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Abstract
In this article, the first part is concerned with the important questions related to the
existence and uniqueness of solutions for nonlinear reaction-diffusion systems.
Secondly, an efficient positivity-preserving operator splitting nonstandard finite
difference scheme (NSFD) is designed for such a class of systems. The presented
formulation is unconditionally stable as well as implicit in nature and even time
efficient. The proposed NSFD operator splitting technique also preserves all the
important properties possessed by continuous systems like positivity, convergence to
the fixed points of the system, and boundedness. The proposed algorithm is implicit
in nature but more efficient in time than the extensively used Euler method.

Keywords: Operator splitting finite difference scheme; Reaction-diffusion models;
Positivity; Numerical simulations

1 Introduction
Reaction-diffusion equations generally arise in different chemical and biological models
which describe the physical phenomena like concentration, density, population sizes, and
many more. The negative solution of these systems is meaningless because the solutions
describe the concentration, density, and population sizes, and similar type of quantities
cannot be negative. Therefore the behavior of the numerical method used to solve such
systems must be the same as the behavior of continuous systems. The NSFD method pro-
posed by Mickens [1] is an efficient way to design structure-preserving finite difference
(FD) schemes. Various writers proposed NSFD and positivity preserving FD schemes for
the solution of differential equations. Many authors used the NSFD technique to find the
solution of ordinary differential equations arising in chemical and biological models, for
the readers, some of the references are presented [2–8]. In a similar way, different NSFD
and positivity preserving FD methods are introduced in the literature to solve reaction-
diffusion equations [9–17]. Also, various techniques are used to solve a similar type of
diffusion systems [18–23].
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Many numerical methods have gained considerable attention, as exact solution of many
chemical and biological models involving partial differential equations is an uphill task.
Therefore many authors proposed different numerical techniques to find the numerical
solution of ordinary, partial, and fractional differential equations arising in the models
of chemistry, physics, biology, engineering, and many other fields of different sciences
[24–36]. The proposed NSFD method introduced in this work is concerned with time
efficiency as well as preserving of the properties possessed by the continuous reaction-
diffusion models. The proposed method is an operator splitting NSFD method. The op-
erator splitting FD technique introduced by Yanenko and his collaborators is a remark-
able achievement for the numerical solution to the problems in theoretical mechanics
[37]. An explicit forward Euler FD method is compared with the proposed method. The
proposed operator splitting NSFD method maintains the same numerical accuracy and
reduces the computation time efficiently. Reflecting numerically, more accuracy requires
less CPU time; furthermore, easy implementation enhances the applicability of the pro-
posed NSFD scheme.

The major motivation for the current research is to construct the solutions under special
physical traits that lead to the computational difficulties. The developed algorithm not
only preserves the necessary properties of the solution, but also reduces computational
cost. Furthermore, the existence of solutions of the underlying problem is assured.

2 Existence of solution
The goal of the paper is to solve the following system in a square domain:

∂twi = dwi�2wi + f (t, x, y, wi), t > 0, a < x, y < b = Ω , i = 1, 2, (1)

subject to the initial conditions

wi(x, y, 0) = gi(x, y), Ω = a ≤ x, y ≤ b (2)

and the homogeneous Neumann boundary conditions

∂wi

∂ni
= 0 on ∂Ω , i = 1, 2, (3)

where dwi are the diffusion coefficients and are constants, while gi(x, y) are continuous in
Ω . The conventional integration leads to the inversion of the partial differential operator
∂t by simple integration in the following new analytic form:

wi(x, y, t) = gi(x, y) +
∫ t

0
F

(
�2wi(s) + f

(
x, y, s, wi(s)

))
ds. (4)

In the operator form we can write

Ti = Twi(x, y, t) = gi(x, y) +
∫ t

0
F (s) ds, (5)

where

F = F
(
�2wi + f (x, y, t, wi)

)
. (6)
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Clearly the solutions wi of system (1) are twice continuously differentiable in the domain
Ω and continuously differentiable in the time domain [0, T], T > 0. Hence F in (6) is con-
tinuous and bounded, i.e., |F | < M, M is a positive real number. For the existence of the
solution of system (1)–(2),

Ti = gi(x, y) +
∫ t

0
F (s) ds,

‖Ti‖ =
∣∣gi(x, y)

∣∣ +
∫ t

0
‖F‖ds

≤ κi + M.ρ.

Hence Ti are bounded, and further if we consider a closed and convex subset Br(Θ) (cen-
tered at zero element) in the space of continuous functions with radius r, thus

ρ ≤ r – κi

M
, (7)

which gives restriction on the bounds κi of the initial values.
Now consider the family of images Tj

i of pre-images wj
i, then from (5) we get the follow-

ing difference:

Tj
i (x, y, t) – Tj

i
(
x, y, t∗) =

∫ t

0
F (s) ds –

∫ t∗

0
F (s) ds

=
∫ t

t∗
F (s) ds,

∥∥Tj
i (x, y, t) – Tj

i
(
x, y, t∗)∥∥ ≤ M · ∣∣t – t∗∣∣.

This implies that Tj
i is equicontinuous, so by the Arzela–Ascoli theorem there exists a

subsequence Tjl
i of Tj

i which is uniformly convergent, and hence the operator T in (5) turns
out to be relatively compact, so the Schauder fixed point theorem is applicable. Summing
up the above arguments, the following theorems have been proved.

Theorem 1 Suppose that the functions wi(x, y, t) are twice continuously differentiable in
Ω = a < x, y < b, continuously differentiable with respect to the time domain [0, T] along
with continuous initial values, then problem (1)–(2) is equivalent to the fixed point opera-
tor (5).

Theorem 2 Let wi(x, y, t) be C2(Ω) and C1[0, T], then the initial boundary value problem
for (1) and (2) is solvable for a Schauder fixed point theorem and consequently possesses
the solution.

