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Abstract
In this paper, we prpose a single-species stage structure model with
Michaelis–Menten-type harvesting for mature population. We investigate the
existence of all possible equilibria of the system and discuss the stability of equilibria.
We use Sotomayor’s theorem to derive the conditions for the existence of
saddle-node and transcritical bifurcations. From the ecological point of view, we
analyze the effect of harvesting on the model of mature population and consider it as
a bifurcation parameter, giving the maximum threshold of continuous harvesting. By
constructing a Lyapunov function and Bendixson–Dulac discriminant, we give
sufficient conditions for the global stability of boundary equilibrium and positive
equilibrium, respectively. Our study shows that nonlinear harvesting may lead to a
complex dynamic behavior of the system, which is quite different from linear
harvesting. We carry out numeric simulations to verify the feasibility of the main
results.
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1 Introduction
In nature world, the growth of species experiences different stages. For example, the
growth of frogs can be divided into fertilized eggs, tadpoles, and adult frogs; the growth of
silkworm can be divided into eggs, larvae, pupae, and adults. At different stages, species
exhibit vastly different characteristics and habits. Therefore it is more practical to study
stage structure ecology modeling.

During the last decade, many scholars have studied the stage structure model of species
(see [1–15] and references therein), and many interesting characteristic features of the
stage structure model were obtained.

Recently, Lei [8] proposed a stage structure amensalism system with a cover for the first
species:

dx1

dt
= αx2 – βx1 – δ1x1 – d1(1 – k)x1y,

dx2

dt
= βx1 – δ2x2 – γ x2

2 – d2(1 – k)x2y, (1.1)
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dy
dt

= y(b2 – a2y),

where x1(t) and x2(t) represent the densities of the juvenile and adult populations of the
first species at time t, respectively, y(t) represents the density of the second species at time
t and k ∈ (0, 1) represents the cover of the first species. Sufficient conditions are obtained
ensuring the global attractivity of the positive equilibrium and the boundary equilibrium
of the system. Their study shows that the first species may still be driven to extinction due
to the influence of the second species.

In ecosystems, maturation, pregnancy, and hunting always occur. Therefore, considering
the time delay due to pregnancy effect on the growth of the predator, Zhang and Zhang
[6] studied the stage structure model with time delay and density-dependent juvenile birth
rate, and they gave conditions for uniform persistence and extinction of the system in the
following model:

dx1

dt
= a(t)

(
1 – β(t)x2(t)

)
x2(t) – b(t)x1(t) – d1(t)

(
x1(t)

)2

–
c1(t)x1(t)y(t)
m(t) + x2

1(t)
,

dx2

dt
= b(t)x1(t) – d2(t)x2

2(t),

dy
dt

= y(t)
(

–d3(t) +
c2(t)x1(t – τ )

m(t) + x2
1(t – τ )

– q(t)y(t)
)

,

(1.2)

where x1(t) and x2(t) represent the densities of the juvenile and adult prey species at time t,
respectively, and y(t) represents the density of the predator species at time t, respectively.
Then Yue [12] found that in the proof of their main result, Zhang and Zhang had made
some mistake and their result is incorrect. By establishing some new lemmas and applying
the differential inequality theory Yue finally obtained a set of sufficient conditions ensuring
the permanence of the system.

On the other hand, human beings get what they need to live by exploiting natural re-
sources, which may lead to the harvesting ecological modeling, and already many scholars
[16–26] obtained interesting results in this direction. Xiao and Lei [16] investigated the
following single-species stage structure model of nonselective harvesting:

dx1

dt
= αx2 – βx1 – δ1x1 – q1Emx1,

dx2

dt
= βx1 – δ2x2 – γ x2

2 – q2Emx2,
(1.3)

where x1 and x2 indicate the densities of juvenile and adult species at time t, respec-
tively. They showed that system (1.3) has two possible equilibria. The boundary equi-
librium O(0, 0) is globally asymptotically stable if α < (δ2 + q2Em)(1 + δ1+q1Em

β
), that is,

when the birth rate of the juvenile species is small enough, the species will be driven to
extinction. The unique positive equilibrium A(x∗

1, x∗
2) is globally asymptotically stable if

α > (δ2 + q2Em)(1 + δ1+q1Em
β

), which means that when the birth rate of juvenile species is
large enough, the system is persistent. Meanwhile, with the increase of harvesting, the ex-
tinction rate of species will accelerate, and the final density of species will decrease, which
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indicates that harvesting plays an important role on the persistent or extinction of the
species.

With more works on the harvesting model published, some scholars began to focus
their attention to the so called Michaelis–Menten-type harvesting [27–33]. The harvest-
ing term takes the form of H = hEx

mE+nx , which was first proposed by Clark [34]. Such a kind
of harvesting is more realistic and practical than linear harvesting in ecosystem. Since the
form of linear harvest is H = qEx, we get that limE→+∞ H = ∞ and limx→+∞ H = ∞, so
that if the fishing effort or the population is large, then the harvested species can be un-
limited, obviously, which is against the facts. For the Michaelis–Menten- type harvesting,
limE→+∞ H = hx

m , which is equivalent to assuming that when the fishing effort is large, then
the final harvest is determined by the population size. At the same time, limx→+∞ H = hE

n ,
that is, although the population is very large with the limited fishing capacity, we can only
harvest a limited number of organisms, which is more consistent with the actual situ-
ation. Chen [29] incorporated Michaelis–Menten-type harvesting to the first species of
the Lotka–Volterra commensal symbiosis model, which leads to the following model:

dx
dt

= γ1x
(

1 –
x
k1

+ α
y
k1

)
–

qEx
m1E + m2x

,

dy
dt

= γ2y
(

1 –
y
k2

)
.

