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Abstract
We study the weighted pseudo almost periodic solutions of a Lasota–Wazewska
system. With the aid of fixed point theory and differential inequality strategies, we
give a set of new sufficient criteria that guarantee the existence and global
exponential stability of weighted pseudo almost periodic solutions to a
Lasota–Wazewska system. The obtained results of this manuscript are completely
innovative and complement the work of Shao (Appl. Math. Lett. 43:90–95, 2015) to
some degree. So far, no scholars have investigated this aspect.
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1 Introduction
In 1988, Wazewska-Czyzewska and Lasota [2] proposed the delayed differential model

ẇ(t) = –�(t)w(t) +
p∑

k=1

θk(t)e–ηk (t)w(t–ρk (t)) (1.1)

to describe the survival of red cells in an animal [1]. In this model, p is a positive integer,
w(t) stands for the number of red blood cells at time t, �(t) stands for the death rate of the
red blood cell, θk(t) and ηk(t) are related to the production of red blood cells per unit time,
and ρk(t) represents the time to produce a red blood cell. For details, see [2].

We know that the death rate or harvesting rate usually change under different seasonal
fluctuations. In addition, the actual living environment of species have weighted pseudo
almost periodic nature due to the effect of human activities and industrial production,
for example, the exhaust emission and reconstruction of rivers. Based on this viewpoint,
we think that it is reasonable to suppose that the coefficients in model (1.1) are weighted
pseudo almost periodic functions, which can be expressed as an almost periodic compo-
nent plus the weighted ergodic perturbation. Thus a key problem aries: seek the new suf-
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ficient conditions to ensure the existence and exponential stability of the weighted pseudo
almost periodic solution for model (1.1).

Unfortunately, until now, no scholars have considered the weighted pseudo almost peri-
odic solutions for model (1.1). To make up for this deficiency and inspired by the previous
discussion, in this work, we concentrate on the weighted pseudo almost periodic solutions
for model (1.1).

Let BC(R, R) denote the set of all bounded continuous functions from R to R, and let ḡ =
supt∈R g(t) and g = inft∈R g(t) for a bounded continuous function g(t). The initial condition
of system (1.1) is given by

w(s) = ψ(s), s ∈ [–ρ̄, 0], (1.2)

where ψ ∈ BC([–ρ̄, 0], R+), ρ = maxk=1,2,...,p ρ̄k , and R+ denotes the nonnegative real num-
bers.

We plan the paper as follows. In Sect. 2, we present some preliminary knowledge on
weighted pseudo almost periodic solution. In Sect. 3, we investigate the existence and
global exponential stability of weighted pseudo almost periodic solution to model (1.1).
In Sect. 4, numerical simulations are put into effect. The conclusion is given to end this
paper in Sect. 5.

2 Basic knowledge
Throughout this manuscript, let U denote the collection of functions (weights) υ : R →
(0, +∞), which are locally integrable on R and satisfy

lim
γ→+∞υ

(
[–γ ,γ ]

)
= +∞, where υ

(
[–γ ,γ ]

)
=

∫ γ

–γ

υ(s) ds (γ > 0).

Let ‖w‖ = |w|, g+ = supt∈R |g(t)|, g– = inft∈R |g(t)|, U∞ = {υ|υ ∈ U , inft∈R υ(w) = υ0 > 0},
U+∞ = {υ|υ ∈ U , lim|w|→+∞ sup υ(aw)

υ(w) < +∞, limγ→+∞ sup υ([–aγ ,aγ ])
υ([–γ ,γ ]) < +∞ for a ∈ (0, +∞)}

Denote the set of bounded continuous function from R to R by BC(R, R). So (BC(R, R),
‖ · ‖∞) is a Banach space with norm ‖g‖∞ = supt∈R ‖g(t)‖. Denote the set of the almost
periodic functions from R to R by AP(R, R). Define

PAPυ
0 (R, R) =

{
φ ∈ BC(R, R)

∣∣∣ lim
γ→+∞

1
υ([–γ ,γ ])

∫ γ

–γ

∣∣φ(t)
∣∣υ(t) dt = 0

}
.

We say that a function g ∈ BC(R, R) is weighted pseudo almost periodic if g = f + φ, where
f ∈ AP(R, R) and φ ∈ PAPυ

0 (R, R). Here f is called the almost periodic component, and
φ is called the weighted ergodic perturbation. We denote by PAPυ (R, R) the space of all
weighted almost periodic functions. For more detail, see [3–15].

