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Abstract
In this paper a general framework is presented on some operational properties of
Caputo modification of Hadamard-type fractional differential operator along with a
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1 Introduction
The history of fractional operators dates back to the seventeenth century [1]. However,
interest in this theory gained momentum after the publication of [2]. Later, Riemann
constructed an integral-based fractional operator [3] which is the well-known Riemann–
Liouville (R–L) integral. It proved to be a valuable research in fractional calculus and is
being used extensively in this field ever since. The readers are referred to a comprehensive
background history of fractional calculus and details on the R–L operators given in [4].

In the last two decades scientists and researchers presented findings dealing with the
fractional calculus theory and found that integer order derivatives do not work adequately
in many cases. Fractional calculus has played a very important role in fields such as turbu-
lent fluid flows, blood flow through biological tissues, control theory, and signal and image
processing, fractional Brownian motion, power law models, history-dependent process,
porous media, fractional filters, etc. The detailed literature including theory and applica-
tions of fractional calculus can be found in [5–11].

There are different definitions of fractional derivatives available in the literature. How-
ever, the most commonly used is the Hadamard fractional derivative given by Hadamard
[12]. Butzer et al. [13–16] studied various properties of Hadamard-type derivatives which
are more generalized than the Hadamard fractional derivatives. In this context, the readers
are also referred to [1] for a detailed study on generalized fractional derivatives and ref-
erences therein. Caputo introduced another type of fractional derivative [17] which has
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an advantage over R–L derivative in a differential equation since it does not require to de-
fine the fractional order initial conditions (see, for example, [18–21]). Recently the authors
in [22, 23] utilized Caputo-type modification on Hadamard factional derivatives. More-
over Trujillo et al. in [24] derived Taylor’s formula with Riemann–Liouville derivatives,
and Odibat and Shawagfeh [25] derived the same based on Caputo fractional derivative.
Gulsu et al. [26] extended the work of previous authors and proposed a numerical scheme
to approximate solutions of relaxation–oscillation equation by using the fractional Taylor
series. Finally, Fernandez and Baleanu [27] developed mean value theorem and Taylor’s
theorem for certain fractional differential operators.

The present research presents an extension of Haar wavelet method to approximate
Hadamard-type fractional integrals for a wide range of functions, and a new operational
matrix of fractional integration of Haar wavelets is derived for Hadamard-type frac-
tional integrals. A Caputo modification of Hadamard-type fractional derivative, motivated
through [22, 23], is also carried out in this work, and composition properties of Caputo
modification of Hadamard-type fractional derivative are discussed in detail. Lastly, moti-
vated by [28] and the aforementioned studies, we also establish a generalized Taylor ex-
pansion based on Caputo–Hadamard-type fractional differential operators and present
an example for illustration.

2 Preliminaries
In this section some definitions and basic concepts needed in the sequel are presented
precisely. We refer the interested reader to Samko et al. [3] and Kilbas et al. [7] for more
details.

The left-sided Hadamard fractional integral is defined as follows.

Definition 2.1 For f ∈ Lp[a, b], 1 ≤ p < ∞, the Hadamard fractional integral of order α > 0
is defined as

I
α
a f (x) =

1
Γ (α)

∫ x

a

(
log

(
x
t

))α–1

f (t)
dt
t

, a > 0. (2.1)

Hadamard fractional derivative of order α > 0 is given by

D
α
a f (x) = δm(

I
m–α
a f

)
(x)

such that m = �α� and δ = x d
dx .

Definition 2.2 ([15]) For δmf ∈ Lp[a, b], the Caputo–Hadamard fractional derivative of
order α > 0 is defined as

C
D

α
a f (x) =

1
Γ (m – α)

∫ x

a

(
log

x
t

)m–α–1(
t

d
dt

)m

f (t)
dt
t

=
(
I

m–α
a δmf

)
(x),

where δm = (x d
dx )m and m = �α�.

We introduce the notation δ = x d
dx and Dc = x–cδ, where c ∈ R. Define a space of func-

tions

ACm
c [a, b] =

{
f : [a, b] → R |Dm–1f (x) ∈ AC[a, b]

}
,



Zafar et al. Advances in Difference Equations        (2020) 2020:219 Page 3 of 13

where AC[a, b] is the space of absolutely continuous functions. Note that ACm
0 [a, b] =

ACm[a, b]. Furthermore, for c ∈R, 1 ≤ p < ∞, define the space [18]

L
p
c [a, b] =

{
f : [a, b] → R

∣∣∣
(∫ b

a

∣∣xcf (x)
∣∣p dx

x

)p

< ∞
}

.