(1.4)

The author analyzed and studied the local and global dynamic behavior of the system.
Compared with the system without harvesting, his study indicates that despite the coop-
eration of the second species, the first species may still be driven to extinction due to the
overharvesting.

In 2018, Liu, Zhao, Huang, and Deng [31] proposed a two-species amensalism model
with Michaelis–Menten-type harvesting and a cover for the first species:

dx
dt

= a1x – b1x2 – c1(1 – k)xy –
qE(1 – k)x

m1E + m2(1 – k)x
,

dy
dt

= a2y – b2y2.
(1.5)

The authors discussed the existence and stability of all possible equilibria of the system
and found an interesting phenomenon: Under certain conditions, the system can exhibits
saddle-node bifurcation and transcritical bifurcation. However, for the system without
harvesting, the dynamic behavior is very simple: two species may coexist, or the first one is
driven to extinction while the second one is permanent. The study of Liu et al. [31] shows
that Michaelis–Menten-type harvesting can make the dynamic behavior of the system
more complex.

Up to now, to the best of our knowledge, still no scholars proposed and investigated the
dynamic behavior of the single-species stage structure model with Michaelis–Menten-
type harvesting. This motivated us to propose the following system:

dx
dt

= αy – βx – δ1x,

dy
dt

= βx – δ2y – γ y2 –
hEy

mE + ny
,

(1.6)
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where α, β , δ1, δ2, γ , h, E, m, and n are positive constants, where α represents the the
birth rate of the immature species, β indicates the surviving rate of immaturity to reach
maturity, δ1 and δ2 represent the death rates of immature and mature species, respectively,
γ represents the intraspecific competition of mature species, h represents the harvesting
coefficient of mature species, and E represents the combined harvesting effort of mature
species.

We take the following transformations to simplify system (1.6):

dτ = l dt, x̄ = px, ȳ = qy,

for which we reserve t, x, y to express τ , x̄, ȳ, respectively. Then we obtain

dx
dt

= y – ax,

dy
dt

= bx – y(1 + y) –
cy

e + y
,

(1.7)

where

l = δ2, p =
γ

δ2
, q =

γ

α
,

a =
β + δ1

δ2
, b =

αβ

δ2
2

, c =
hEα

δ2
2

, e =
m2Eα

γ
,

and the initial conditions

x(0) = x0 > 0, y(0) = y0 > 0.

From the ecological point of view, we only discuss the dynamic behavior of the system in
the first quadrant.

The purpose of this paper is studying the stability of equilibria and the bifurcation phe-
nomenon of system (1.7). The paper is arranged as follows: in the next section, we study
the existence and local stability of the equilibria of system (1.7). In Sect. 3, we investigate
saddle-node bifurcation and transcritical bifurcation of system (1.7). In Sect. 4, we discuss
the global asymptotic stability of positive equilibrium of system (1.7). The numerical sim-
ulations in Sect. 5 show the feasibility of the main results. We end the paper with a brief
discussion.

2 Equilibria and their stability
2.1 The existence of equilibria
The equilibria of the system are given by the system

⎧
⎨

⎩
y – ax = 0,

bx – y(1 + y) – cy
e+y = 0.

(2.1)
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Obviously, there always exists a boundary equilibrium E0(0, 0). To obtain the positive
equilibria for the system, we consider the following equations:

⎧
⎨

⎩
x = y

a ,

y2 + (e + 1 – b
a )y + e + c – be

a = 0.
(2.2)

Theorem 1 There exists a unique boundary equilibrium E0(0, 0). For the possible positive
equilibria, we have:

(1) When 0 < c < c∗∗, the system has a unique positive equilibrium E∗
1(x∗

1, y∗
1).

(2) When c = c∗∗ and b
a – e – 1 > 0, the system has a unique positive equilibrium

E∗
1(x∗

1, y∗
1).

(3) When c∗∗ < c < c∗ and b
a – e – 1 > 0, the system has two positive equilibria E∗

1(x∗
1, y∗

1)
and E∗

2(x∗
2, y∗

2).
(4) When c = c∗ and b

a – e – 1 > 0, the system has a unique positive equilibrium E∗
3(x∗

3, y∗
3).

(5) When c > c∗, the system has no positive equilibrium.
Here

y∗
1 =

1
2

(
b
a

– e – 1 +
√�

)
, y∗

2 =
1
2

(
b
a

– e – 1 –
√�

)
, y∗

3 =
1
2

(
b
a

– e – 1
)

,

x∗
i =

y∗
i

a
, i = 1, 2, 3, � =

(
b
a

+ e – 1
)2

– 4c,

c∗ =
1
4

(
b
a

+ e – 1
)2

, c∗∗ = e
(

b
a

– 1
)

.

Proof For the second equation of (2.2), let � denote its discriminant and express � in
terms of c:

�(c) =
(

e + 1 –
b
a

)2

– 4
(

e + c –
be
a

)

=
(

b
a

+ e – 1
)2

– 4c.

If � ≥ 0, then the equilibria exists, that is,

0 < c ≤ 1
4

(
b
a

+ e – 1
)2

= c∗,

and then

y∗
1 =

1
2

(
b
a

– e – 1 +
√�

)
, y∗

2 =
1
2

(
b
a

– e – 1 –
√�

)
.

When ( b
a – e – 1)2 = �, we can calculate that

c = e
(

b
a

– 1
)

= c∗∗.

Thus we can conclude that
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(i) if 0 < c < c∗∗, rhen ( b
a – e – 1)2 < �;

(ii) if c = c∗∗ then ( b
a – e – 1)2 = �;

(iii) if c > c∗∗ then ( b
a – e – 1)2 > �.

