d
dt

∫ t

2τ

(t – s)–q(s – 2τ )3q–11 ds

=
B

Γ (q)
(t – τ )q–11 +

B2

Γ (2q)
(t – 2τ )2q–11. (22)

Therefore, X(t), defined by (19), satisfies (19) for t ∈ (2τ , 3τ ].
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Continue this process and the claim is established. �

Remark 4 In the scalar case n = 1 the system of RL delay fractional equations (10) is re-
duced to a scalar linear delay RL fractional equation, the vector 1 is reduced to the constant
1, and formula (13) coincides with equation (7) [2].

3.2 Non-homogeneous linear RL fractional differential equation
Consider non-homogeneous scalar linear Riemann–Liouville fractional differential equa-
tions with constant delay (NFrDE):

RL
0 Dq

t X(t) = BX(t – τ ) + F(t) for t ∈ (0, T], (23)

with the zero initial condition (11) and fractional condition

0I1–q
t X(t)|t=0 = 0, (24)

where F ∈ C(R+,Rn), F = (F1, F2, . . . , Fn)T , τ > 0 is a real constant, and B ∈ Mn×n.
Using a direct proof, we will obtain an explicit formula for the solution of IVP (23), (11),

(24).

Theorem 2 The solution of IVP (23), (11), (24) is given by

X(t) =
n∑

i=0

Bi

Γ ((i + 1)q)

∫ t

iτ
(t – s)(i+1)q–1F(s – iτ ) ds,

t ∈ (
nτ , (n + 1)τ

]
, n = 0, 1, . . . , N . (25)

Proof Let t ∈ (0, τ ]. Use the variation of constants method and we will search for solutions
in the form

X(t) =
∫ t

0

(t – s)q–1

Γ (q)
K(s) ds, (26)

where K ∈ C([0, τ ],Rn), K = (K1, K2, . . . , Kn)T is the unknown function to be obtained. Ac-
cording to the initial condition (11), we have X(t – τ ) = 0 for t ∈ [0, τ ] and

RL
0 Dq

t Xi(t) = Fi(t) for t ∈ (0, τ ], i = 1, 2, . . . , n. (27)

Then, applying
∫ t
ξ

(t – s)–q(s – ξ )q–1 ds = Γ (1 – q)Γ (q), we obtain for t ∈ (0, τ ] that

RL
0 Dq

t Xi(t) =
1

Γ (1 – q)
d
dt

∫ t

0
(t – s)–q

∫ s

0

(s – ξ )q–1

Γ (q)
Ki(ξ ) dξ ds

=
1

Γ (1 – q)
d
dt

∫ t

0

∫ t

ξ

(t – s)–q (s – ξ )q–1

Γ (q)
K(ξ ) ds dξ

=
d
dt

∫ t

0
Ki(ξ )

(
1

Γ (1 – q)

∫ t

ξ

(t – s)–q (s – ξ )q–1

Γ (q)
ds

)
dξ

=
d
dt

∫ t

0
Ki(ξ ) dξ = Ki(t). (28)
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From (27) and (28) we get Ki(t) ≡ Fi(t), i = 1, 2, . . . , n, i.e., the solution X(t) of IVP (23),
(11), (24) for t ∈ (0, τ ] is given by

X(t) =
∫ t

0

(t – s)q–1

Γ (q)
F(s) ds, t ∈ (0, τ ]. (29)

Note that it is easy to check the validity of condition (24) for the solution X(t) defined
by (29).

Let t ∈ (τ , 2τ ]. Use the variation of constants method and we will search for solutions in
the form

X(t) =
∫ t

0

(t – s)q–1

Γ (q)
F(s) ds +

B
Γ (2q)

∫ t

τ

(t – s)2q–1K(s) ds for t ∈ (τ , 2τ ], (30)

where K ∈ C([τ , 2τ ],Rn), K = (K1, K2, . . . , Kn)T is the unknown function to be obtained.
Then, according to (23), (2), and X(t – τ ) =

∫ t–τ

0
(t–τ–s)q–1

Γ (q) F(s) ds, for t ∈ (2τ , 3τ ], we have

RL
0 Dq

t X(t) = B
∫ t–τ

0

(t – τ – s)q–1

Γ (q)
F(s) ds + F(t)