Suppose the right-hand side of F (wi) of (1) satisfies the following condition:

F
(
w1

i
)

– F
(
w2

i
)

= w1
ixx + w1

iyy – w2
ixx – w2

iyy + f
(
w1

i
)

– f
(
w2

i
)

= w1
ixx – w2

ixx + w1
iyy – w2

iyy + f
(
w1

i
)

– f
(
w2

i
)
.
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Suppose that f is Lipschitz continuous in wi,

∥∥F(
w1

i
)

– F
(
w2

i
)∥∥ ≤L1

∥∥w1
i – w2

i
∥∥

C2(Ω) + L2
∥∥w1

i – w2
i
∥∥

C2(Ω) + L3
∥∥w1

i – w2
i
∥∥

C0(Ω)

≤L1
∥∥w1

i – w2
i
∥∥

C2(Ω) + L2
∥∥w1

i – w2
i
∥∥

C2(Ω) + L3
∥∥w1

i – w2
i
∥∥

C2(Ω), (8)
∥∥F(

w1
i
)

– F
(
w2

i
)∥∥ ≤L

∥∥w1
i – w2

i
∥∥

C2(Ω),

where

L = max(L1,L2,L3),

which is a necessary condition to show the unique existence under condition (7). Further,

T1 – T2 =
∫ t

0

(
F

(
w1

i (s)
)

– F
(
w2

i (s)
))

ds,

∥∥T1 – T2∥∥ ≤Ldi

∫ t

0
ds · ∥∥w1

i – w2
i
∥∥

C2(Ω)

= Lρdi

∫ t

0
ds · ∥∥w1

i – w2
i
∥∥

C2(Ω).

The operator T will be a contraction provided

ρ <
1

diL
. (9)

Finally, we establish the following important theorem for the unique existence of the so-
lution of (1)–(2), i.e., we have the following.

Theorem 3 Suppose that the right-hand side of (1) satisfies the Lipschitz condition of the
form (8), then problem (1)–(2) is uniquely solvable provided conditions (7) and (9) are sat-
isfied.

3 Numerical methods
Firstly, divide [a, b]2 × [0, T] into M2 × N with space step size h = (b – a)/M and time step
size τ = T/N . Grid points are

xl = lh, l = 0, 1, 2, . . . , M,

ym = mh, m = 0, 1, 2, . . . , M,

tn = nτ , n = 0, 1, 2, . . . , N .

The notation wi
n
l,m is used for the finite difference approximations of wi(lh, mh, nτ ). We

present two different FD techniques, the forward Euler FD technique and the operator
splitting NSFD technique. We propose the positivity preserving NSFD operator splitting
technique for the solution of two-dimensional reaction-diffusion systems. In order to ver-
ify all the attributes of the proposed NSFD technique, we also use the forward Euler FD
technique for the purpose of comparison. The forward Euler FD technique is explicit in



Ahmed et al. Advances in Difference Equations        (2020) 2020:197 Page 5 of 26

nature, time efficient, and easy to implement. But the forward Euler FD technique has the
conditional stability. The proposed operator splitting NSFD scheme is implicit in nature
and has unconditional stability. The splitting techniques are very efficient numerical tech-
niques for the solution of differential equations. The splitting techniques are widely used
numerical techniques for the solution of different nonlinear physical problems [38–43].

3.1 Forward Euler FD method
In the forward Euler FD method, time derivative is approximated by the forward differ-
ence, and space derivatives are approximated by central differences. The forward Euler FD
scheme for system (1) is given as follows:

δtwn
il,m = δ2

x wn
il,m + δ2

y wn
il,m + f

(
wn

il,m

)
, (10)

where

δtwn
il,m =

wn+1
il,m – wn

il,m

τ
,

δ2
x wn

il,m =
wn

il–1,m
– 2wn

il,m + wn
il+1,m

h2 ,

δ2
y wn

il,m =
wn

il,m–1
– 2wn

il,m + wn
il,m+1

h2 .

The stability region of the forward Euler FD scheme after linearizing the nonlinear
reaction-diffusion is approximately dwi (τ /h2) ≤ 1/4.

3.2 Operator splitting FD method
In this method, we split system (1) into three steps as follows:

1
3

wit = f (wi),

1
3

wit = dwi wixx ,

1
3

wit = dwi wiyy

and apply the finite difference approximations on the above equations:

wn+ 1
3

il,m – wn
il,m

τ
= f

(
wn

il,m

)
, (11)

wn+ 2
3

il,m – wn
il,m

τ
=

wn+ 2
3

il–1,m
– 2wn+ 2

3
il,m + wn+ 2

3
il+1,m

h2 , (12)

wn+1
il,m – wn

il,m

τ
=

wn+1
il,m–1

– 2wn+1
il,m + wn+1

il,m+1

h2 , (13)

where (n + 1/3) means the time step tn+1/3 = tn + (1/3)τ , (n + 2/3) means the time step
tn+2/3 = tn + (2/3)τ , and (n + 1) means the time step tn+1 = tn + τ .
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3.3 NSFD method
The NSFD schemes give numerical approximations to differential equations by construct-
ing discrete models. These schemes preserve the important physical properties of the con-
tinuous model and consequently give reliable results. The following are the rules defined
by Mickens in [1] for designing the NSFD scheme:

Rule 1. The discrete derivative should be of the same order as the order of continuous
derivative appearing in the model.

Rule 2. The step sizes h and τ can be replaced with the functions Φ(h) and Ψ (τ ) with the
conditions that if h → 0, τ → 0 then Φ(h) → 0, Ψ (τ ) → 0, respectively. Rule 3. Nonlinear
terms should, in general, be replaced with nonlocal discrete representations. For example,
w1

n
l,mw2

n
l,m is replaced with w1

n
l,mw2

n+1
l,m .

Rule 4. Any property P demonstrated by the continuous system should be preserved by
the numerical method.

After applying these rules, equations (11)–(13) become an NSFD operator splitting
scheme.

3.4 Stability and accuracy of the proposed NSFD method
The stability and consistency of operator splitting schemes depend on the split solutions
[38, 44]. The time derivative has O(τ ) accuracy, and the reaction step is exactly solved so it
is unconditionally stable. In the similar way, the space derivative has O(h2) accuracy, and
the diffusion step is also unconditionally stable.