In addition, we easily get that c∗∗ ≤ c∗ and c∗∗ = c∗ if and only if b
a – e – 1 = 0. For the above

conditions, we can conclude that:
(1) when 0 < c < c∗∗, y∗

1 > 0, y∗
2 < 0;

(2) when c = c∗∗, y∗
1 > 0 and y∗

2 = 0 if b
a – e – 1 > 0; y∗

1 = 0 and y∗
2 < 0 if b

a – e – 1 < 0; in
addition, if b

a – e – 1 = 0, then c∗∗ = c∗, and y∗
1 = y∗

2 = 0.
(3) when c∗∗ < c < c∗, y∗

1 > 0 and y∗
2 > 0 if b

a – e – 1 > 0; y∗
1 < 0 and y∗

2 < 0 if b
a – e – 1 < 0.

(4) when c = c∗, y∗
3 > 0 if b

a – e – 1 > 0.
(5) when c > c∗, the system has no positive equilibria.
This completes the proof. �

2.2 Stability of the equilibria
To investigate the stability property of the equilibria of system (1.7), we calculate the Ja-
cobian matrix of system (1.7):

J =

[
–a 1
b –1 – 2y – ce

(e+y)2

]

. (2.3)

So the trace and determinant of the Jacobian matrix (2.3) are given by

tr J = –
(

a + 1 + 2y +
ce

(e + y)2

)
,

Det J = a
(

1 + 2y +
ce

(e + y)2

)
– b.

Obviously, tr J < 0 for all y ≥ 0, so we just have to decide on the sign of the determinant.

2.2.1 Stability of the boundary equilibrium E0(0, 0)
Theorem 2 For all positive parameters, there is a boundary equilibrium E0(0, 0).

(1) If c < e( b
a – 1), then E0(0, 0) is a saddle.

(2) If c > e( b
a – 1), then E0(0, 0) is a stable node.

(3) In the case c = e( b
a – 1), if a2(b–a–ae)

e(a2+b)2 	= 0,then E0(0, 0) is a saddle node, and if
a2(b–a–ae)

e(a2+b)2 = 0, then E0(0, 0) is a stable node.

Proof The Jacobian matrix of system (1.7) at E0 is

J(E0) =

[
–a 1
b –1 – c

e

]

. (2.4)

The determinant of the Jacobian matrix of system (1.7) at E0 is

Det J(E0) = a
(

1 +
c
e

)
– b.

Let λ1 and λ2 be the eigenvalues of Det J(E0). When Det J(E0) < 0, E0 is a saddle. When
Det J(E0) > 0, it is easy to figure out that [tr J(E0)]2 – 4 Det J(E0) = [a – (1 + c

e )]2 + 4b ≥ 0,
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so E0 is a stable node. When Det J(E0) = 0, λ1 = 0 and λ2 < 0. To investigate the stability
property of the equilibrium E0, we introduce the new time variable dτ = dt

e+y , and then we
have

⎧
⎨

⎩
ẋ = –aex + ey – axy + y2,

ẏ = bex – be
a y – (e + 1)y2 + bxy – y3.

(2.5)

The linear part of system (2.5) is transformed into the normal form by the linear transfor-
mation

(
x
y

)

=

(
e –ae

ae be

)(
u
v

)

, (2.6)

under which system (2.5) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇ = a01uv + a02u2 + a03v2 + a04uv2 + a05u2v + a06u3

+ a07v3 + P1(u, v),

v̇ = b01v + b02uv + b03u2 + b04v2 + b05uv2 + b06u2v

+ b07u3 + +b08v3 + Q1(u, v),

(2.7)

where

a01 = –
2abe(ae + a – b)

a2 + b
, a02 = –

a2e(ae + a – b)
a2 + b

, a03 = –
b2e(ae + a – b)

a2 + b
,

a04 = –
3e2b2a2

a2 + b
, a05 = –

3e2ba3

a2 + b
, a06 = –

e2a4

a2 + b
, a07 = –

e2b3a
a2 + b

,

b01 = –
e(a4 + 2a2b + b2)

a(a2 + b)
, b02 = –

e(a5 + 2a2be + 2a2b – ab2)
a(a2 + b)

,

b03 = –
e(–a4 + a3e + a3 – a2b)

a(a2 + b)
, b04 = –

e(a4b + a2b2 + ab2e + ab2)
a(a2 + b)

,

b05 = –
3e2b2a
a2 + b

, b06 = –
3e2ba2

a2 + b
, b07 = –

e2a3

a2 + b
, b08 = –

e2b3a
a2 + b

,

and P1(u, v) and Q1(u, v) are power series in (u, v) with terms uivj satisfying i + j ≥ 4.
Letting ds = b01 dτ , we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇ = c01uv + c02u2 + c03v2 + c04uv2 + c05u2v + c06u3 + c07v3

+ P2(u, v),

v̇ = v + d01uv + d02u2 + d03v2 + d04uv2 + d05u2v + d06u3

+ d07v3 + Q2(u, v) � P(u, v),

(2.8)

where c0i = a0i
b01

, d0i = b0i+1
b01

, and P2(u, v) and Q2(u, v) are power series in (u, v) with terms
uivj satisfying i + j ≥ 4.
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By the implicit function theorem there exists a unique function v = ϕ(u) in the first quad-
rant such that ϕ(0) = 0 and P(u,ϕ(u)) = 0. From the second equation of (2.8) we obtain

v = ϕ(u) = –d02u2 + (d01d02 – d06)u3 + · · · . (2.9)

Then substituting (2.9) into the first equation of (2.8), we get that

u̇ = c02u2 + (d06 – c01d02)u3 + ◦(
u4).