= B
∫ t

τ

(t – s)q–1

Γ (q)
F(s – τ ) ds + F(t) for t ∈ (τ , 2τ ]. (31)

Also, applying –qΓ (–q) = Γ (1 – q), equality 0I1–(q+1)
t–ξ (t – ξ )2q–1 = Γ (2q)

Γ (q) (t – ξ )q–1 (see
Proposition 1), (21) with a = ξ , k = 2, and

d
dt

∫ t

τ

K(ξ )
(∫ t

ξ

(t – s)–q(s – ξ )2q–1 ds
)

dξ

=
∫ t

τ

K(ξ )
d
dt

(∫ t

ξ

(t – s)–q(s – ξ )2q–1 ds
)

dξ

=
Γ (1 – q)Γ (2q)

Γ (q)

∫ t

τ

K(ξ )(t – ξ )q–1 dξ , (32)

from (2) and (30) we obtain for t ∈ (τ , 2τ ] that

RL
0 Dq

t X(t) =
1

Γ (1 – q)
d
dt

(∫ τ

0
(t – s)–qX(s) ds +

∫ t

τ

(t – s)–qX(s) ds
)

=
1

Γ (1 – q)
d
dt

(∫ τ

0
(t – s)–q

∫ s

0

(s – ξ )q–1

Γ (q)
F(ξ ) dξ ds

+
∫ t

τ

(t – s)–q
∫ s

0

(s – ξ )q–1

Γ (q)
F(ξ ) dξ ds

+
∫ t

τ

(t – s)–q B
Γ (2q)

∫ s

τ

(s – ξ )2q–1K(ξ ) dξ ds
)

=
1

Γ (1 – q)
d
dt

(∫ t

0
(t – s)–q

∫ s

0

(s – ξ )q–1

Γ (q)
F(ξ ) dξ ds

+
B

Γ (2q)

∫ t

τ

K(ξ )
∫ t

ξ

(t – s)–q(s – ξ )2q–1 ds dξ

)
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= F(t) +
B

Γ (2q)Γ (1 – q)
d
dt

∫ t

τ

K(ξ )
(∫ t

ξ

(t – s)–q(s – ξ )2q–1 ds
)

dξ

= F(t) + B
∫ t

τ

K(ξ )
(t – ξ )q–1

Γ (q)
dξ . (33)

From (31) and (33) we get K(s) = F(s – τ ), s ∈ [τ , t], and

X(t) =
∫ t

0

(t – s)q–1

Γ (q)
F(s) ds +

B
Γ (2q)

∫ t

τ

(t – s)2q–1F(s – τ ) ds for t ∈ (τ , 2τ ]. (34)

Let t ∈ (2τ , 3τ ]. Use the variation of constants method and we will search for solutions
in the form

X(t) =
∫ t

0

(t – s)q–1

Γ (q)
f (s) ds +

B
Γ (2q)

∫ t

τ

(t – s)2q–1F(s – τ ) ds

+
B2

Γ (3q)

∫ t

2τ

(t – s)3q–1K(s) ds for t ∈ (2τ , 3τ ], (35)

where K ∈ C([2τ , 3τ ],Rn), K = (K1, K2, . . . , Kn)T is the unknown function to be obtained.
Then, according to (23), (2), and (34), we have for t ∈ (2τ , 3τ ] that

RL
0 Dq

t x(t) = B
∫ t–τ

0

(t – τ – s)q–1

Γ (q)
F(s) ds

+
B2

Γ (2q)

∫ t–τ

τ

(t – τ – s)2q–1F(s – τ ) ds + F(t)

= B
∫ t

τ

(t – s)q–1

Γ (q)
F(s – τ ) ds +

B2

Γ (2q)

∫ t

2τ

(t – s)2q–1F(s – 2τ ) ds + F(t). (36)

Similar to (33) we obtain

RL
0 Dq

t X(t) =
1

Γ (1 – q)
d
dt

(∫ t

0
(t – s)–q

∫ s

0

(s – ξ )q–1

Γ (q)
F(ξ ) dξ ds

+
B

Γ (2q)