Lemma 2.1 ([2]) Let �̄ : R → (0, +∞) be a bounded continuous function, and let αM , αm,
βM , βm, σ , χ be positive constants such that

αme–
∫ t

s �̄(v) dv ≤ e–
∫ t

s �(v) dv ≤ αMe–
∫ t

s �̄(v) dv, ∀t, s ∈ R and t – s ≥ 0,

–βM =

(
–�̄(t)χ + αM

r∑

k=1

θk(t)

)+

, χ > σ ,

–βm =

(
–�∗(t)σ + αm

r∑

k=1

θk(t)e–ηk (t)χ

)–

.
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Then there exists t0 such that the solution w(t) of system (1.1) with initial condition (1.2)
satisfies σ < w(t) < χ for t > t0.

We introduce the following assumptions:
(A1) For k = 1, 2, . . . , p, θk ,ηk ,ρk ∈PAPυ(R, R), � ∈AP(R, R),

M[�] = lim
T →+∞

1
T

∫ t+T

t
�(s) ds > 0.

(A2) υ ∈ U+∞, and there exist constants ε > 0 and ζ > 0 such that

sup
t∈R

{
–�̄(t) + ζ –1αM

p∑

k=1

∣∣θk(s)
∣∣∣∣ηk(s)

∣∣e–η–
k σ

}
< –ε.

3 Main results
Lemma 3.1 Define the operator

Γ (ψ)(t) =
∫ t

–∞
e–

∫ t
s �(v) dv

[
ζ –1

p∑

k=1

θk(t)e–ζηk (t)ψ(t–ρk (t))

]
ds, ψ ∈PAPυ(R, R).

Then Γ maps PAPυ(R, R) into itself.

Proof In view of (A1) and Lemmas 2.1 and 2.3 of [16], we have that

p∑

k=1

θk(t)e–ζηk (t)ψ(t–ρk (t)) ∈PAPυ(R, R).

According to (A1)–(A2) and applying the proof of Lemma 2.1 of [17], we can see that
Γ (ψ) ∈ BC(R, R). Then there exist E(t) ∈AP(R, R) and F (t) ∈PAPυ

0 (R, R) such that

p∑

k=1

θk(t)e–ζηk (t)ψ(t–ρk (t)) = E(t) + F (t).

Since

M[�] = lim
T →+∞

1
T

∫ t+T

t
�(s) ds > 0,

applying the theory of exponential dichotomy of [18], we get that

∫ t

–∞
e–

∫ t
s �(v) dvE(s) ds ∈AP(R, R) (3.1)

is a solution of the following equation

u̇(t) = –�(t)u(t) + E(t). (3.2)

By the proof of Lemma 2.3 of [19] we have that

∫ t

–∞
e–

∫ t
s �(v) dvF (s) ds ∈PAPυ

0 (R, R). (3.3)
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In view of (3.1) and (3.3), we conclude that

Γ (ψ)(t) =
∫ t

–∞
e–

∫ t
s �(v) dv

[
ζ –1

p∑

k=1

θk(t)e–ζηk (t)ψ(t–ρk (t))

]
ds ∈PAPυ(R, R)

and Γ maps PAPυ(R, R) into itself. This completes the proof. �

Theorem 3.1 In addition to the condition of Lemma 2.1, suppose that (A1)–(A2) are ful-
filled. Then model (1.1) has a unique weighted pseudo almost periodic solution, which is
globally exponentially stable.

Proof Let u(t) = ζ –1w(t). Then system (1.1) becomes

u̇(t) = –�(t)u(t) + ζ –1
p∑

k=1

θk(t)e–ζηk (t)u(t–ρk (t)). (3.4)

For ψ ,φ ∈PAPυ(R, R), in view of (A1) and (A2), we have

∣∣(Γ ψ)(t) – (Γ φ)(t)
∣∣

=

∣∣∣∣∣

∫ t

–∞
e–

∫ t
s �(v) dv[ζ –1

p∑

k=1

θk(s)
[
e–ζηk (s)ψ(s–ρk (s)) – e–ζηk (s)φ(s–ρk (s))]ds

∣∣∣∣∣

≤
∫ t

–∞
e–

∫ t
s �̄(v) dvζ –1αM

p∑

k=1

θk(s)ηk(s)e–η–
k σ

∣∣ψ
(
s – ρk(s)

)
– φ

(
s – ρk(s)

)∣∣ds

≤ sup
t∈R

∫ t

–∞
e–

∫ t
s �̄(v) dvζ –1αM

p∑

k=1

∣∣θk(s)
∣∣∣∣ηk(s)