Remark 2.3 If f ∈ ACm
c [a, b], then there exists a function g ∈ L1

c [a, b] such that

D
m–1
c f (x) = D

m–1
c f (a) +

∫ b

a
g(x) dx,

where g is a generalized derivative of f , i.e., g(x) = Dm
c f (x).

The Hadamard-type fractional integral was introduced in [15]. This operator is formally
defined as follows.

Definition 2.4 For α > 0, c ∈R, the Hadamard-type fractional integral is defined as

I
α
a,cf (x) =

1
Γ (α)

∫ x

a

(
s
x

)c(
log

x
s

)α–1

f (s)
ds
s

.

For c = 0, the integral Iα
a,cf (x) reduces to the standard Hadamard fractional integral

Iα
a,cf (x).

Lemma 2.5 Let f ∈ L1
c [a, b] and α > 0. Then integral Iα

a,cf (x) exists and Iα
a,cf (x) ∈ L1

c [a, b].

The Hadamard-type fractional differential operator is defined as follows.

Lemma 2.6 For β > 0, c ∈ R, let f (x) = x–c(log x
a )β . Then

I
α
a,cf (x) =

Γ (β + 1)x–c

Γ (β + α + 1)

(
log

x
a

)α+β

.

Definition 2.7 Let f ∈ L1
c [a, b] and m – 1 < α ≤ m, m ∈N. Then the Hadamard-type frac-

tional derivative of f is defined by

D
α
a,cf (x) = D

m
c I

m–α
a,c f (x).

Definition 2.8 Let f ∈ ACm
c [a, b] and m – 1 < α ≤ m, m ∈ N. Then the Caputo modifica-

tion of Hadamard-type derivative is given by

C
D

α
a,cf (x) = D

α
a,c

[
f (x) – acx–c

m–1∑
k=0

Dk
c f (a)

Γ (k + 1)

(
log

x
a

)k
]

. (2.2)

Lemma 2.9 For α ≥ 0, m = �α�, and μ > –1, consider the function

f (x) = x–c
(

log
x
a

)μ

,
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the Caputo–Hadamard-type derivative of f is given by

C
D

α
a,cf (x) =

Γ (μ + 1)
Γ (μ – α)

x–c
(

log
x
a

)μ–α

,

if μ ∈N and μ ≥ n, or μ /∈N and μ > m – 1. Otherwise

C
D

α
a,cf (x) = 0,

if μ ∈ {0, 1, 2, 3, . . . , m – 1}.

3 Approximation of Hadamard-type fractional integral
Wavelets have been used for numerical integration by several researchers. Based on
wavelets, Hashish et al. [29] introduced a method for obtaining approximate value of in-
tegrals. In [30, 31], Aziz et al. formulated a numerical integration scheme based on Haar
wavelets and hybrid functions. In this section, we develop a method for approximating the
Hadamard-type fractional integral. The method presented here is based on operational
matrices of fractional integration. The operational matrix of integration for Hadamard-
type fractional integral is introduced as follows.

For x ∈ [a, b], the modified ith Haar wavelet is defined as

Hi(x) =

⎧⎪⎪⎨
⎪⎪⎩

x–c, x ∈ [η1(i),η2(i));

–x–c, x ∈ [η2(i),η3(i));

0, elsewhere,

where c ∈R,

η1(i) = x(2kν), η2(i) = x
(
(2k + 1)ν

)
, η3(i) = x

(
(2k + 2)ν

)
,

where

ν =
M
m

, k = 0, 1, 2, . . . , m – 1, m = 2j, j = 0, 1, 2, . . . , J ,

M = 2J , i = m + k + 1.

It is to be noted that J is the maximal resolution level. It is observed that the Haar wavelets
and modified Haar wavelets are related as Hi(x) = xchi(x), where hi(x) is the ith Haar
wavelet [32].

To approximate Hadamard-type integral by Haar wavelets, the Hadamard-type integrals
of Haar wavelets is required. Using the definition of Hi(x), these integrals can be analyti-
cally evaluated using Lemma 2.6.

For x ∈ [a, b],

I
α
a,cH0(x) =

1
Γ (α)

∫ x

a

(
s
x

)c(
log

x
s

)α–1

H0(s)
ds
s

=
x–c

Γ (α + 1)

(
log

x
a

)α

.
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For x ∈ [η1(i),η2(i)),

I
α
a,cHi(x) =

1
Γ (α)

∫ x

η1

(
s
x

)c(
log

x
s

)α–1

Hi(s)
ds
s

=
x–c

Γ (α + 1)

(
log

x
η1

)α

.