∫ t

τ

(t – s)–q
∫ s

τ

(s – ξ )2q–1F(ξ – τ ) dξ ds

+
B2

Γ (3q)

∫ t

2τ

(t – s)–q
∫ s

2τ

(s – ξ )3q–1K(ξ ) dξ ds
)

= F(t) + B
∫ t

τ

(t – ξ )q–1

Γ (q)
F(ξ – τ ) dξ

+
B2

Γ (3q)Γ (1 – q)

∫ t

2τ

K(ξ )
d
dt

(∫ t

ξ

(t – s)–q(s – ξ )3q–1 ds
)

dξ

= F(t) + B
∫ t

τ

(t – ξ )q–1

Γ (q)
F(ξ – τ ) dξ + B

∫ t

2τ

K(ξ )
(t – ξ )2q–1

Γ (2q)
dξ , (37)

i.e., from (36) and (37) we get K(s) = F(s – 2τ ), s ∈ [2τ , t], and

X(t) =
∫ t

0

(t – s)q–1

Γ (q)
F(s) ds +

B
Γ (2q)

∫ t

τ

(t – s)2q–1F(s – τ ) ds

+
B2

Γ (3q)

∫ t

2τ

(t – s)3q–1F(s – 2τ ) ds for t ∈ (2τ , 3τ ]. (38)
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Continue this process and the claim is established. �

Remark 5 Note that the formula for the solution in the homogeneous case does not follow
from the one in the non-homogeneous case because of fractional conditions (12), respec-
tively, (24).

Remark 6 The explicit formula (25) of solution in Theorem 2 is a generalization of formula
(20) [2] for the scalar case n = 1.

4 Explicit formula for the solutions of scalar linear RL fractional equations with
delays and non-zero initial values

Consider the linear non-homogeneous RL fractional differential equation (23) with
nonzero initial value:

X(t) = G(t) for t ∈ [–τ , 0],

0I1–q
t X(t)|t=0 := lim

t→0+
0I1–q

t X(t) = lim
t→0+

1
Γ (1 – q)

∫ t

0

X(s)
(t – s)q ds = G(0),

(39)

where G ∈ C([–τ , 0],Rn), maxi=1,2,...,n |Gi(0)| < ∞.

Remark 7 Note that the function G(t) = tq–11 is not applicable in this case as an initial
function.

Theorem 3 The solution of IVP (23), (39) is given by

X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(t), t ∈ [–τ , 0],∑n
k=0

Bk G(0)
Γ ((k+1)q) (t – kτ )(k+1)q–1

+
∑n

k=0
Bk

Γ ((k+1)q)
∫ t

kτ
(t – s)(k+1)q–1F(s – kτ ) ds

+
∑n–1

k=0
Bk+1

Γ ((k+1)q)
∫ (k+1)τ

kτ
(t – s)(k+1)q–1G(s – (k + 1)τ ) ds

+ Bn

Γ ((n+1)q)
∫ t

nτ
(t – s)(n+1)q–1G(s – (n + 1)τ ) ds,

t ∈ (nτ , (n + 1)τ ], n = 3, 4, . . . , N .

Proof Define the function P ∈ C([0, T],Rn), P = (P1, P2, . . . , Pn), by

P(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BG(t – τ ) + F(t), t ∈ [0, τ ],
(t–τ )q–1

Γ (q) BG(0) + B
Γ (q)

∫ t
τ

(t – s)q–1(BG(s – 2τ ) + F(s – τ )) ds + F(t), t ∈ (τ , 2τ ],
(t–τ )q–1

Γ (q) BG(0) + (t–2τ )2q–1

Γ (2q) B2G(0) + B
Γ (q)

