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1 Model formulation
The spread and control of infectious diseases [1–3] was described by governing the mathe-
matical models, aiming to investigate the dynamical properties. Since the pioneering work
was established by Kermack and McKendrick [4], the epidemic models have been paid
more attention at present. Usually, epidemic models included three states within a total
population: the susceptible S, the infected I , and the recovered R. For instance, Cai et al.
[5] introduced an SIS model incorporating media coverage to investigate the effects of en-
vironment fluctuations. However, for some diseases, such as Hepatitis B, Hepatitis C, and
AIDS, the exposed hosts E took a vital role when dynamical behaviors were expected to be
discussed. As mentioned in recent literature, a class of epidemic models was considered
by some scholars; it was called susceptible–exposed–infected–recovered model (short for
SEIR model, see [6–18]).

During the development of epidemic models, incidence rates which describe the rela-
tionship between the susceptible and the infected/the exposed play an important role, and
meanwhile change its form ranging from bilinear case to nonlinear case when investiga-
tion of epidemic models is conducted. For example, [19–22] governed bilinear incidence
rate βSI to explore epidemic models with fluctuation in epidemic models. If the number
of the infected within a population was large, then three types of saturated incidence rates
were usually used in epidemiological models: the mixing standard incidence rate βSI

N [23–
25], the nonlinear incidence rate βSqIp [26, 27], and the saturation incidence rate βSI

1+αS
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[28–30]. Later, some generalized and nonlinear incidence rates were studied in recent lit-
erature (see [31–33]).

In this paper, we still use four states of epidemic models, that is, the susceptible S, the
exposed E, the infected I , and the recovered R, to describe our model with environmental
fluctuations. Motivated by the above-mentioned discussions, we assume that individuals
within total population are well mixed and settle in the same environment. Our model
goes with the idea that the susceptible and the infected contact with constant rate β ; after
contacting with the infected, the susceptible turns into the exposed when time exceeds in-
cubation period (also called the latent period, see [8, 11, 18]); that the exposed individuals
become the infected and then the recovered; and that part of recovered individuals enter
again into the susceptible state. According to this spread cycle, we establish our model by
equations, and we start with an equation of the susceptible as follows:

Ṡ(t) = A – μS(t) + δR(t) –
βS(t)I(t)
ϕ(I(t))

,

where A and μ respectively denote the new recruitment rate and the disease-free death
rate, δ is the rate at which the recovered individuals become susceptible, βSI

ϕ(I) is a nonlin-
ear incidence rate with property that ϕ(I) is increasing and ϕ(0) = 1, and that, for some
constant l > 0, the following property is valid:

Ml := sup
0<I≤l

ϕ(I)
I

< ∞.

For the exposed, we have that

Ė(t) =
βS(t)I(t)
ϕ(I(t))

– (μ + σ )E(t),

where σ is the rate at which exposed individuals become infected individuals. Further, the
changes of infected and recovered individuals at time t are assumed to follow two ordinary
differential equations:

İ(t) = σE(t) – (μ + ρ + γ )I(t)

and

Ṙ(t) = γ I(t) – (μ + δ)R(t),

where ρ is the death rate caused by diseases and γ is the recovery rate of infected individ-
uals. Now, we derive a system that consists of four ordinary differential equations:

Ṡ(t) = A – μS(t) + δR(t) –
βS(t)I(t)
ϕ(I(t))

,

Ė(t) =
βS(t)I(t)
ϕ(I(t))

– (μ + σ )E(t),

İ(t) = σE(t) – (μ + ρ + γ )I(t),

Ṙ(t) = γ I(t) – (μ + δ)R(t).

(1)
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It follows from (1) that

d
dt

(S + E + I + R) = A – μ(S + E + I + R) – ρI ≤ A – μ(S + E + I + R).