By Theorem 7.1 in Chap. 2 in [34], if the coefficient of u2 is a3(ae+a–b)
a4+2a2b+b2 	= 0, that is, m = 2,

then E0(0, 0) is a saddle node. If a3(ae+a–b)
a4+2a2b+b2 = 0, then we have m = 3 and am = a4e

a4+2a2b+b2 > 0,
so E0(0, 0) is an unstable node. Since we used the transformation ds = b01dτ and b01 < 0,
the orbits with time go in the opposite direction, so E0(0, 0) is a stable node.

This completes the proof. �

2.2.2 Stability of the positive equilibria E∗
i (x∗

i , y∗
i ) (i = 1, 2, 3)

To discuss the stability of E∗
i (x∗

i , y∗
i ) (i = 1, 2, 3), we simplify the determinant of E∗

i :

Det J
(
E∗

i
)

= a
(

1 + 2y∗
i +

ce
(e + y∗

i )2

)
– b

= a
(

b
a

–
c

d + y∗
i

+ y∗
i +

ce
(e + y∗

i )2

)
– b

= ay∗
i

(
1 –

c
(e + y∗

i )2

)

=
ay∗

i
(e + y∗

i )2

[(
e + y∗

i
)2 – c

]
.

Theorem 3 For system (1.7), when the equilibrium E∗
1(x∗

1, y∗
1) exists, it is a stable node.

Proof The determinant of system (1.7) about the equilibrium E∗
1(x∗

1, y∗
1) is

Det J
(
E∗

1
(
x∗

1, y∗
1
))

=
ay∗

1
(e + y∗

1)2

[(
e + y∗

1
)2 – c

]

=
ay∗

1[
√�(

√� +
√� + 4c)]

2(e + y∗
1)2 .

Obviously,

Det J
(
E∗

1
(
x∗

1, y∗
1
))

> 0

and

tr J
[(

E∗
1
)]2 – 4 Det J

(
E∗

1
)

=
[

a –
(

1 + 2y∗
1 +

ce
(e + y∗

1)2

)]2

+ 4b ≥ 0,

so E∗
1(x∗

1, y∗
1) is a stable node. �
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Theorem 4 For system (1.7), when the equilibrium E∗
2(x∗

2, y∗
2) exists, it is a saddle.

Proof The determinant of system (1.7) about the equilibrium E∗
2(x∗

2, y∗
2) is

Det J
(
E∗

2
(
x∗

2, y∗
2
))

=
ay∗

2
(e + y∗

2)2

[(
e + y∗

2
)2 – c

]

=
ay∗

2[
√�(

√� –
√� + 4c)]

2(e + y∗
2)2 < 0,

so E∗
2(x∗

2, y∗
2) is a saddle. �

Theorem 5 For system (1.7), when the equilibrium E∗
3(x∗

3, y∗
3) exists, it is a saddle node.

Proof The determinant of system (1.7) about the equilibrium E∗
3(x∗

3, y∗
3) is

Det J
(
E∗

3
(
x∗

3, y∗
3
))

=
ay∗

3
(e + y∗

3)2

[(
e + y∗

3
)2 – c∗

]

= 0.

So the determinant of Det J(E∗
3(x∗

3, y∗
3)) has an eigenvalue 0. To analyze the stability of

E∗
3(x∗

3, y∗
3), we move E∗

3(x∗
3, y∗

3) to the origin by the translation (X, Y ) = (x – x∗
3, y – y∗

3) and
expand in power series around the origin. Then system (1.7) becomes

⎧
⎨

⎩
Ẋ = –aX + Y ,

Ẏ = bX + e01Y + e02Y 2 + e03Y 3 + e04Y 4,
(2.10)

where

e01 =
3ae – ae2 – 2b – be

b – a + ae
, e02 = –

b – a – ae
b – a + ae

,

e03 =
2a(b – a – be) – a2e2

(b – a + ae)2 , e04 =
2(b – a – ae)(b – 3a + ae)

(b – a + ae)3 .

The linear part of system (2.10) is transformed into the normal form by the linear trans-
formation

(
X
Y

)

=

(
1 –a
a b

)(
U
V

)

, (2.11)

under which system (2.10) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U̇ = f01UV + f02U2 + f03V 2 + f04U2V + f05UV 2 + f06U3

+ f07V 3 + P3(U , V ),

V̇ = g01V + g02UV + g03U2 + g04V 2 + g05U2V + g06UV 2

+ g07U3 + g08V 3 + Q3(U , V ),

(2.12)



Yu et al. Advances in Difference Equations        (2020) 2020:238 Page 10 of 18

where

f01 =
2a2be02

a2 + b
, f02 =

a3e02

a2 + b
, f03 =

ab2e02

a2 + b
, f04 =

3a3be03

a2 + b
,

f05 =
3a2b2e03

a2 + b
, f06 =

a4e03

a2 + b
, f07 =

ab3e03

a2 + b
,

g01 =
–a3 – 2ab + be01

a2 + b
, g02 =

2abe02

a2 + b
, g03 =

a2e02

a2 + b
, g04 =

b2e02

a2 + b
,

g05 =
3a2be03

a2 + b
, g06 =

3ab2e03

a2 + b
, g07 =

a3e02

a2 + b
, g08 =

b3e03

a2 + b
,

and P3(U , V ) and Q3(U , V ) are power series in (U , V ) with terms UiV j satisfying i + j ≥ 4.
Let dτ = g01dt, where τ is a new time variable. Then we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U̇ = f01
g01