∫ t
τ

(t – s)q–1F(s – τ ) ds

+ B2

Γ (q)
∫ 2τ

τ
(t – s)q–1G(s – 2τ ) ds

+ B2

Γ (2q)
∫ t

2τ
(BG(s – 3τ ) + F(s – 2τ ))(t – s)2q–1 ds + F(t), t ∈ (2τ , 3τ ],

. . . ,∑n+1
k=1

Bk G(0)
Γ (kq) (t – kτ )kq–1 +

∑n
k=1

Bk

Γ (kq)
∫ t

kτ
(t – s)kq–1F(s – kτ ) ds

+
∑n–1

k=1
Bk+1

Γ (kq)
∫ (k+1)τ

kτ
(t – s)kq–1G(s – kτ ) ds

+ Bn+1

Γ (nq)
∫ t–τ

nτ
(t – s)nq–1G(s – nτ ) ds + F(t),

t ∈ (nτ , (n + 1)τ ], n = 0, 1, 2, . . . , N .
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Let t ∈ (0, τ ]. Then, from system (23) and initial condition (39), we have

RL
0 Dq

t X(t) = BG(t – τ ) + F(t) for t ∈ (0, τ ],

0I1–q
t X(t)|t=0 = G(0).

(40)

Therefore, we have

RL
0 Dq

t Xi(t) = Pi(t) for t ∈ (0, τ ],

0I1–q
t Xi(t)|t=0 = Gi(0), i = 1, 2, . . . , n.

(41)

According to Proposition 3 with λ = 0 and the equality Eq,q(0) = 1
Γ (q) , the solution of (41)

on (0, τ ] is

Xi(t) =
Gi(0)
Γ (q)

tq–1 +
1

Γ (q)

∫ t

0
(t – s)q–1Pi(s) ds

=
Gi(0)
Γ (q)

tq–1 +
∑n

j=1 bij

Γ (q)

∫ t

0
(t – s)q–1Gj(s – τ ) ds +

1
Γ (q)

∫ t

0
(t – s)q–1Fi(s) ds. (42)

Therefore, the solution of IVP (23), (39) on (0, τ ] is given by

X(t) =
G(0)
Γ (q)

tq–1 +
1

Γ (q)

∫ t

0
(t – s)q–1(BG(s – τ ) + F(s)

)
ds, t ∈ (0, τ ]. (43)

Let t ∈ (τ , 2τ ]. Then from (23), (39), and (42) we have the system

RL
0 Dq

t Xi(t) = Pi(t), t ∈ (τ , 2τ ], i = 1, 2, . . . , n. (44)

According to Proposition 3 with λ = 0, the equality Eq,q(0) = 1
Γ (q) , and

∫ t
ξ

(t – s)q–1(s –

ξ )q–1 ds = Γ 2(q)
Γ (2q) (t – ξ )2q–1, the solution of (44) on (τ , 2τ ] is

Xi(t) =
Gi(0)
Γ (q)

tq–1 +
1

Γ (q)

∫ τ

0
(t – s)q–1Pi(s) ds +

1
Γ (q)

∫ t

τ

(t – s)q–1Pi(s) ds

=
Gi(0)
Γ (q)

tq–1 +
1

Γ (q)

∫ t

0
(t – s)q–1Fi(s) ds +

1
Γ (q)

∫ τ

0
(t – s)q–1

n∑
j=1

bijGj(s – τ ) ds

+
1

Γ (q)

∫ t

τ

(t – s)q–1

∑n
j=1 bijGj(0)
Γ (q)

(s – τ )q–1 ds

+
1

Γ (q)

∫ t

τ

(t – s)q–1
n∑

j=1

bij

∑n
k=1 bjk

Γ (q)

∫ s

τ

(s – ξ )q–1Gk(ξ – 2τ ) dξ ds

+
1

Γ (q)

∫ t

τ

(t – s)q–1

∑n
j=1 bij

Γ (q)

∫ s

τ

(s – ξ )q–1Fj(ξ – τ ) dξ ds

=
Gi(0)
Γ (q)

tq–1 +
1

Γ (q)

∫ t

0
(t – s)q–1Fi(s) ds +

1
Γ (q)

∫ τ

0
(t – s)q–1

n∑
j=1

bijGj(s – τ ) ds

+
∑n

j=1 bijGj(0)
Γ 2(q)

∫ t

τ

(t – s)q–1(s – τ )q–1 ds
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+
1

Γ 2(q)

∫ t

τ

( n∑
j=1

bij

n∑
k=1

bjkGk(ξ – 2τ )

)∫ t

ξ

(t – s)q–1(s – ξ )q–1 ds dξ

+
1

Γ 2(q)