Now, for x ∈ [η2(i),η3(i)),

I
α
a,cHi(x) =

x–c

Γ (α)

[∫ η2

η1

(
log

x
s

)α–1 ds
s

–
∫ x

η2

(
log

x
s

)α–1 ds
s

]

=
x–c

Γ (α + 1)

[(
log

x
η1

)α

– 2
(

log
x
η2

)α]
.

Finally, for x ≥ n3(i),

I
α
a,cHi(x) =

x–c

Γ (α)

[∫ η2

η1

(
log

x
s

)α–1 ds
s

–
∫ η3

η2

(
log

x
s

)α–1 ds
s

]

=
x–c

Γ (α + 1)

[(
log

x
η1

)α

– 2
(

log
x
η2

)α

+
(

log
x
η3

)α]
.

In summary, we have

I
α
a,cHi(x) =

x–c

Γ (α + 1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x < η1(i);

(log x
η1

)α , x ∈ [η1(i),η2(i));

(log x
η1

)α – 2(log x
η2

)α , x ∈ [η2(i),η3(i));

(log x
η1

)α – 2(log x
η2

)α + (log x
η3

)α , x ≥ η3.

A function f ∈ L1[a, b] is represented by Haar-type wavelet as

f (x) =
∞∑
l=0

ClHl(x),

where

Cl =
∫ b

a
f (x)Hl(x) dx.

In applications, a function f is approximated by the kth partial sum of the Haar series as

f (x) = fk(x) =
k∑

l=0

ClHl(x).

We now introduce an operational matrix of Hadamard-type integration using the mod-
ified Haar wavelets. Let M(x) = [H0(x),H1(x),H2(x), . . . ,Hk–1(x)], then at collocation
points are

Mk×k =
[
Mk(x)

(
1

2k

)
Mk(x)

(
3

2k

)
· · ·Mk(x)

(
2k – 1

2k

)]
.
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The Hadamard-type fractional integration of Haar wavelets yields

I
α
a,cMk(x) = Pk×kMk(x),

where Pk×k is the operational matrix of Hadamard-type integration for Haar type
wavelets. The approximation of the fractional Hadamard-type integral is given as follows:

I
α
a,cf (x) = I

α
a,c

k∑
l=0

ClHl(x) =
k∑

l=0

ClI
α
a,cHl(x) = CPM.

Example 3.1 Let f (x) = x–c(log x
a )α . Then we have

I
α
a,cf (x) = x–c Γ (α + 1)

Γ (2α + 1)

(
log

x
a

)2α

.

The numerical and exact values of the integral Iα
a,cf (x) are shown in Table 1. Plots for

different values of c along with graphs of absolute error are shown in Figs. 1 and 2.

Example 3.2 Let g(x) = xα–c sin(3αx). The Hadamard-type fractional integral of g is com-
puted for 1 ≤ α ≤ 2, 1 ≤ x ≤ 8. The graph for numerical values is presented in Fig. 3. The
resolution level is taken as J = 6.

Table 1 Exact and numerical values for J = 5, c = 1, α = 1.5

x Exact values of Iα
a,cf (x) Numerical values of Iα

a,cf (x) Absolute error

1.1406 0.0068 0.008137 1.337× 10–3

2.2656 0.0711 0.072241 1.141× 10–3

3.1094 0.1190 0.119924 9.24× 10–4

4.2344 0.1681 0.168898 7.98× 10–4

5.0781 0.1956 0.196315 7.15× 10–4

6.2031 0.2232 0.223817 6.17× 10–4

Figure 1 Hadamard-type integration of f (x) = x–c(log x
a )

α—Numerical integration (1≤ α ≤ 2)
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Figure 2 Hadamard-type integration of f (x) = x–c(log x
a )

α—Absolute error (1 ≤ α ≤ 2)

Figure 3 Hadamard-type fractional integrals of g(x) = xα–c sin(3αx) for c = 1 and c = 1.5

4 Properties of Hadamard-type fractional operators
In the following identity, a relationship between Hadamard-type fractional derivative of
order α > 0 and a Caputo modification of Hadamard-type derivative of the same order is
established.