UV + f02
g01

U2 + f03
g01

V 2 + f04
g01

U2V + f05
g01

UV 2

+ f06
g01

U3 + f07
g01

V 3 + P4(U , V ),

V̇ = V + g02
g01

UV + g03
g01

U2 + g04
g01

V 2 + g05
g01

U2V + g06
g01

UV 2

+ g07
g01

U3 + g08
g01

V 3 + Q4(U , V ) � Q(U , V ),

(2.13)

and P4(U , V ) and Q4(U , V ) are power series in (U , V ) with terms UiV j satisfying i + j ≥ 4.
According to the implicit function theorem, there is a unique function V = ϕ(U) in the

first quadrant such that ϕ(0) = 0 and Q(U ,ϕ(U)) = 0. From the second equation of (2.13)
we obtain

V = ϕ(U) = –
g03

g01
U2 +

g02g03 – g07g01

g2
01

U3 + · · · . (2.14)

Then substituting (2.14) into the first equation of (2.13), we get that

U̇ =
f02

g01
U2 + · · · .

From Theorem 7.1 in Chap. 2 iof [35] we obtain m = 2, am = f02
g01

	= 0, so E∗
3(x∗

3, y∗
3) is a saddle

node.
This completes the proof. �

For more detail about the nonnegative equilibria of system (1.7), one could refer to Ta-
ble 1.

Table 1 Equilibria of system (1.7) in finite planes

Possibilities of parameters Location of equilibria Types and stability

0 < c < c∗∗ – E0, E∗
1 E0 saddle, E∗

1 stable node

c = c∗∗ b
a – e – 1 > 0 E0, E∗

1 E0 saddle node, E∗
1 stable node

b
a – e – 1 = 0 E0 E0 stable node
b
a – e – 1 < 0 E0 E0 saddle node

c∗∗ < c < c∗ b
a – e – 1 > 0 E0, E∗

1 , E
∗
2 E0 stable node, E∗

1 stable node, E
∗
2 saddle

b
a – e – 1 < 0 E0 E0 stable node

c = c∗ b
a – e – 1 > 0 E0, E∗

3 E0 stable node, E∗
3 saddle node

c > c∗ – E0 E0 stable node
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3 Bifurcation analysis
In this section, we will analyze the bifurcations of system (1.7) and derive conditions for
saddle-node bifurcation and transcritical bifurcation.

3.1 Saddle-node bifurcation
In Sect. 2.1, we have given conditions for the existence of interior equilibria. We find that
system (1.7) has two different equilibria (E∗

1 and E∗
2 ) if c∗∗ < c < c∗ and b

a – e – 1 > 0; E∗
1

and E∗
2 coincide with E∗

3 if c = c∗ and b
a – e – 1 > 0, and there is only one unique positive

equilibrium E∗
3 ; E∗

1 and E∗
2 disappear if c > c∗, and the system has no positive equilibrium

point. This phenomenon is due to saddle-node bifurcation at E∗
3 , which exists when c =

cSN = 1
4 ( b

a + e – 1)2 and b
a – e – 1 > 0.

Theorem 6 System (1.7) undergoes a saddle-node bifurcation around E∗
3(x∗

3, y∗
3) with re-

spect to bifurcation parameter c if c = cSN and b
a – e – 1 > 0.

Proof Now we use Sotomayor’s theorem to prove the transversality condition of saddle-
node bifurcation at c = cSN . From Theorem 4 we can easily obtain that Det J(E∗

3) = 0,
tr J(E∗

3) < 0, so J(E∗
3) has a zero eigenvalue and a negative eigenvalue. Let the eigenvectors

corresponding to the zero eigenvalues of matrices J(E∗
3 , cSN ) and J(E∗

3 , cSN )T be V and W .
Then we have

V =

(
V1

V2

)

=

(
1
a

)

; W =

(
W1

W2

)

=

(
b
a

)

.

Moreover,

Fc
(
E∗

3 ; cSN
)

=

(
0
–y

d+y

)

(E∗
3 ;cSN )

=

(
0

ae+a–b
ae+b–a

)

,

D2F
(
E∗

3 ; cSN
)
(V , V ) =

(
∂2F1
∂x2 V 2

1 + 2 ∂2F1
∂x∂y V1V2 + ∂2F1

∂2y V 2
2

∂2F2
∂x2 V 2

1 + 2 ∂2F2
∂x∂y V1V2 + ∂2F2

∂2y V 2
2

)

(E∗
3 ;cSN )

=

(
0

2a2(ae+a–b)
ae+b–a

)

.

We can easily see that V and W satisfy

W T Fc
(
E∗

3 ; cSN
)

=
a(ae + a – b)

ae + b – a
	= 0,

W T[
D2F

(
E∗

3 ; cSN
)
(V , V )

]
=

2a3(ae + a – b)
ae + b – a

	= 0.

Therefore we can conclude that with the change of parameter c = cSN , the number of in-
terior equilibria of system (1.7) changes from zero to two.

The proof of Theorem 6 is finished. �

For a = 1, e = 0.5 and b = 2, we get cSN = 0.5625, c∗∗ = 0.5 and b
a – e – 1 = 0.5 > 0. For c =

0.52, c∗∗ < c < cSN , system (1.7) has two different boundary equilibria E∗
1 and E∗

2 (Fig. 1(d)),
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Figure 1 Dynamics behaviors of the system (5.1)

which coincide with each other when c = cSN = 0.5625 (Fig. 1(e)). There is no positive
equilibrium when 0.6 = c > cSN (Fig. 1(f )).