∫ t

τ

( n∑
j=1

bijFj(ξ – τ )

)∫ t

ξ

(t – s)q–1(s – ξ )q–1 ds dξ

=
Gi(0)
Γ (q)

tq–1 +
1

Γ (q)

∫ t

0
(t – s)q–1Fi(s) ds +

1
Γ (q)

∫ τ

0
(t – s)q–1

n∑
j=1

bijGj(s – τ ) ds

+
1

Γ (2q)

n∑
j=1

bijGj(0)(t – τ )2q–1

+
1

Γ (2q)

∫ t

τ

( n∑
j=1

bij

n∑
k=1

bjkGk(ξ – 2τ ) +
n∑

j=1

bijFj(ξ – τ )

)
(t – ξ )2q–1 dξ . (45)

Therefore, from equation (45), i = 1, 2, . . . , n, the solution of system (23) on (τ , 2τ ] is

X(t) =
G(0)
Γ (q)

tq–1 +
BG(0)
Γ (2q)

(t – τ )2q–1

+
1

Γ (q)

∫ t

0
(t – s)q–1F(s) ds +

B
Γ (2q)

∫ t

τ

(t – s)2q–1F(s – τ ) ds

+
B

Γ (q)

∫ τ

0
(t – s)q–1G(s – τ ) ds +

B2

Γ (2q)

∫ t

τ

(t – s)2q–1G(s – 2τ ) ds,

t ∈ (τ , 2τ ]. (46)

Continue this process and the claim is established. �

Special case: In the homogeneous case when F(t) ≡ 0, the solution of IVP (10), (39) is
given by

X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(t), t ∈ [–τ , 0],∑n
k=0

Bk G(0)
Γ ((k+1)q) (t – kτ )(k+1)q–1

+
∑n–1

k=0
Bk+1

Γ ((k+1)q)
∫ (k+1)τ

kτ
(t – s)(k+1)q–1G(s – (k + 1)τ ) ds

+ Bn

Γ ((n+1)q)
∫ t

nτ
(t – s)(n+1)q–1G(s – (n + 1)τ ) ds,

t ∈ (nτ , (n + 1)τ ], n = 0, 1, 2, . . . , N .

5 Explicit formula for the solutions of the general scalar linear RL fractional
equations with delays and non-zero initial values

5.1 Zero initial function
Consider the system of non-homogeneous linear Riemann–Liouville fractional differen-
tial equations with constant delay:

RL
0 Dq

t X(t) = AX(t) + BX(t – τ ) + F(t) for t ∈ (0, T], (47)

with the initial conditions

X(t) = 0, t ∈ [–τ , 0], (48)
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0I1–q
t X(t)|t=0 = C, (49)

where X ∈R
n, F ∈ C(R+,Rn), A, B ∈ Mn×n(R), τ > 0 is a real constant, C ∈R

n.

Theorem 4 The solution of IVP (47), (48), (49) is given by

X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ∈ (–τ , 0],

eAt
q C +

∫ t
0 eA(t–s)

q F(s) ds, for t ∈ (0, τ ],

eAt
q C +

∫ t
0 eA(t–s)

q F(s) ds

+
∑n

k=1
∫ t

kτ
eA(t–s1)

q B
∫ s1

kτ
eA(s1–s2)

q B
∫ s2

kτ
eA(s2–s3)

q B

× · · · × ∫ sk
kτ

eA(sk–1–sk )
q B(eA(sk –kτ )

q C

+
∫ sk–1

kτ
eA(sk –ξ )

q F(ξ – kτ ) dξ ) dsk dsk–1 · · · ds3 ds2 ds1

for t ∈ (nτ , (n + 1)τ ], n = 1, 2, . . . , N .