Then lim supt→+∞(S(t) + E(t) + I(t) + R(t)) ≤ A
μ

. Thus the feasible region for system (1) is

Ω =
{

(S, E, I, R)
∣∣∣ S + E + I + R ≤ A

μ
, S > 0, E ≥ 0, I ≥ 0, R ≥ 0

}
.

Let IntΩ denote the interior of Ω . It is easy to verify that the region Ω is positively in-
variant with respect to system (1) (i.e., the solutions with initial conditions in Ω remain in
Ω). Hence, system (1) will be considered mathematically and epidemiologically well posed
in Ω .

One concern for further investigation is to find out an expression for the basic repro-
duction number R0 of model (1) by using of the next generation matrix (see [34]). The
basic reproduction number, sometimes called basic reproductive rate or basic reproduc-
tive ratio, is one of the most useful threshold parameters that characterize mathematical
problems concerning infectious diseases. This metric is useful because it helps determine
whether or not an infectious disease will spread through a population. Next, we calculate
the basic reproduction number of system (1). Let x = (S, E, I, R)T , where T denotes the
transpose of matrix (or vector). Then model (1) can be written as

dx
dt

= F (x) – V(x),

where

F =

⎛
⎜⎜⎜⎝

0
βSI
ϕ(I)
0
0

⎞
⎟⎟⎟⎠ , V =

⎛
⎜⎜⎜⎝

–A + μS – δR + βSI
ϕ(I)

(μ + σ )E
–σE + (μ + ρ + γ )I

–γ I + (μ + δ)R

⎞
⎟⎟⎟⎠ .

So the infected classes can be referred to as m = 2, that is, the exposed compartment (E)
and the infected compartment (I), and the disease-free equilibrium of model (1) is x0 =
( A
μ

, 0, 0, 0)T . Based on the detailed documentations in [34–36], we can easily get

F =

(
0 βA

μ

0 0

)
, V =

(
μ + σ 0

–σ μ + ρ + γ

)
,

and the inverse matrix of V is

V –1 =
1

(μ + σ )(μ + ρ + γ )

(
μ + ρ + γ 0

σ μ + σ

)
.

Therefore FV –1 is the next generation matrix for model (1). It follows that the spectral
radius of matrix FV –1 is ρ(FV –1) = Aβσ

μ(μ+σ )(μ+ρ+γ ) . According to Theorem 2 in [34], the
basic reproduction number is

R0 =
Aβσ

μ(μ + σ )(μ + ρ + γ )
.
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When diseases attack total population in real circumstances, the effects of comprehen-
sive and external fluctuation are inevitable and distinct. We here assume that the effects
are proportional to states of models. For instance, the temperature, air humidity, and other
factors normally are regarded as comprehensive and external fluctuations. Therefore we
consider the following epidemic model with environmental fluctuations and nonlinear in-
cidence rate:

dS(t) =
[

A – μS(t) + δR(t) –
βS(t)I(t)
ϕ(I(t))

]
dt + σ1S(t) dB1(t),

dE(t) =
[

βS(t)I(t)
ϕ(I(t))

– (μ + σ )E(t)
]

dt + σ2E(t) dB2(t),

dI(t) =
[
σE(t) – (μ + ρ + γ )I(t)

]
dt + σ3I(t) dB3(t),

dR(t) =
[
γ I(t) – (μ + δ)R(t)

]
dt + σ4R(t) dB4(t),

(2)

where Bi(t) are standard one-dimensional independent Wiener processes, σi are the in-
tensities of white noise for σi > 0 and i = 1, 2, 3, 4. Throughout the paper, unless otherwise
specified, let (Ω , {F t}t≥0,P) be a complete probability space with a filtration {F t}t≥0 satis-
fying the usual conditions, that is, it is increasing and right continuous, while F0 contains
all P-null sets.

The rest of this paper is organized as follows. In Sect. 2, we show that model (2) admits
a unique global positive solution with any initial value. In Sect. 3, we establish sufficient
conditions for extinction of the disease. In Sect. 4, we verify the persistence in the mean
under some conditions. Finally, we prove that there is an ergodic stationary distribution
of model (2) by constructing suitable Lyapunov functions.