3.2 Transcritical bifurcation
Through the discussion of the existence of the internal equilibria in the second section, we
find an interesting phenomenon: when c = c∗∗ = be

a – e, E∗
2 coincides with E0 if b

a – e – 1 > 0;
and E∗

1 coincides with E0 if b
a – e – 1 < 0. This phenomenon is due to the occurrence of

transcritical bifurcation at E0.
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Theorem 7 System (1.7) undergoes a transcritical bifurcation when the parameters satisfy
c = cTC = c∗∗, where c is taken as the bifurcation parameter.

Proof Now we use Sotomayor’s theorem to prove the transversality condition of trans-
critical bifurcation at c = cTC . From Theorem 2 we get Det J(E0) = 0 and tr J(E0) < 0, so
J(E0) has a zero eigenvalue. Let the eigenvectors corresponding to the zero eigenvalues of
matrices J(E0, cTC) and J(E0, cTC)T be V and W . Then we have

V =

(
V1

V2

)

=

(
1
a

)

, W =

(
W1

W2

)

=

(
b
a
1

)

.

Moreover,

Fc(E0; cTC) =

(
0
–y

d+y

)

(E0;cTC )

=

(
0
0

)

,

DFc(E0; cTC)V =

(
0 0
0 – e

(e+y)2

)(
1
a

)

(E0;cTC )

=

(
0

– a
e

)

,

D2F(E0; cTC)(V , V ) =

(
∂2F1
∂x2 V 2

1 + 2 ∂2F1
∂x∂y V1V2 + ∂2F1

∂2y V 2
2

∂2F2
∂x2 V 2

1 + 2 ∂2F2
∂x∂y V1V2 + ∂2F2

∂2y V 2
2

)

(E0;cTC )

=

(
0

–2 + 2(b–a)
ae

)

.

Thus we have

W T Fc(E0; cTC) = 0,

W T[
DFc(E0; cTC)V

]
= –

a
e

	= 0,

W T[
D2F(E0; cTC)(V , V )

]
= –2 +

2(b – a)
ae

	= 0.

The proof of Theorem 7 is finished. �

For a = 1 and e = 0.5, we get c = cTC = 0.4, b
a – e – 1 = 0.3 > 0 if b = 1.8, and then E∗

2

coincides with E0 (Fig. 2(a)); we get c = cTC = 0.25, b
a – e – 1 = 0 if b = 1.5, and then there

is only the boundary equilibrium E0 (Fig. 2(b)); we get c = cTC = 0.1, b
a – e – 1 = –0.3 < 0 if

b = 1.2, and then E∗
1 coincides with E0 (Fig. 2(c)).

4 Global stability of equilibria
In this section, we consider the global stability of equilibria of system (1.7).

Theorem 8 If b < a, then E0(0, 0) is globally asymptotically stable.

Proof Consider a Lyapunov function of the form

V (x, y) = bx + ay.
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Figure 2 The phase portraits of transcritical bifurcation of system (1.7) when c = cTC

Obviously, the function V (x, y) is zero at the equilibrium E0(0, 0) and is positive in the first
quadrant. Calculating the derivative of V (x, y) along the solution of system (1.7), we have

D+V (t) = b(y – ax) + a
(

bx – y(1 + y) –
cy

d + y

)

= (b – a)y – a
(

y2 +
cy

d + y

)
.

Since b < a, D+V (t) < 0 for all x, y > 0 except the boundary equilibrium E0(0, 0), where
D+V (t) = 0. Therefore V (x, y) satisfies Lyapunov’s asymptotic stability theorem, so the
boundary equilibrium E0(0, 0) of system (1.7) is globally asymptotically stable.

The proof of Theorem 8 is finished. �

For a = 1, b = 0.8, c = 0.4 and e = 0.5, we get c > e( b
a – 1) = –0.2 and b < a. By Theorems 2

and 8 the boundary equilibrium E0(0, 0) is a stable node and globally asymptotically stable
(Fig. 3).

Theorem 9 If 0 < c < c∗∗, then system (1.7) has a unique positive equilibrium E∗
1 , which is

globally asymptotically stable.
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Figure 3 Numerical simulation of the phase portrait of
boundary equilibrium E0

Proof Too prove that E∗
1 is globally asymptotically stable in the first quadrant, we consider

the Dulac function u(x, y) = 1. Then

∂(uP)
∂x

+
∂(uQ)

∂y
= –a – 1 – 2y –

ce
(e + y)2 < 0,

where

P(x, y) = y – ax,

Q(x, y) = bx – y(1 + y) –
cy

e + y
.

According to the Bendixson–Dulac discriminant, the system has no limit cycle in the first
quadrant, so E∗

1 is globally asymptotically stable.
The proof of Theorem 9 is finished. �

For a = 1, b = 2, c = 0.4, and e = 0.5, we get 0 < c < c∗∗ = 0.5. By Theorems 3 and 8 the
only positive equilibrium E∗

1(0.5, 0.5) is a stable node and globally asymptotically stable
(Fig. 1(a)).

5 Numeric simulations
Example 5.1 Consider the following system:

dx
dt

= y – x,

dy
dt

= bx – y(1 + y) –
cy

0.5 + y
.

(5.1)

In this system, corresponding to system (1.7), we choose a = 1 and e = 0.5, so c∗ =
1
4 (b – 0.5)2, c∗∗ = 0.5(b – 1). By Theorem 1 system (1.7) has a unique boundary equilib-
rium E0(0, 0) for all positive parameters.