∣∣e–η–
k σ ds

∥∥ψ(t) – φ(t)
∥∥∞

≤ sup
t∈R

∫ t

–∞
e–

∫ t
s �̄(v) dv[�̄(s) – ε

]
ds

∥∥ψ(t) – φ(t)
∥∥∞

≤ sup
t∈R

∫ t

–∞
e–

∫ t
s �̄(v) dv d

(
–

∫ t

s
�̄(v) dv

)
–

ε

2

∫ t

–∞
e–

∫ t
s �̄(v) dv ds

∥∥ψ(t) – φ(t)
∥∥∞

≤
(

1 –
ε

2�̄+

)∥∥ψ(t) – φ(t)
∥∥∞ (3.5)

for l = 1, 2, . . . , r. By (A2) we easily see that (1 – ε
2�̄+ ) ∈ (0, 1), and thus Γ is a contraction

mapping. Thus Γ has a unique fixed point u∗ ∈PAPυ(R, R) and satisfies Γ u∗ = u∗. Based
on this analysis, we conclude that model (1.1) has a unique weighted pseudo almost peri-
odic solution w∗ = ζu∗ ∈PAPυ(R, R).

Next, we will prove the exponential stability of the solution w∗. Let w(t) be an arbitrary
solution of (1.1) with initial condition ψ(t) satisfying (1.2). Let v(t) = ζ –1(w(t) – w∗(t)).
Then we have

v̇(t) = –�(t)v(t) + ζ –1
p∑

k=1

θk(t)
[
e–ηk (t)w(t–ρk (t)) – e–ηk (t)w∗(t–ρk (t))]. (3.6)
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Let

Φ(ϕ) = sup
t∈R

{
ϕ – �̄(t) + ζ –1αM

p∑

k=1

∣∣θk(s)
∣∣∣∣ηk(s)

∣∣e–η–
k σ eϕρk (t)

}
, ϕ ∈ [

0, �̄–]
. (3.7)

Then

Φ(0) = sup
t∈R

{
–�̄(t) + ζ –1αM

p∑

k=1

∣∣θk(s)
∣∣∣∣ηk(s)

∣∣e–η–
k σ

}
≤ –ε < 0. (3.8)

Since Φ(ϕ) is continuous, we can choose a constant μ ∈ (0, �̄–) such that

Φ(μ) = sup
t∈R

{
μ – �̄(t) + ζ –1αM

p∑

k=1

∣∣θk(s)
∣∣∣∣ηk(s)

∣∣e–η–
k σ

}
, ϕ ∈ [

0, �̄–]
. (3.9)

Set

∥∥ψ – w∗∥∥
ζ

= sup
t∈(–ρ̄,0]

ζ –1∣∣ψ(t) – w(t)
∣∣ (3.10)

and choose N > αM + 1. Then we obtain that

∥∥v(t)
∥∥ ≤ (∥∥ψ – w∗∥∥

ζ
+ ε

)
e–μt < (N

(∥∥ψ – w∗∥∥
ζ

+ ε
)
e–μt , t ∈ (–ρ̄, 0]. (3.11)

Next, we will prove that

∥∥v(t)
∥∥ ≤ (∥∥ψ – w∗∥∥

ζ
+ ε

)
e–μt < (N

(∥∥ψ – w∗∥∥
ζ

+ ε
)
e–μt , t > 0. (3.12)

If (3.12) were not true, then there would exist ξ > 0 such that

{
|v(ξ )| = N (‖ψ – w∗‖ζ + ε)e–μξ ,
|v(t)| = N (‖ψ – w∗‖ζ + ε)e–μt , t ∈ (–ρ̄, ξ ).

(3.13)

In view of

v̇(s) + �(s)v(s)

= ζ –1
p∑

k=1

θk(s)
[
e–ηk (s)ζw(s–ρk (s)) – e–ηk (s)ζw∗(s–ρk (s))], s ∈ [0, t], t ∈ [0, ξ ], (3.14)

we have

v(s) = v(0)e–
∫ t

0 �(v) dv +
∫ t

0
e–

∫ t
s �(v) dv

×
{

ζ –1
p∑

k=1

θk(s)
[
e–ηk (s)ζw(s–ρk (s)) – e–ηk (s)ζw∗(s–ρk (s))]

}
ds, t ∈ [0, ξ ]. (3.15)
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Hence

∣∣v(s)
∣∣ =

∣∣∣∣∣v(0)e–
∫ t

0 �(v) dv +
∫ t

0
e–

∫ t
s �(v) dv

×
{

ζ –1
p∑

k=1

θk(s)
[
e–ηk (s)ζw(s–ρk (s)) – e–ηk (s)ζw∗(s–ρk (s))]

}
ds

∣∣∣∣∣

≤ N
(∥∥ψ – w∗∥∥

ζ
+ ε

)
αMe–

∫ ξ
0 �̄(v) dv +

∫ ξ

0
e–

∫ ξ
s �̄(v) dvαM

×
[
ζ –1

p∑

k=1

∣∣θk(s)
∣∣e–η–

k σ
∣∣v(s – ρk(s)