To simplify the calculations, a variant of integration by parts formula in notations of
Hadamard-type calculus is introduced. For f , g ∈ L1

c [a, b], the following relation holds:

∫ x

a

(
x
s

)c

Dc
(
s–cf (s)

)
g(s)

ds
s

= x–cf (s)g(s)
∣∣x
a –

∫ x

a

(
x
s

)c

f (s)Dc
(
s–cg(s)

)ds
s

. (4.1)
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Theorem 4.1 Let f ∈ ACm
c [a, b] and m – 1 < α ≤ m, m ∈N. Then

C
D

α
a,cf (x) =

1
Γ (m – α)

∫ x

a

(
s
x

)c(
log

x
s

)m–α–1

D
m
c f (s)

ds
s

= I
m–α
a,c D

m
c f (x).

Proof The proof follows from Eq. (4.5) and Theorem 2.1 in [22]. �

For composition properties of Hadamard-type integral and Riemann–Liouville Hada-
mard-type derivative, the reader is referred to [13–16]. In the following section, we present
an important property for Caputo–Hadamard-type operators, which plays an important
role in the qualitative analysis of fractional differential equations.

Lemma 4.2 Assume f ∈ ACm
c [a, b] and m ∈N. Then

I
m
a,cD

m
c f (x) = f (x) – acx–c

m–1∑
k=0

Dk
c f (a)

Γ (k + 1)

(
log

x
a

)k

. (4.2)

Proof For m = 1, by definitions of I1
a,c and D1

c , we have

I
1
a,cD

1
c f (x) = x–c

∫ x

a

(
scf (s)

)′ ds = f (x) – acx–cf (a).

Assume that identity (4.2) holds for m – 1, where m > 1. Then, by the semigroup property
for Ia,c and Dc, we have

I
m
a,cD

m
c f (x) = I

1
a,c

(
I

m–1
a,c D

m–1
c

)
D

1
c f (x).

Finally, using (4.2), we get

I
m
a,cD

m
c f (x) = I

1
a,cD

1
c f (x) – acx–c

m–2∑
k=0

Dk+1
c f (a)

Γ (k + 2)

(
log

x
a

)k+1

= f (x) – acx–cf (a) – acx–c
m–1∑
k=1

Dk
c f (a)

Γ (k + 1)

(
log

x
a

)k

= f (x) – acx–c
m–1∑
k=0

Dk
c f (a)

Γ (k + 1)

(
log

x
a

)k

. �

It is a common practice to transform an initial value problem or boundary value problem
to an equivalent Volterra integral equation to perform qualitative analysis. In this context,
the following property for Caputo–Hadamard-type operator, which is very useful for the
qualitative analysis of Caputo–Hadamard differential equations, is established.

Theorem 4.3 Assume f ∈ ACm
c [a, b] and m – 1 < α ≤ m, m ∈N. Then

I
α
a,c

C
D

α
a,cf (x) = f (x) – acx–c

m–1∑
k=0

Dk
c f (a)

Γ (k + 1)

(
log

x
a

)k

.
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Proof The proof follows from the definition of CDα
c , the semigroup property of Iα

a,c, and
Lemma 4. �

For convenience, the Leibniz rule for Hadamard-type calculus is stated. The proof of the
following lemma follows from the standard Leibniz rule, where the notation

Dc,xf (x, t) = x–c
(

x
∂

∂x

)
xcf (x, t)

is used to represent the partial derivative.

Lemma 4.4 Assume that h(x, t) and ∂
∂x h(x, t) ∈ (ACm

c [a, b])2. Then

Dc

∫ x

a

(
s
x

)c

h(x, s)
ds
s

= h(x, x) –
∫ x

a

(
s
x

)c

Dc,xh(x, s)
ds
s

.

Lemma 4.5 If μ ≥ α and f ∈ ACm
c [a, b], then CDα

c I
μ
a,cf (x) = I

μ–α
a,c f (x).

Proof By Definition 2.8, Lemma 4.4, and the semigroup property of Iα
c , we have

C
D

α
c I

μ
a,cf (x) = I

m–α
c D

m
c I

μ
a,cf (x) = I

m–α
c I

m–μ
a,c f (x) = I

μ–α
a,c f (x). �

Lemma 4.6 Let f ∈ ACm
c [a, b] and α ≥ 0, β ≥ 0 such that m – 1 < α ≤ m and n – 1 < β ≤ n.

Then

C
D

α
a,c

(C
D

β
a,cf

)
(x) = C

D
α+β
a,c f (x).