In the next sections we consider two different chemical reaction models for the applica-
tion of the positivity-preserving NSFD operator splitting method and the forward Euler
method.

4 Brusselator reaction-diffusion model
The Brusselator model is an auto-catalytic chemical reaction developed by Prigogine [45].
This Brusselator reaction-diffusion system plays a significant role in the application of co-
operative processes of chemical kinetics. This system arises in a large number of physical
problems. The Brusselator reaction-diffusion system appears in the formation of ozone by
atomic oxygen through a triple collision as well as in enzymatic reactions, and in plasma
and laser physics. The system of two-dimensional Brusselator model is

w1t = dw1 (w1xx + w1yy ) + D – (C + 1)w1 + w2
1w2, (14)

w2t = dw2 (w2xx + w2yy ) + Cw1 – w2
1w2 (15)

with the initial condition

w1(x, y, 0) = g1(x, y) ≥ 0, a ≤ x, y ≤ b, (16)

w2(x, y, 0) = g2(x, y) ≥ 0, a ≤ x, y ≤ b (17)

and the homogeneous Neumann boundary conditions. Here, w1 = w1(x, y, t) and w2 =
w2(x, y, t) are the concentrations of the chemical substances. C and D are constant con-
centrations. The equilibrium point of system (14)–(15) is (w∗

1, w∗
2) = (D, C/D). Twizell et
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al. [49] concluded that system (14)–(15) has a stable equilibrium point (w∗
1, w∗

2) under the
condition 1 – C + D2 ≥ 0 and unstable if 1 – C + D2 < 0. Now we apply the forward Euler
FD scheme (10) on equations (14)–(15), we have

wn+1
1l,m

= wn
1l,m

+ η1
(
wn

1l–1,m
– 2wn

1l,m
+ wn

1l+1,m

)

+ η1
(
wn

1l,m–1
– 2wn

1l,m
+ wn

1l,m+1

)
+ τD – τ (C + 1)wn

1l,m

+ τ
(
wn

1l,m

)2wn
2l,m

, (18)

wn+1
2l,m

= wn
2l,m

+ η2
(
wn

2l–1,m
– 2wn

2l,m
+ wn

2l+1,m

)

+ η2
(
wn

2l,m–1
– 2wn

2l,m
+ wn

2l,m+1

)
+ τCwn

1l,m

– τ
(
wn

1l,m

)2wn
2l,m

, (19)

η1 = dw1
τ

h2 and η2 = dw2
τ

h2 .

Now we apply the NSFD operator splitting technique (11)–(13) on equation (14). At the
first time step, the reaction term is solved:

wn+ 1
3

1l,m
– wn

1l,m

τ
= D – (C + 1)wn+ 1

3
1l,m

+
(
wn

1l,m

)2wn
2l,m

.

After simplification, we have

wn+ 1
3

1l,m
=

wn
1l,m

+ τD + τ (wn
1l,m

)2wn
2l,m

1 + τ (C + 1)
. (20)

At the second time step, the space derivative w.r.t. x is approximated

wn+ 2
3

1l,m
– wn

1l,m

τ
=

wn+ 2
3

1l–1,m
– 2wn+ 2

3
1l,m

+ wn+ 2
3

1l+1,m

h2 ,

–η1wn+ 2
3

1l–1,m
+ (1 + 2η1)wn+ 2

3
1l,m

– η1wn+ 2
3

1l+1,m
= wn+ 1

3
1l,m

.

(21)

Similarly, at the third time step the space derivative w.r.t. y is approximated as follows:

–η1wn+1
1l,m–1

+ (1 + 2η1)wn+1
1l,m

– η1wn+1
1l,m+1

= wn+ 2
3

1l,m
. (22)

In a similar way, the NSFD operator splitting scheme for equation (15) at all steps is

wn+ 1
3

2l,m
=

wn
2l,m

+ τCwn
1l,m

1 + τ (wn
1l,m

)2 , (23)

–η2wn+ 2
3

2l–1,m
+ (1 + 2η2)wn+ 2

3
2l,m

– η2wn+ 2
3

2l+1,m
= wn+ 1

3
2l,m

, (24)

–η2wn+1
2l,m–1

+ (1 + 2η2)wn+1
2l,m

– η2wn+1
2l,m+1

= wn+ 2
3

2l,m
. (25)
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4.1 Matrix representation

Let wn+ 2
3

1 = (wn+ 2
3

10,m , . . . , wn+ 2
3

1M,m
)t and wn+ 2

3
2 = (wn+ 2

3
20,m , . . . , wn+ 2

3
2M,m

)t , where (·)t represents the

transposition of a vector. Along with the homogeneous Neumann boundary conditions,

equations (21) and (24) are equivalent to the matrix form

B1wn+ 2
3

1 = wn+ 1
3

1 , (26)

B3wn+ 2
3

2 = wn+ 1
3

2 , (27)

where B1 and B3 are real matrices of size (M + 1) × (M + 1)

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2η1 –2η1 0 · · · · · · · · · · · · 0

–η1 1 + 2η1 –η1
. . .

...

0 –η1 1 + 2η1 –η1
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . –η1 1 + 2η1 –η1 0
...

. . . –η1 1 + 2η1 –η1

0 · · · · · · · · · · · · 0 –2η1 1 + 2η1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28)

B3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2η2 –2η2 0 · · · · · · · · · · · · 0

–η2 1 + 2η2 –η2
. . .

...

0 –η2 1 + 2η2 –η2
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . –η2 1 + 2η2 –η2 0
...

. . . –η2 1 + 2η2 –η2

0 · · · · · · · · · · · · 0 –2η2 1 + 2η2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

Again let wn+1
1 = (wn+1

1l,0
, . . . , wn+1

1l,M
)t and wn+1

2 = (wn+1
2l,0

, . . . , wn+1
2l,M

)t , where (·)t represents the

transposition of a vector. Along with the homogeneous Neumann boundary conditions,

equations (22) and (25) are equivalent to the matrix form

B2wn+1
1 = wn+ 2

3
1 , (30)

B4wn+1
2 = wn+ 2

3
2 , (31)
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where B2 and B4 are real matrices of size (M + 1) × (M + 1)

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2η1 –2η1 0 · · · · · · · · · · · · 0

–η1 1 + 2η1 –η1
. . .