Proof Define the function P ∈ C([0, T],Rn), P = (P1, P2, . . . , Pn), by

P(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(t), t ∈ [0, τ ],

BeA(t–τ )
q C + B

∫ t
τ

eA(t–s)
q F(s – τ ) ds + F(t), t ∈ (τ , 2τ ],

BeA(t–τ )
q C +

∫ t
τ

BeA(t–s)
q F(s – τ ) ds

+
∫ t

2τ
BeA(t–s)

q BeA(s–2τ )
q C ds

+
∫ t

2τ

∫ s
2τ

BeA(t–s)
q BeA(s–ξ )

q F(ξ – 2τ ) dξ ds + F(t), t ∈ (2τ , 3τ ],

. . . ,

BeA(t–τ )
q C +

∫ t
0 eA(t–τ–s)

q F(s) ds

+
∑n

k=1
∫ t–τ

kτ
eA(t–τ–s1)

q B
∫ s1

kτ
eA(s1–s2)

q B
∫ s2

kτ
eA(s2–s3)

q B

× · · · × ∫ sk
kτ

eA(sk–1–sk )
q B(eA(sk–kτ )

q C

+
∫ sk–1

kτ
eA(sk –ξ )

q F(ξ – kτ ) dξ ) dsk dsk–1 · · · ds3 ds2 ds1 + F(t),

t ∈ (nτ , (n + 1)τ ], n = 3, 4, . . . , N .

Let t ∈ (0, τ ]. Then from equation (47) we have for t ∈ (0, τ ] the equation

RL
0 Dq

t X(t) = AX(t) + P(t), (50)

with initial condition (49).
According to Proposition 4, the solution of (50), (49) is

X(t) = eAt
q C +

∫ t

0
eA(t–s)

q F(s) ds, t ∈ (0, τ ]. (51)

Let t ∈ (τ , 2τ ]. Then from (47), (48), (49), and (51) we have that system (50) is satisfied
on (τ , 2τ ], and therefore, the solution of (50), (49) according to Proposition 4 is

X(t) = eAt
q C +

∫ t

0
eA(t–s)

q P(s) ds

= eAt
q C +

∫ τ

0
eA(t–s)

q P(s) ds +
∫ t

τ

eA(t–s)
q P(s) ds
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= eAt
q C +

∫ t

0
eA(t–s)

q F(s) ds

+
∫ t

τ

eA(t–s)
q B

(
eA(s–τ )

q C +
∫ s

τ

eA(s–ξ )
q F(ξ – τ ) dξ

)
ds. (52)

Let t ∈ (2τ , 3τ ]. Then from (47), (48), (49), and (52) we have that system (50) is satisfied
on (2τ , 3τ ], and therefore, the solution of (50), (49) according to Proposition 4 is

X(t) = eAt
q C +

∫ τ

0
eA(t–s)

q P(s) ds +
∫ 2τ

τ

eA(t–s)
q P(s) ds +

∫ t

2τ

eA(t–s)
q P(s) ds

= eAt
q C +

∫ t

0
eA(t–s)

q F(s) ds

+
∫ 2τ

τ

eA(t–s)
q BeA(s–τ )

q C ds +
∫ 2τ

τ

∫ s

τ

eA(t–s)
q BeA(s–ξ )

q F(ξ – τ ) dξ ds

+
∫ t

2τ

eA(t–s)
q BeA(s–τ )

q C ds +
∫ t

2τ

∫ s

τ

eA(t–s)
q BeA(s–σ )

q F(σ – τ ) dσ ds

+
∫ t

2τ

∫ s

2τ

eA(t–s)
q BeA(s–σ )

q BeA(σ–2τ )
q Cdσ ds

+
∫ t

2τ

∫ s

2τ

∫ σ

2τ

eA(t–s)
q BeA(s–σ )

q BeA(σ–ξ )
q F(ξ – 2τ ) dξ dσ ds

= eAt
q C +

∫ t

0
eA(t–s)

q F(s) ds

+
∫ t

τ

eA(t–s)
q B

(
eA(s–τ )

q C +
∫ s

τ

eA(s–ξ )
q F(ξ – τ ) dξ

)
ds

+
∫ t

2τ

∫ s

2τ

eA(t–s)
q BeA(s–σ )

q B
(

eA(σ–2τ )
q C +

∫ σ

2τ

eA(σ–ξ )
q F(ξ – 2τ ) dξ

)
dσ ds. (53)

Continue this process. �

Remark 8 In the case τ = 0 (no delay), B = 0, and F ≡ 0, the system of RL fractional differ-
ential equations (47) is reduced to the one studied in [25] with initial condition (49), and
the formula obtained in Theorem 4 reduces to the formula obtained in Theorem 3.2 [25].