∣∣
]

ds

≤ N
(∥∥ψ – w∗∥∥

ζ
+ ε

)
αMe–

∫ ξ
0 �̄(v) dv +

∫ ξ

0
e–

∫ ξ
s �̄(v) dvαM

×
[
ζ –1

p∑

k=1

∣∣θk(s)
∣∣e–η–

k σN
(∥∥ψ – w∗∥∥

ζ
+ ε

)
e–μ(s–ρk (s))

]
ds

≤ N
(∥∥ψ – w∗∥∥

ζ
+ ε

)
e–μξαMe–

∫ ξ
0 (�̄(v)–μ) dv +

∫ ξ

0
e–

∫ ξ
s (�̄(v)–μ) dvαM

×
[
ζ –1

p∑

k=1

∣∣θk(s)
∣∣e–η–

k σN
(∥∥ψ – w∗∥∥

ζ
+ ε

)
eμρk (s)

]
dsN

(∥∥ψ – w∗∥∥
ζ

+ ε
)
e–μξ

≤ N
(∥∥ψ – w∗∥∥

ζ
+ ε

)
e–μξαMe–

∫ ξ
0 (�̄(v)–μ) dv

+
∫ ξ

0
e–

∫ ξ
s (�̄(v)–μ) dv(�̄(v) – μ

)
dsN

(∥∥ψ – w∗∥∥
ζ

+ ε
)
e–μξ

≤ N
(∥∥ψ – w∗∥∥

ζ
+ ε

)
e–μξ

[
1 –

(
1 –

αM

N

)
e–

∫ ξ
s (�̄(v)–μ) dv

]

≤ N
(∥∥ψ – w∗∥∥

ζ
+ ε

)
e–μξ . (3.16)

By (3.13) we get that (3.12) holds. Let ε → 0+. Then

∥∥v(t)
∥∥ < N

(∥∥ψ – w∗∥∥
ζ

+ ε
)
e–μt , t > 0. (3.17)

Therefore we conclude that the pseudo almost periodic solution of model (1.1) is globally
exponentially stable. The proof is finished. �

Remark 3.1 Shao [1] studied the pseudo almost periodic solution of model (1.1). In this
paper, we considered the weighted pseudo almost periodic solution. All the assumptions
in this paper are different from those in [1]. All the derived results in [1] cannot be applica-
ble to system (1.1) to establish the existence and globally exponential stability of weighted
pseudo almost periodic solution for model (1.1). Based on this viewpoint, our results on
the existence and globally exponential stability of weighted pseudo almost periodic so-
lution for model (1.1) are essentially new and complement earlier works to a certain ex-
tent.
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Figure 1 Numerical results of model (4.1): t –w(t)

4 Computer simulations
Consider the system

ẇ(t) = –�(t)w(t) +
2∑

k=1

θk(t)e–ηk (t)w(t–ρk (t)), (4.1)

where �(t) = 17 + 10 cos 1000t, θ1(t) = 2(1 + 0.5| sin 1.7t|), θ2(t) = 2(0.8 + 0.2| sin 1.7t|),
η1(t) = –1 + 0.2| sin 5t|, η2(t) = –0.9 + 0.5| sin 30t|, ρ1(t) = e0.2| sin t|, ρ2(t) = e0.3| sin t|. Let
�̄(t) = 17, M[�] = 17, αM = 1

200 , αm = – 1
200 , χ = 0.8, σ = 0.2, ζ = 2, ε = 3. Then

αme–
∫ t

s �̄(v) dv ≤ e–
∫ t

s �(v) dv ≤ αMe–
∫ t

s �̄(v) dv for t, s ∈ R such that t – s ≥ 0

and

sup
t∈R

{
–�̄(t) + ζ –1αM

p∑

k=1

∣∣θk(s)
∣∣∣∣ηk(s)

∣∣e–η–
k σ

}
≈ –3.087 < –3 = –ε.

Thus all the hypotheses of Theorem 3.1 are satisfied, and so system (4.1) has a unique
weighted pseudo almost periodic solution, which is globally exponentially stable. Figure 1
reveals this fact.

5 Conclusions
In this paper, we have discussed the existence and globally exponential stability of weighted
pseudo almost periodic solutions for a Lasota–Wazewska system. Using the fixed point
theory and differential inequalities, we establish new sufficient criteria ensuring the exis-
tence and globally exponential stability of weighted pseudo almost periodic solutions for
the Lasota–Wazewska model. The derived results complement some earlier publications
to some extent. Up to now, to the best of our knowledge, it is the first time to deal with this
aspect. In the near future, we will investigate the pseudo almost automorphic solutions for
the Lasota–Wazewska model.
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