...

0 –η1 1 + 2η1 –η1
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . –η1 1 + 2η1 –η1 0
...

. . . –η1 1 + 2η1 –η1

0 · · · · · · · · · · · · 0 –2η1 1 + 2η1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

B4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2η2 –2η2 0 · · · · · · · · · · · · 0

–η2 1 + 2η2 –η2
. . .

...

0 –η2 1 + 2η2 –η2
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . –η2 1 + 2η2 –η2 0
...

. . . –η2 1 + 2η2 –η2

0 · · · · · · · · · · · · 0 –2η2 1 + 2η2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (33)

Lemma 1 The matrices Bi, i = 1, 2, 3, 4, given in equations (28), (29), (32), and (33) are
M-matrices.

Proof The values of η1 = dw1
τ

h2 > 0 and η2 = dw2
τ

h2 > 0 because dw1 , dw2 , h, and τ are posi-
tive constants. It follows that the matrices Bi, i = 1, 2, 3, 4, are strictly diagonally dominant.
Also entries in the diagonal are positive and off diagonal entries are nonpositive. There-
fore, Bi, i = 1, 2, 3, 4, are M-matrices. �

Remark 1 The solutions wi appearing in the left-hand side of Eqs. (26), (27), (30), and
(31) can be recovered using the inversion of the matrices Bi, i = 1, 2, 3, 4. Since these are
M-matrices, by Lemma 1 these, in general, are nonsingular. Therefore these matrices are
invertible, and the inverse can be obtained by computational software such as MATLAB.

4.2 Positivity of the NSFD operator splitting method
In order to discuss the positivity of the NSFD operator splitting scheme, we use M-matrix
theory. A matrix which is real and strictly diagonally dominant is called M-matrix if it has
nonpositive off diagonal entries and positive diagonal entries. If a matrix is M-matrix, then
it is nonsingular and its inverse matrix has entries of positive numbers [46].

Lemma 2 Equations (20) and (23) guarantee the solutions to be positive under the assump-
tions of nonnegative initial functions, i.e.,

w1
n
l,m ≥ 0, w2

n
l,m ≥ 0 �⇒ w1

n+ 1
3

l,m ≥ 0, w2
n+ 1

3
l,m ≥ 0.
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Remark 2 The verification of a positive solution is demonstrated from equation (20) and
(23) as g1(x, y) ≥ 0, g2(x, y) ≥ 0, and all the terms involved in the right-hand sides of (20)
and (23) are positive.

Theorem 4 Suppose that the vectors wn+ 1
3

1 and wn+ 1
3

2 in matrix representations are posi-

tive, then wn+ 2
3

1 and wn+ 2
3

2 are likewise positive. If the vectors wn+ 2
3

1 , wn+ 2
3

2 are positive, then
wn+1

1 and wn+1
2 are likewise positive.

Proof According to Lemma 2, the vectors wn+ 1
3

1 and wn+ 1
3

2 are positive. Also Lemma 1
shows that the matrices B1, B2, B3, and B4 are M-matrices. Therefore entries in the inverse
matrices of B1, B2, B3, and B4 are all positive. It follows that wn+ 2

3
1 and wn+ 2

3
2 are positive.

Consequently, wn+1
1 and wn+1

2 are also positive. �

From the above theorem, it is clear that the proposed method preserves the positivity
property, unconditionally.

4.3 Numerical example
Simulations of the example are performed by selecting different values of parameters in-
volved in designing the two-dimensional Brusselator chemical reaction model. Different
numerical parametric values are chosen for the better illustration and understanding of
the claimed discrepancies about the widely used existing numerical scheme and salient
features of the proposed numerical scheme. The following example is considered for sys-
tem (14)–(15) in two dimensions with initial conditions [47, 48]:

w1(x, y, 0) = 0.5 + y, 0 ≤ x, y ≤ 1, (34)

w2(x, y, 0) = 1 + 5x, 0 ≤ x, y ≤ 1, (35)

and homogeneous Neumann boundary conditions.

4.3.1 Simulations of the forward Euler FD scheme
In this section we present numerical simulations of Brusselator reaction-diffusion system
(14)–(15) with initial conditions (34)–(35) and homogeneous Neumann boundary condi-
tions using the forward Euler FD scheme. The values of parameters C and D are taken as
C = 1 and D = 3.5 and the values of dw1 and dw2 are dw1 = dw2 = 0.002.

Figure 1 (a) and (b) shows the mesh graph of concentration profile w1 and w2 at the grid
point (0.9, :) along z-direction vs time t using the forward Euler FD scheme. Figure 1 (c)
and (d) depicts the two-dimensional plots of profile w1 and w2 at x = y = 1 vs time t. It is
clear from Fig. 1 (b) and (d) that w2 demonstrates the negative solution of concentration,
which is useless.

As system (14)–(15) converges to the equilibrium point (w∗
1, w∗

2) = (D, C/D) = (3.4,
0.2941) if 1 – C + D2 ≥ 0 [49], therefore numerical method must converge towards the
point of equilibrium of system (14)–(15) at all step sizes of its stable region. All the parts
of Fig. 2 tell that the forward Euler numerical scheme cannot find the convergence towards
the equilibrium point of Brusselator system (14)–(15) and diverges.