Remark 9 In the case τ = 0 (no delay), B = 0, the system of RL fractional differential equa-
tions (47) is reduced to the studied system (34) in [4] with initial condition (49), and the
formula obtained in Theorem 4 reduces to the formula obtained in Theorem 3 [4].

Special case: In the homogeneous case when F(t) ≡ 0, the solution of IVP (47), (48), (49)
is given by

X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ∈ (–τ , 0],

eAt
q C, for t ∈ (0, τ ],

eAt
q C +

∑n
k=1

∫ t
kτ

eA(t–s1)
q B

∫ s1
kτ

eA(s1–s2)
q B

∫ s2
kτ

eA(s2–s3)
q B

× · · · × ∫ sk–1
kτ

eA(sk–1–sk )
q BeA(sk–kτ )

q dsk dsk–1 · · · ds3 ds2 ds1C

for t ∈ (nτ , (n + 1)τ ], n = 1, 2, . . . , N .
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5.2 Non-zero initial function
Consider non-homogeneous scalar linear Riemann–Liouville fractional differential equa-
tions with constant delay (47) with the initial conditions

X(t) = G(t), t ∈ [–τ , 0], (54)

0I1–q
t X(t)|t=0 = G(0), (55)

where G ∈ C([–τ , 0],Rn).

Theorem 5 The solution of IVP (47), (54), (55) is given by

X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(t) for t ∈ (–τ , 0],

eAt
q G(0) +

∫ t
0 eA(t–s)

q F(s) ds, for t ∈ (0, τ ],

eAt
q G(0) +

∫ t
0 eA(t–s)

q F(s) ds

+
∑n

k=1
∫ t

kτ
eA(t–s1)

q B
∫ s1

kτ
eA(s1–s2)

q B
∫ s2

kτ
eA(s2–s3)

q B

× · · · × ∫ sk–1
kτ

eA(sk–1–sk )
q B(eA(sk–kτ )

q G(sk – kτ )

+
∫ sk

kτ
eA(sk –ξ )

q F(ξ – kτ ) dξ ) dsk dsk–1 · · · ds3 ds2 ds1

for t ∈ (nτ , (n + 1)τ ], n = 1, 2, . . . , N .

Proof The proof is similar to the one of Theorem 4, so we omit it. �

Special case: In the homogeneous case when F(t) ≡ 0, the solution of IVP (47), (54), (55)
is given by

X(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(t) for t ∈ (–τ , 0],

eAt
q G(0), for t ∈ (0, τ ],

eAt
q G(0) +

∑n
k=1

∫ t
kτ

eA(t–s1)
q B

∫ s1
kτ

eA(s1–s2)
q B

∫ s2
kτ

eA(s2–s3)
q B

× · · · × ∫ sk–1
kτ

eA(sk–1–sk )
q BeA(sk–kτ )

q G(sk – kτ ) dsk dsk–1 · · · ds3 ds2 ds1

for t ∈ (nτ , (n + 1)τ ], n = 1, 2, . . . , N .

Remark 10 Note that in the case the initial time 0 is replaced with arbitrary t0, all the
results in the paper are true with slight changes.

6 Conclusions
The formulas for the exact solutions are important tools in fractional models. Often it
is quite complicated to find the exact solution for RL fractional differential equations
even in the linear scalar case. In this paper we study various types of systems of linear
RL fractional differential equations with constant delays. We set up an initial value prob-
lem in an appropriate way based on the physical meaning to initial conditions expressed
in terms of Riemann–Liouville fractional derivatives or integrals [9]. Explicit formulas for
the solutions of initial value problems with both zero and nonzero initial functions are
obtained, and systems with homogeneous and non-homogeneous equations are studied.
The q-matrix exponential function is successfully applied in explicit solutions [4].
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The obtained formulas will be very helpful in the theoretical study of fractional models
with RL fractional derivative, for linearization of multi-dimensional nonlinear models, for
the monotone-iterative technique, and for systems of RL fractional differential equations
with delays.
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