Proof Without loss of generality, let n ≥ m. Thus n = m + k, k ∈ {0, 1, 2, . . .}. Since α + β =
m + n, then by the definition of CD

α
a,c and the semigroup property of fractional integral Iα

a ,
we have

C
D

α
a,c

(C
D

β
a,cf

)
(x) = I

m–α
a,c D

m
c
(C
D

β
a,cf (x)

)

= I
m–α
a,c D

m
c
(
I

n–β
a,c D

n
c f (x)

)

= I
m–α
a,c D

m
c
(
I

m+k–β
a,c D

m+k
c f (x)

)

= I
m–α
a,c D

m
c I

m–β
a,c I

k
a,cD

m+k
c f (x)

= I
m–α
a,c D

β
a,cI

k
a,cD

m+k
c f (x)

= I
m–α–β
a,c I

β
a,cD

β
a,cI

k
a,cD

m+k
c f (x).

By Theorem 4.3, we have

c
D

α
a,c

(C
D

β
a,cf

)
(x) = I

m–α–β
a,c

[
I

k
a,cD

m+k
c f (x)

– acx–c
m–1∑
j=0

D
m–j–1
c I

m–β
a,c Ik

a,cD
m+k
c f (a)

Γ (β – j)

(
log

x
a

)β–j–1
]

.
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Let �β� = n = m + k and since

I
m–β
a,c I

k
a,cD

m+k
c f (a) = I

�β�–β
a,c D

�β�
c f (a) = C

D
β
a,cf (a).

Therefore

C
D

α
a,c

(C
D

β
a,cf

)
(x) = I

m–(αβ)
a,c

[
I

k
a,cD

m+k
c f (x) – acx–c

m–1∑
j=0

D
m–j–1
c

CD
β
a,cf (a)

Γ (β – j)

(
log

x
a

)β–j–1
]

.

For β ≥ 0, we have CD
β
a,cf (a) = 0. Thus

C
D

α
a,c

(C
D

β
a,cf

)
(x) = I

m–(α+β)
a,c

(
I

k
a,cD

m+k
c f (x)

)

= I
m+k–(α+β)
a,c D

m+k
c f (x)

= C
D

α+β
a,c f (x),

which establishes the required identity. �

Remark 4.7 From Definition 2.4, we notice an obvious relation

I
α
a,cf (x) = x–c

I
α
a
(
xcf (x)

)
(4.3)

between Hadamard-type integral Iα
a,c and Hadamard integral Iα

a . Also, from Definition 2.7
and Eq. (4.3), Hadamard-type derivative Dα

a,c and Hadamard derivative Dα
c are related as

follows:

D
α
a,cf (x) = x–c

D
α
a
(
xcf (x)

)
. (4.4)

A similar relation holds between a Caputo modification of Hadamard-type derivative
CDα

a,c and a Caputo modification of Hadamard derivative CDα
a , that is,

C
D

α
a,cf (x) = x–cC

D
α
a
(
xcf (x)

)
. (4.5)

5 Taylor’s formula
In this section, Taylor’s formula involving Caputo–Hadamard-type derivative is discussed.
To establish the main theorem, the following result is required.

Theorem 5.1 Let 0 < α ≤ 1 and f ∈ AC[a, b] such that CDα
a,cf ∈ C[a, b]. Then, for all x ∈

[a, b], there exists ξ ∈ [a, b] such that, for ξ ∈ [a, x],

f (x) = acx–cf (a) +
1

Γ (α + 1)

(
log

x
a

)α(
ξ

x

)c
C
D

α
a,cf (ξ ).

Proof Since 0 < α ≤ 1, we have by Theorem 4.3

I
α
a,c

(C
D

α
a,cf

)
(x) = f (x) – acx–cf (a). (5.1)
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Using the definition of Iα
a,c and by the integral mean value theorem, we obtain

I
α
a,c

(C
D

α
a,cf

)
(x) =

1
Γ (α)

∫ x

a

(
t
x

)c(
log

x
t

)α–1
C
D

α
a,cf (t)

dt
t

=
1

Γ (α + 1)

(
ξ

x

)c
C
D

α
a,cf (ξ )

(
log

x
a

)α

=
1

Γ (α + 1)

(
ξ

x

)c(
log

x
a

)α
C
D

α
a,cf (ξ ), (5.2)

where ξ = (a, x). Hence, we get

f (x) = acx–cf (a) +
1

Γ (α + 1)

(
ξ

x

)c(
log

x
a

)α
C
D

α
a,cf (ξ ). �

Proposition 5.2 If 0 < α ≤ 1, j ∈ N, and f ∈ ACm
c [a, b], then

I
jα
a,c

C
D

jα
a,cf (x) – I

(j+1)α
a,c

C
D

(j+1)α
a,c f (x) =

acx–c

Γ (jα + 1)

(
log

x
a

)jα
C
D

jα
a,cf (a).