Ahmed et al. Advances in Difference Equations        (2020) 2020:197 Page 11 of 26

Figure 1 (a) Mesh graph of concentration profile w1 for the forward Euler numerical scheme using h = 0.1,
τ = 0.04, η1 = η2 = 0.008. (b) Mesh graph of concentration profile w2 for the forward Euler numerical scheme
using h = 0.1, τ = 0.04, η1 = η2 = 0.008. (c) Plot of concentration profile w1 for the forward Euler numerical
scheme using h = 0.1, τ = 0.04, η1 = η2 = 0.008. (d) Plot of concentration profile w2 for the forward Euler
numerical scheme using h = 0.1, τ = 0.04, η1 = η2 = 0.008

4.3.2 Simulations of the proposed NSFD operator splitting method
This section is devoted to the numerical simulation of the Brusselator model with the
same values as given in the above section using the proposed NSFD operator splitting
method.

Figure 3 (a) and (b) shows the mesh graph of concentration profile w1 and w2 at the
grid point (0.9, :) along z-direction vs time t using the proposed NSFD operator splitting
method. Figure 3 (c) and (d) depicts the plot of concentration profile w1 and w2 at x =
y = 1 vs time t. These graphs verify that the proposed NSFD operator splitting technique
preserves the positive solution of the continuous system and also exhibits the convergence
towards the point of equilibrium of continuous system (14)–(15).

In Fig. 4, all parts of the figure clearly describe that the proposed NSFD operator split-
ting method shows the convergence of the system towards the equilibrium point (w∗

1, w∗
2)

compared with the forward Euler FD scheme.
In addition, we chose C = 3.4 and D = 1.0 and see the behavior of the solution using the

proposed NSFD operator splitting method.
It is clearly observed from Figs. 5(a), 5(b) and 6(a), 6(b) that the solutions found using

the proposed NSFD operator splitting method are oscillatory and did not converge to the
equilibrium point (w∗

1, w∗
2) with the combination of C = 3.4 and D = 1.0 so that 1 – C +

D2 < 0. This result agrees with the conclusion made by Twizzel et al. in [49].
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Figure 2 (a) Graph of profile w1 for the forward Euler numerical scheme using h = 0.1, τ = 0.1, η1 = η2 = 0.02.
(b) Graph of profile w2 for the forward Euler numerical scheme using h = 0.1, τ = 0.1, η1 = η2 = 0.02. (c) Plot of
profile w1 for the forward Euler numerical scheme using h = 0.1, τ = 0.1, η1 = η2 = 0.02. (d) Plot of profile w2

for the forward Euler numerical scheme using h = 0.1, τ = 0.1, η1 = η2 = 0.02

The comparison of the proposed method and the forward Euler method is presented in
Table 1. In this table we show that the exec. (execution) time of NSFD operator splitting
technique is better than that of the forward Euler technique.

5 Glycolysis reaction-diffusion model
A classic and representative system in the biochemical reaction is glycolysis model. It is
a basic biochemical reaction appearing in living cells. The fundamental model was pre-
sented by Sel’kov [50] and is represented by two coupled first-order differential equa-
tions [51, 52]. We consider the following two-dimensional glycolysis reaction-diffusion
system:

w1t = dw1 (w1xx + w1yy ) + Cw2 – w1 + w2
1w2, (36)

w2t = dw2 (w2xx + w2yy ) + D – Cw2 – w2
1w2 (37)

with the initial condition

w1(x, y, 0) = g3(x, y) ≥ 0, a ≤ x, y ≤ b, (38)

w2(x, y, 0) = g4(x, y) ≥ 0, a ≤ x, y ≤ b (39)
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Figure 3 (a) Graph of concentration profile w1 using the proposed NSFD splitting method for h = 0.1,
τ = 0.04, η1 = η2 = 0.008. (b) Graph of concentration profile w2 using the proposed NSFD splitting method
for h = 0.1, τ = 0.04, η1 = η2 = 0.008. (c) Plot of concentration w1 using the proposed NSFD splitting method
for h = 0.1, τ = 0.04, η1 = η2 = 0.008. (d) Plot of concentration w2 using the proposed NSFD splitting method
for h = 0.1, τ = 0.04, η1 = η2 = 0.008

and homogeneous Neumann boundary conditions. The equilibrium point of system (36)–
(37) is (w∗

1, w∗
1) = (D, D/(C + D2)). Define

ξ =
D4 + (2C – 1)D2 + (C + C2)

C + D2 . (40)

Strogatz[52] and Mickens[51] discussed that the equilibrium point has the following sta-
bility properties:

ξ > 0 : unstable, (41)

ξ < 0 : stable. (42)

Again, after applying the forward Euler FD scheme (10) on system (36)–(37), we have

wn+1
1l,m

= wn
1l,m

+ η1
(
wn

1l–1,m
– 2wn

1l,m
+ wn

1l+1,m

)

+ η1
(
wn

1l,m–1
– 2wn

1l,m
+ wn

1l,m+1

)
+ τCwn

2l,m
– τwn

1l,m

+ τ
(
wn

1l,m

)2wn
2l,m

, (43)
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Figure 4 (a) Graph of concentration profile w1 by using the proposed NSFD operator splitting method for
h = 0.1, τ = 0.1, η1 = η2 = 0.02. (b) Graph of concentration w2 by using the proposed NSFD operator splitting
method for h = 0.1, τ = 0.1, η1 = η2 = 0.02. (c) Plot of profile w1 by using the proposed NSFD splitting method
for h = 0.1, τ = 0.1, η1 = η2 = 0.02. (d) Plot of profile w2 by using the proposed NSFD splitting method for
h = 0.1, τ = 0.1, η1 = η2 = 0.02

Figure 5 (a) Mesh graph of profile w1 by using the proposed NSFD splitting numerical scheme for h = 0.1,
τ = 0.04, η1 = η2 = 0.008. (b) Mesh graph of profile w2 by using the proposed NSFD splitting numerical
scheme for h = 0.1, τ = 0.04, η1 = η2 = 0.008

wn+1
2l,m

= wn
2l,m

+ η2
(
wn

2l–1,m
– 2wn

2l,m
+ wn

2l+1,m

)