(1) Take b = 2, c = 0.4. Then 0 < c < c∗∗ = 0.5. By Theorems 2, 3, and 9, the boundary
equilibrium E0(0, 0) of the system is a saddle. The only positive equilibrium
E∗

1(0.5, 0.5) is a stable node and globally asymptotically stable (Fig. 1(a)).
(2) Take b = 2, c = 0.5. Then c = c∗∗, am = – 1

18 	= 0, b
a – e – 1 = 0.5 > 0. By Theorems 2

and 3 the boundary equilibrium E0(0, 0) of the system is a saddle node. The only
positive equilibrium E∗

1(0.5, 0.5) is a stable node (Fig. 1(b)).
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(3) Take b = 1.5, c = 0.25. Then c = c∗∗, am = – 1
18 = 0, b

a – e – 1 = 0. By Theorem 2 the
boundary equilibrium E0(0, 0) of the system is a stable node (Fig. 1(c)).

(4) Take b = 2, c = 0.52. Then 0.5 = c∗∗ < c < c∗ = 0.5625, b
a – e – 1 = 0.5 > 0. By

Theorems 2, 3, and 4 the boundary equilibrium E0(0, 0) of the system is a stable
node. The positive equilibrium E∗

1(0.456, 0.456) is a stable node, and
E∗

2(0.0438, 0.0438) is a saddle (Fig. 1(d)).
(5) Take b = 2, c = 0.5625. Then c = c∗, b

a – e – 1 = 0.5 > 0. By Theorems 2 and 5 the
boundary equilibrium E0(0, 0) of the system is a stable node. The only positive
equilibrium E∗

3(0.25, 0.25) is a saddle node (Fig. 1(e)).
(6) Take b = 2, c = 0.6. Then c > c∗ = 0.5625. By Theorems 1 and 2 the boundary

equilibrium E0(0, 0) of the system is a stable node, and there is no positive
equilibrium (Fig. 1(f )).

6 Conclusion
In this paper, we investigate a single-species system with stage structure and harvesting for
the mature population. We discuss the local and global stability of the possible equilibria of
the system. Furthermore, we find some interesting dynamical phenomenon of the model.
When b < a, that is, α < δ2(1 + δ1

β
), the boundary equilibrium of the system is globally

asymptotically stable. This means that when the birth rate of the immature population
is too low, the species drives to extinction. When c < c∗, that is, α > (δ2 + hr

m2δ2
)(1 + δ1

β
),

the system has a unique positive equilibrium E∗
1 and is globally asymptotically stable. This

shows that when the birth rate of the immature population is large enough, harvesting has
no effect on the persistence of the system.

Qualitative analysis shows that Michaelis–Menten-type harvesting term plays a crucial
role in studying the dynamics and bifurcations of the system. The saddle-node bifurcation
can make the dynamics of the system change significantly. When the bifurcation parame-
ters pass the threshold, the number of internal equilibria will change by 0, 1, 2. If c > c∗ and
c = hEα

δ2
2

, then c is proportional to E, that is, overfishing can lead to species extinction. Eco-
logically, the saddle-node bifurcation and the transcritical bifurcation give the maximum
threshold for continuous harvesting, and there is no risk of extinction of mature species.
In practice, this allows decision makers to make the best harvesting strategy to ensure the
sustainable development of ecosystem.

Acknowledgements
The authors would like to thank Dr. Xiaofeng Chen for useful discussion on mathematical modeling.

Funding
The research was supported by the Natural Science Foundation of Fujian Province (2019J01783).

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that there is no conflict of interests.

Consent for publication
Not applicable.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.



Yu et al. Advances in Difference Equations        (2020) 2020:238 Page 17 of 18

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 January 2020 Accepted: 19 April 2020

References
1. Lei, C.: Dynamic behaviors of a stage structured commensalism system. Adv. Differ. Equ. 2018(1), Article ID 301 (2018)
2. Chen, F., Xie, X., Li, Z.: Partial survival and extinction of a delayed predator–prey model with stage structure. Appl.

Math. Comput. 219(8), 4157–4162 (2012)
3. Li, T., Chen, F., et al.: Stability of a mutualism model in plant-pollinator system with stage-structure and the

Beddington–DeAngelis functional response. J. Nonlinear Funct. Anal. 2017, Article ID 50 (2017)
4. Chen, F., Xie, X., Chen, X.: Dynamic behaviors of a stage-structured cooperation model. Commun. Math. Biol.

Neurosci. 2015, Article ID 4 (2015)
5. Lin, X., Xie, X., et al.: Convergences of a stage-structured predator–prey model with modified Leslie–Gower and

Holling-type II schemes. Adv. Differ. Equ. 2016(1), Article ID 181 (2016)
6. Zhang, L., Zhang, C.: Uniform persistence, periodicity and extinction in a delayed biological system with stage

structure and density-dependent juvenile birth rate. Am. J. Comput. Math. 6(2), 130–140 (2016)
7. Xiao, Z., Li, Z., Zhu, Z., et al.: Hopf bifurcation and stability in a Beddington–DeAngelis predator–prey model with

stage structure for predator and time delay incorporating prey refuge. Open Math. 17(1), 141–159 (2019)
8. Lei, C.: Dynamic behaviors of a stage structure amensalism system with a cover for the first species. Adv. Differ. Equ.

2018(1), Article ID 272 (2018)
9. Xue, Y., Pu, L., Yang, L.: Global stability of a predator–prey system with stage structure of distributed-delay type.

Commun. Math. Biol. Neurosci. 2015, Article ID 12 (2015)
10. Zhang, F., Chen, Y., Li, J.: Dynamical analysis of a stage-structured predator–prey model with cannibalism. Math. Biosci.

307, 33–41 (2019)
11. Li, Z., Han, M., Chen, F.: Global stability of a stage-structured predator–prey model with modified Leslie–Gower and

Holling-type II schemes. Int. J. Biomath. 5(6), 1250057 (2012)
12. Yue, Q.: Permanence of a delayed biological system with stage structure and density-dependent juvenile birth rate.