Proof By Lemma 4.6, Theorem 4.3, and Eq. (5.1), we have

I
jα
a,c

C
D

jα
a,cf (x) – I

(j+1)α
a,c

C
D

(j+1)α
a,c f (x) = I

jα
a,c

[C
D

jα
a,cf (x) – I

α
a,c

C
D

(j+1)α
a,c f (x)

]

= I
jα
a,c

[C
D

jα
a,cf (x) – I

α
a,c

C
D

α
a,c

(C
D

jα
a,cf (x)

)]

= ac
I

jα
a,c

(
x–cC

D
jα
a,cf (a)

)

=
acx–c

Γ (jα + 1)

(
log

x
a

)jα
C
D

jα
a,cf (a). �

Theorem 5.3 Let 0 < a < b < ∞ and 0 < α ≤ 1. Let m be an arbitrary nonnegative integer.
Let f ∈ ACm

c [a, b] and suppose CD
(j+1)α
a,c f ∈ C[a, b]. Then, for ξ = [a, x], Taylor’s formula

involving Caputo–Hadamard-type fractional derivatives writes

f (x) =
m∑

j=0

acx–c

Γ (jα + 1)

(
log

x
a

)jα
C
D

jα
a,cf (a)+

CD
(m+1)α
a,c f (ξ )

Γ ((m + 1)α + 1)

(
ξ

x

)c(
log

x
a

)(m+1)α

. (5.3)

Proof Using Proposition 5.2, we have

m∑
j=0

acx–c

Γ (jα + 1)

(
log

x
a

)jα
C
D

jα
a,cf (a) =

m∑
j=0

(
I

jα
a,c

C
D

jα
a,cf (x) – I

(j+1)α
a,c

C
D

(j+1)α
a,c f (x)

)

= I
0
a,c

C
D

0
a,cf (x) – I

(m+1)α
a,c

C
D

(m+1)α
a,c f (x).

It follows

f (x) =
m∑

j=0

acx–c

Γ (jα + 1)

(
log

x
a

)jα
C
D

jα
a,cf (a) + I

(m+1)α
a,c

C
D

(m+1)α
a,c f (x). (5.4)
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Replacing α by (m + 1)α in Eq. (5.2), we get

I
(m+1)α
a,c

C
D

(m+1)α
a,c f (x) =

1
Γ ((m + 1)α + 1)

(
ξ

x

)c(
log

x
a

)(m+1)α
C
D

(m+1)α
a,c f (ξ ). (5.5)

Consequently, (5.3) follows by substituting (5.5) in (5.4). �

Example 5.4 For 0 < α ≤ 1, let a, μ be nonzero real numbers and f ∈ C[a,∞). Consider
the Caputo–Hadamard-type fractional differential equation

C
D

α
a f (x) – μf (x) = 0. (5.6)

Assume that f has the power series representation

f (x) =
∞∑
j=0

qjx–c
(

log
x
a

)jα

. (5.7)

Applying CDα
a on both sides of (5.7) and using Lemma 2.9, we have

C
D

α
a f (x) =

∞∑
j=0

qj
C
D

α
a x–c

(
log

x
a

)jα

=
∞∑
j=1

qj
Γ (jα + 1)

Γ ((j – 1)α + 1)
x–c

(
log

x
a

)jα

=
∞∑
j=0

qj+1
Γ ((j + 1)α + 1)

Γ (jα + 1)
x–c

(
log

x
a

)jα

. (5.8)

Using Eqs. (5.7) and (5.8) in (5.6), we have

qj+1 =
Γ (jα + 1)

Γ ((j + 1)α + 1)
μqj, j = 0, 1, 2, . . . . (5.9)

Solving the difference equation (5.9) for qj, we get

qj = μj 1
Γ (jα + 1)

q0. (5.10)

Substituting qj from Eq. (5.10) into Eq. (5.7), we have

f (x) = q0x–c
∞∑
j=0

μj

Γ (jα + 1)

(
log

x
a

)jα

= q0x–cEα

(
μ

(
log

x
a

)α)
,

where Eα(·) is the Mittag-Leffler function.
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