+ η2
(
wn

2l,m–1
– 2wn

2l,m
+ wn

2l,m+1

)
+ τCwn

1l,m

– τ
(
wn

1l,m

)2wn
2l,m

. (44)
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Figure 6 (a) Mesh graph of concentration w1 using the proposed NSFD operator numerical scheme for
h = 0.1, τ = 0.1, η1 = η2 = 0.02. (b) Mesh graph of profile w2 using the proposed NSFD splitting numerical
scheme for h = 0.1, τ = 0.1, η1 = η2 = 0.02

Table 1 Comparison between both numerical methods (Brusselator model)

Numerical methods Step sizes (for exec. time) Exec. time Positivity Convergence

Forward Euler h = 0.1, τ = 0.1 0.4214 Seconds Failure Divergence
NSFD operator splitting h = 0.1, τ = 0.1 0.0625 Seconds Preserved Convergence

The process of the NSFD operator splitting method for equation (36) at the reaction step
is

wn+ 1
3

1l,m
=

wn
1l,m

+ τCwn
2l,m

+ τ (wn
1l,m

)2wn
2l,m

1 + τ
. (45)

The NSFD operator splitting method for the space derivative at the second step is

–η1wn+ 2
3

1l–1,m
+ (1 + 2η1)wn+ 2

3
1l,m

– η1wn+ 2
3

1l+1,m
= wn+ 1

3
1l,m

. (46)

Similarly, at the third time step the space derivative w.r.t. y is approximated as

–η1wn+1
1l,m–1

+ (1 + 2η1)wn+1
1l,m

– η1wn+1
1l,m+1

= wn+ 2
3

1l,m
(47)

and the NSFD method for equation (37)

wn+ 1
3

2l,m
=

wn
2l,m

+ τD
1 + τC + τ (wn

1l,m
)2 , (48)

–η2wn+ 2
3

2l–1,m
+ (1 + 2η2)wn+ 2

3
2l,m

– η2wn+ 2
3

2l+1,m
= wn+ 1

3
2l,m

, (49)

–η2wn+1
2l,m–1

+ (1 + 2η2)wn+1
2l,m

– η2wn+1
2l,m+1

= wn+ 2
3

2l,m
. (50)

The procedure for the verification of unconditional positivity is similar as given in
Sects. 4.1 and 4.2.
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5.1 Example
In this section, we consider a suitable example of two-dimensional glycolysis model of
auto-catalytic chemical reactions. This example elucidates all the attributes and essential
features about the proposed scheme and system. The example is given as follows:

w1t = dw1 (w1xx + w1yy ) + Cw2 – w1 + w2
1w2,

w2t = dw2 (w2xx + w2yy ) + D – Cw2 – w2
1w2

and nonnegative initial conditions

w1(x, y, 0) = 1 + x + 0.5y, 0 ≤ x, y ≤ 1, (51)

w2(x, y, 0) = 1/3, 0 ≤ x, y ≤ 1, (52)

with homogeneous Neumann boundary conditions.

5.1.1 Simulations of the forward Euler FD scheme
This section is devoted to the numerical simulations of glycolysis reaction-diffusion sys-
tem (36)–(37) with initial conditions (51)–(52) and homogeneous Neumann boundary
conditions using the forward Euler FD scheme. The values of parameters C and D are
taken as C = 3.5 and D = 0.25 and the values of dw1 and dw2 are dw1 = dw2 = 0.001.

Figure 7 (a) and (b) depicts the mesh graph of concentration profile w1 and w2 at the
grid point (0.6, :) along z-direction vs time t using the forward Euler FD scheme. Figure 7
(c) and (d) depicts the plot of concentration profile w1 and w2 at x = y = 1 vs time t. It is
clear from Fig. 7 (b) and (d) that the concentration profile w2 gives the negative solution
of concentration profile, which is meaningless.

As system (36)–(37) converges to the equilibrium point (w∗
1, w∗

2) = (D, D/(C + D)2) =
(3.4, 0.2941) if ξ < 0 [51, 52], therefore numerical method must converge to the equilib-
rium point of glycolysis system (36)–(37) at all step sizes of its stable region. All the parts
of Fig. 8 illustrate that the forward Euler numerical scheme fails to find the convergence
towards the equilibrium point of glycolysis system (36)–(37) and diverges.

5.1.2 Simulations of the proposed NSFD operator splitting method
This section is devoted to the numerical simulation of glycolysis model with the same
values as given in the above section using the proposed NSFD operator splitting method.

Figure 9 (a) and (b) shows the mesh graph of the concentration profile w1 and w2 at the
grid point (0.6, :) along z-direction vs time t using the proposed NSFD operator splitting
method. Figure 9 (c) and (d) depicts the plot of concentration profile w1 and w2 at x =
y = 1 vs time t. These graphs show that the proposed NSFD splitting scheme preserves
the positivity property of the solution of the continuous system and also converges to the
equilibrium points of glycolysis continuous system (36)–(37).

In Fig. 10, all parts of the figure clearly describe that the proposed NSFD operator split-
ting method shows the convergence of system towards the equilibrium point (w∗

1, w∗
2) com-

parative to the forward Euler FD scheme.
In addition, we chose C = 0.008 and D = 0.6 and see the behavior of the solution using

the proposed NSFD operator splitting method.
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Figure 7 (a) Mesh graph of concentration w1 by using the forward Euler numerical scheme for h = 0.1,
τ = 0.15, η1 = η2 = 0.015. (b) Mesh graph of concentration w2 by using the forward Euler numerical scheme
for h = 0.1, τ = 0.15, η1 = η2 = 0.015. (c) Plot of profile w1 by using the forward Euler numerical scheme for
h = 0.1, τ = 0.15, η1 = η2 = 0.015. (d) Plot of profile w2 by using the forward Euler numerical scheme for
h = 0.1, τ = 0.15, η1 = η2 = 0.015

It is clearly observed from Figs. 11(a), 11(b) and 12(a), 12(b) that the solutions found us-
ing the proposed NSFD operator splitting method were oscillatory and did not to converge
to the equilibrium point (w∗

1, w∗
2) with the combination of C = 0.008 and D = 0.6 so that

ξ > 0. Table 2 demonstrates the efficiency of the proposed technique in various aspects for
the glycolysis model.