Eng. Lett. 27(2), 263–268 (2019)
13. Pu, L., Miao, Z., et al.: Global stability of a stage-structured predator–prey model. Commun. Math. Biol. Neurosci. 2015,

Article ID 5 (2015)
14. Li, Z., Han, M., Chen, F.: Global stability of a predator–prey system with stage structure and mutual interference.

Discrete Contin. Dyn. Syst., Ser. B 19(1), 173–187 (2014)
15. Chen, F., Chen, W., et al.: Permanence of a stage-structured predator–prey system. Appl. Math. Comput. 219(17),

8856–8862 (2013)
16. Xiao, A., Lei, C.: Dynamic behaviors of a non-selective harvesting single species stage structure system incorporating

partial closure for the populations. Adv. Differ. Equ. 2018(1), Article ID 245 (2018)
17. Huang, X., Chen, F., Xie, X., et al.: Extinction of a two species competitive stage-structured system with the effect of

toxic substance and harvesting. Open Math. 17(1), 856–873 (2019)
18. Li, T., Huang, X., Xie, X.: Stability of a stage-structured predator–prey model with Allee effect and harvesting.

Commun. Math. Biol. Neurosci. 2019, Article ID 13 (2019)
19. Chen, F., Wu, H., Xie, X.: Global attractivity of a discrete cooperative system incorporating harvesting. Adv. Differ. Equ.

2016(1), Article ID 268 (2016)
20. Lin, Q.: Dynamic behaviors of a commensal symbiosis model with non-monotonic functional response and

non-selective harvesting in a partial closure. Commun. Math. Biol. Neurosci. 2018, Article ID 4 (2018)
21. Lei, C.: Dynamic behaviors of a non-selective harvesting May cooperative system incorporating partial closure for the

populations. Commun. Math. Biol. Neurosci. 2018, Article ID 12 (2018)
22. Lin, Q., Xie, X., Chen, F., et al.: Dynamical analysis of a logistic model with impulsive Holling type-II harvesting. Adv.

Differ. Equ. 2018(1), Article ID 192 (2018)
23. Liu, Y., Xie, X., et al.: Permanence, partial survival, extinction and global attractivity of a non-autonomous harvesting

Lotka–Volterra commensalism model incorporating partial closure for the populations. Adv. Differ. Equ. 2018(1),
Article ID 211 (2018)

24. Xie, X., Chen, F., Xue, Y.: Note on the stability property of a cooperative system incorporating harvesting. Discrete Dyn.
Nat. Soc. 2014, Article ID 327823 (2014)

25. Chen, B.: Dynamic behaviors of a non-selective harvesting Lotka–Volterra amensalism model incorporating partial
closure for the populations. Adv. Differ. Equ. 2008(1), Article ID 111 (2008)

26. Su, Q., Chen, F.: The influence of partial closure for the populations to a non-selective harvesting Lotka–Volterra
discrete amensalism model. Adv. Differ. Equ. 2019(1), Article ID 281 (2019)

27. Yuan, R., Wang, Z., Jiang, W.: Global Hopf bifurcation of a delayed diffusive predator–prey model with
Michaelis–Menten type prey harvesting. Appl. Anal. 95(2), 444–466 (2016)

28. Liu, Y., Guan, X., et al.: On the existence and stability of positive periodic solution of a nonautonomous commensal
symbiosis model with Michaelis–Menten type harvesting. Commun. Math. Biol. Neurosci. 2019, Article ID 2 (2019)

29. Chen, B.: The influence of commensalism on a Lotka–Volterra commensal symbiosis model with Michaelis–Menten
type harvesting. Adv. Differ. Equ. 2019(1), Article ID 43 (2019)

30. Hu, D., Cao, H.: Stability and bifurcation analysis in a predator–prey system with Michaelis–Menten type predator
harvesting. Nonlinear Anal., Real World Appl. 33(1), 58–82 (2017)

31. Liu, Y., Zhao, L., Huang, X., Deng, H.: Stability and bifurcation analysis of two species amensalism model with
Michaelis–Menten type harvesting and a cover for the first species. Adv. Differ. Equ. 2018(1), Article ID 295 (2018)

32. Song, Q., Yang, R., Zhang, C., et al.: Bifurcation analysis in a diffusive predator–prey system with Michaelis–Menten
type predator harvesting. Adv. Differ. Equ. 2018(1), Article ID 329 (2018)

33. Kong, L., Zhu, C.: Bogdanov–Takens bifurcations of codimensions 2 and 3 in a Leslie–Gower predator–prey model
with Michaelis-Menten type prey harvesting. Math. Methods Appl. Sci. 40(18), 6715–6731 (2017)



Yu et al. Advances in Difference Equations        (2020) 2020:238 Page 18 of 18

34. Clark, C.W., Mangel, M.: Aggregation and fishery dynamics: a theoretic study of schooling and the purse seine tuna
fisheries. Fish. Bull. 77(2), 317–337 (1979)

35. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equation. Science Press, Beijing (1992)


	Stability and bifurcation analysis in a single-species stage structure system with Michaelis-Menten-type harvesting
	Abstract
	Keywords

	Introduction
	Equilibria and their stability
	The existence of equilibria
	Stability of the equilibria
	Stability of the boundary equilibrium E0(0,0)
	Stability of the positive equilibria Ei*(xi*,yi*) (i=1,2,3)


	Bifurcation analysis
	Saddle-node bifurcation
	Transcritical bifurcation

	Global stability of equilibria
	Numeric simulations
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Publisher's Note
	References