6 Susceptible-infected-recovered (SIR) epidemic model with saturated
incident rate

In this section, we present an SIR epidemic reaction-diffusion model in two space dimen-
sions, and both techniques are applied on this model. Epidemic models depict the spread
of communicable diseases in population through mathematical modeling and give future
ideas to control the infection. In these models, an important term is incidence rate which
has been considered to ensure that the system of differential equations demonstrates un-
derstandable qualitative explanation of the transmission dynamics of diseases [53–56].
A commonly used incidence rate is the bilinear incidence rate defined as the rate at which
susceptible population gains infection. These days various modifications of the standard
bilinear incidence rate have been used; for instance, saturation incidence rate. In this sec-
tion, the SIR epidemic model with saturated incidence rate proposed by Suryato [57] is
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Figure 8 (a) Mesh graph of profile w1 by using the forward Euler numerical scheme for h = 0.1, τ = 0.4,
η1 = η2 = 0.04. (b) Mesh graph of profile w2 by using the forward Euler numerical scheme for h = 0.1, τ = 0.4,
η1 = η2 = 0.04. (c) Plot of profile w1 by using the forward Euler numerical scheme for h = 0.1, τ = 0.4,
η1 = η2 = 0.04. (d) Plot of profile w2 by using the forward Euler numerical scheme for h = 0.1, τ = 0.4,
η1 = η2 = 0.04

extended to the following reaction-diffusion system:

w1t = dw1 (w1xx + w1yy ) + μ – μw1 –
βw1w2

1 + σw2
, (53)

w2t = dw2 (w2xx + w2yy ) +
βw1w2

1 + σw2
– (μ + γ )w2, (54)

w3t = dw3 (w3xx + w3yy ) + γ w2 – μw3. (55)

Here, w1, w2, and w3 represent the susceptible, infected, and recovered individuals. The
infection force is measured by βw2 and the inhibition effect is measured by 1

1+σw2
. The

death rate and the birth rate are demonstrated by the parameter μ, the recovery rate from
infection is denoted by γ , and the inhibition parameter is assumed by σ . All the parameters
involved in system (53)–(55) are positive. Since w3 is not present in the first two equations,
the above system (53)–(55) can be written as

w1t = dw1 (w1xx + w1yy ) + μ – μw1 –
βw1w2

1 + σw2
, (56)

w2t = dw2 (w2xx + w2yy ) +
βw1w2

1 + σw2
– (μ + γ )w2 (57)
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Figure 9 (a) Mesh graph of concentration profile w1 by using the proposed NSFD splitting numerical
scheme for h = 0.1, τ = 0.15, η1 = η2 = 0.015. (b) Mesh graph of profile w2 by using the proposed NSFD
splitting numerical scheme for h = 0.1, τ = 0.15, η1 = η2 = 0.015. (c) Plot of profile w1 by using the proposed
NSFD splitting numerical scheme for h = 0.1, τ = 0.15, η1 = η2 = 0.015. (d) Plot of profile w2 by using the
proposed NSFD splitting numerical scheme for h = 0.1, τ = 0.15, η1 = η2 = 0.015

with the initial condition

w1(x, y, 0) = g5(x, y) ≥ 0, a ≤ x, y ≤ b, (58)

w2(x, y, 0) = g6(x, y) ≥ 0, a ≤ x, y ≤ b (59)

and homogeneous Neumann boundary conditions.
System (56)–(57) possesses two steady states, disease-free steady state (DFSS) and en-

demic steady state (ESS). DFSS of system (56)–(57) is (1, 0) and ESS is (w∗
1, w∗

2), where
w∗

1 = μσ+γ +μ

μσ+R0(γ +μ) and w∗
2 = μ(R0–1)

μσ+R0(γ +μ) . The quantity R0 is the reproductive value that con-
cludes that the disease is erased ifR0 is less than one and disease is presented in population
if R0 is greater than one.

A similar procedure is adopted for the forward Euler FD scheme (10) on system (56)–
(57), we get

wn+1
1l,m

= wn
1l,m

+ η1
(
wn

1l–1,m
– 2wn

1l,m
+ wn

1l+1,m

)

+ η1
(
wn

1l,m–1
– 2wn

1l,m
+ wn

1l,m+1

)
+ τμ – τμwn

1l,m
–

τβw1wn
2l,m

1 + σwn
2l,m

, (60)
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Figure 10 (a) Mesh graph of profile w1 by using the proposed NSFD splitting numerical scheme for h = 0.1,
τ = 0.4, η1 = η2 = 0.04. (b) Mesh graph of profile w2 by using the proposed NSFD splitting numerical scheme
for h = 0.1, τ = 0.4, η1 = η2 = 0.04. (c) Plot of profile w1 by using the proposed NSFD splitting numerical
scheme for h = 0.1, τ = 0.4, η1 = η2 = 0.04. (d) Plot of profile w2 by using the proposed NSFD splitting method
for h = 0.1, τ = 0.4, η1 = η2 = 0.04

Figure 11 (a) Mesh graph of concentration profile w1 by using the proposed NSFD splitting numerical
scheme for h = 0.1, τ = 0.04, η1 = η2 = 0.008. (b) Mesh graph of profile w2 by using the proposed NSFD
splitting numerical scheme for h = 0.1, τ = 0.04, η1 = η2 = 0.008

wn+1
2l,m

= wn
2l,m

+ η2
(
wn

2l–1,m
– 2wn

2l,m
+ wn

2l+1,m

)

+ η2
(
wn

2l,m–1
– 2wn

2l,m
+ wn

2l,m+1

)
+

τβwn
1l,m

wn
2l,m

1 + σwn
2l,m

– τ (μ + γ )wn
2l,m

. (61)
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Figure 12 (a) Mesh graph of profile w1 by using the proposed NSFD splitting numerical scheme for h = 0.1,
τ = 0.1, η1 = η2 = 0.02. (b) Mesh graph of profile w2 by using the proposed NSFD splitting numerical scheme
for h = 0.1, τ = 0.1, η1 = η2 = 0.02

Table 2 Comparison between both numerical methods (glycolysis model)

Numerical methods Step sizes (for exec. time) Exec. time Positivity Convergence

Forward Euler h = 0.1, τ = 0.4 0.4498 Seconds Failure Divergence
NSFD operator splitting h = 0.1, τ = 0.4 0.0639 Seconds Preserved Convergence

The procedure of the NSFD operator splitting method for equation (56) at reaction step
is

wn+ 1
3

1l,m
=

wn
1l,m

+ τμ

1 + τμ +
τβwn

2l,m
1+σwn

2l,m

. (62)

The NSFD operator splitting method for space derivative at the second step is

–η1wn+ 2
3

1l–1,m
+ (1 + 2η1)wn+ 2

3
1l,m

– η1wn+ 2
3

1l+1,m
= wn+ 1

3
1l,m

. (63)

Similarly, at the third time step the space derivative w.r.t. y is approximated as

–η1wn+1
1l,m–1

+ (1 + 2η1)wn+1
1l,m

– η1wn+1
1l,m+1

= wn+ 2
3

1l,m
(64)

and the NSFD method for equation (57)

wn+ 1
3

2l,m
=

wn
2l,m

+
τβwn

1l,m
wn

2l,m
1+σwn

2l,m

1 + τ (μ + γ )
, (65)

–η2wn+ 2
3

2l–1,m
+ (1 + 2η2)wn+ 2

3
2l,m

– η2wn+ 2
3

2l+1,m
= wn+ 1

3
2l,m

, (66)

–η2wn+1
2l,m–1

+ (1 + 2η2)wn+1
2l,m

– η2wn+1
2l,m+1

= wn+ 2
3

2l,m
. (67)

The procedure for the verification of unconditional positivity is similar as given in
Sects. 4.1 and 4.2.
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Figure 13 (a) Solution profile of susceptible population w1 by using the forward Euler numerical scheme for
h = 0.1, η1 = η2 = 0.0067. (b) Solution profile of infected population w2 by using the proposed NSFD splitting
numerical scheme for h = 0.1, η1 = η2 = 0.0067

6.1 Example
In this section, we consider system (56)–(57) with the following initial conditions:

w1(x, y, 0) = 0.03 + 0.01x + 0.2y, 0 ≤ x, y ≤ 1, (68)

w2(x, y, 0) = 0.2, 0 ≤ x, y ≤ 1. (69)

The values of the parameters involved in this experiment are μ = 0.04, γ = 24, dw1 = dw2 =
0.001, and σ = 1.

6.1.1 Simulations of the forward Euler FD scheme
In this section, we present the behavior of forward Euler method graphically. First we take
β = 20 so that the value R0 = 0.83195, which is less than one, and the system is stable at
DFSS.

Figure 13 shows the graphs of forward Euler method at DFSS. In this figure, the graph of
infected population describes the negative solution, which is meaningless. For the next fig-
ure (Fig. 14), we consider the value β = 40 such that the reproductive value R0 = 1.66389,
which is greater than one. Therefore the system is stable at ESS. But graphs clearly depict
that the forward Euler method cannot retain the stability of EES and diverges.

6.1.2 Simulations of NSFD operator splitting scheme
This section is devoted to the presentation of simulations for the proposed method. Ini-
tially we consider β = 20 so that the value R0 = 0.83195, which is less than one, and the
system is stable at DFSS.

Figure 15 shows the graphs of the proposed splitting method at DFSS. This figure clearly
demonstrates that the proposed technique preserves the positive solution of the system
under study. For the next figure (Fig. 16), we take the value β = 40 such that the repro-
ductive value R0 = 1.66389, which is greater than one. Therefore the system is stable at
ESS. The NSFD operator splitting method sustains the stability of ESS and converges to
the ESS (w∗

1, w∗
2) = (0.6013, 0.000663).

Table 3 also validates the efficacy of the NSFD operator splitting technique in many ways
for this model.



Ahmed et al. Advances in Difference Equations        (2020) 2020:197 Page 23 of 26

Figure 14 (a) Solution profile of susceptible population w1 by using the forward Euler numerical scheme for
h = 0.1, η1 = η2 = 0.0067. (b) Solution profile of infected population w2 by using the proposed NSFD splitting
numerical scheme for h = 0.1, η1 = η2 = 0.0067

Figure 15 (a) Solution profile of susceptible population w1 by using the proposed NSFD splitting numerical
scheme for h = 0.1, η1 = η2 = 0.0067. (b) Solution profile of infected population w2 by using the proposed
NSFD splitting numerical scheme for h = 0.1, η1 = η2 = 0.0067

Figure 16 (a) Solution profile of susceptible population w1 by using the proposed NSFD splitting numerical
scheme for h = 0.1, η1 = η2 = 0.0067. (b) Solution profile of infected population w2 by using the proposed
NSFD splitting numerical scheme for h = 0.1, η1 = η2 = 0.0067
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Table 3 Comparison between both numerical methods (SIR epidemic model)

Numerical methods Step sizes (for exec. time) Exec. time Positivity Convergence

Forward Euler h = 0.1, τ = 0.067 1.9679 Seconds Failure Divergence
NSFD operator splitting h = 0.1, τ = 0.067 0.7152 Seconds Preserved Convergence

7 Conclusion
In this work, we design a novel numerical method. This method preserves all the es-
sential conditions demonstrated by the continuous reaction-diffusion systems. The pro-
posed method is the operator splitting NSFD scheme that is unconditionally convergent.
The proposed NSFD scheme is implicit in nature but efficient in computation time as
compared to the forward Euler FD explicit scheme. For the applications, we take three
reaction-diffusion models in two space dimensions and observe that the proposed method
shows good agreement with the positivity property and convergence to the stable equilib-
rium points of reaction-diffusion systems. On the other hand, the forward Euler numerical
method fails to retain the property of positivity as well as convergence towards equilib-
rium points of the given reaction-diffusion system. The figures and tables are presented
in this work to verify all the attributes of the proposed NSFD operator splitting method.
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