2 Existence and uniqueness of positive solution
Theorem 2.1 There is a unique solution (S(t), E(t), I(t), R(t)) to model (2) on t ≥ 0 for any
given initial value (S(0), E(0), I(0), R(0)) in R

4
+ with probability one.

Proof Because the coefficients of system (2) satisfy locally Lipschitz continuity, there exists
a unique local solution (S(t), E(t), I(t), R(t)) on t ∈ [0, τe), where τe is the explosion time.
To show that the solution is global, we just need to prove that τe = ∞. Let m0 > 1 be a
sufficiently large integer such that each component of (S(0), E(0), I(0), R(0)) lies within the
interval [ 1

m0
, m0]. For each integer m ≥ m0, we define the stopping time

τm := inf

{
t ∈ [0, τe) : min

{
S(t), E(t), I(t), R(t)

} ≤ 1
m

or max
{

S(t), E(t), I(t), R(t)
} ≥ m

}
.

Throughout this paper, we set inf∅ = ∞. It is obvious that τm is increasing as m → ∞ (de-
tails can be seen in [37]). We also denote limm→∞ τm = τ∞. Obviously, there is τ∞ ≤ τe. If
we confirm that τ∞ = ∞, then we get τe = ∞ for all t ≥ 0. The proof goes by contradiction.
Assuming that τ∞ �= ∞, then there exists a pair of constants T > 0 and ε ∈ (0, 1) such that
P{τ∞ ≤ T} ≥ ε. Hence there exists an integer m1 ≥ m0 such that P{τm ≤ T} ≥ ε for each
integer m ≥ m1. We define a C2-function V : R4

+ →R+ as follows:

V (S, E, I, R) = S – b – b ln
S
b

+ E – 1 – ln E + I – 1 – ln I + R – 1 – ln R,
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where b is a positive constant that will be determined later. Then, making use of Itô’s for-
mula on V (S, E, I, R), we obtain that

dV
(
S(t), E(t), I(t), R(t)

)

=
(

1 –
b
S

)
dS +

(
1 –

1
E

)
dE +

(
1 –

1
I

)
dI +

(
1 –

1
R

)
dR

+
b

2S2 (dS)2 +
1

2E2 (dE)2 +
1

2I2 (dI)2 +
1

2R2 (dR)2

=
[

A – μS + δR –
βSI
ϕ(I)

–
Ab
S

+ μb –
bδR

S
+

βbI
ϕ(I)

]
dt + σ1(S – b) dB1(t)

+
[

βSI
ϕ(I)

– (σ + μ)E –
βSI

Eϕ(I)
+ σ + μ

]
dt + σ2(E – 1) dB2(t)

+
[
σE – (μ + ρ + γ )I –

σE
I

+ μ + ρ + γ

]
dt + σ3(I – 1) dB3(t)

+
[
γ I – (μ + δ)R –

γ I
R

+ μ + δ

]
dt + σ4(R – 1) dB4(t)

+
bσ 2

1 + σ 2
2 + σ 2

3 + σ 2
4

2
dt

= LV
(
S(t), E(t), I(t), R(t)

)
dt + σ1(S – b) dB1(t) + σ2(E – 1) dB2(t)

+ σ3(I – 1) dB3(t) + σ4(R – 1) dB4(t),

where

LV
(
S(t), E(t), I(t), R(t)

)

= A + μb +
βbI
ϕ(I)

+ σ + 3μ + ρ + γ + δ +
bσ 2

1 + σ 2
2 + σ 2

3 + σ 2
4

2

–
[
μS +

Ab
S

+
bδR

S
+ μE +

βSI
Eϕ(I)

+ (μ + ρ)I +
σE
I

+ μR +
γ I
R

]

≤ βbI – (μ + ρ)I + A + μb + σ + 3μ + ρ + γ + δ +
bσ 2

1 + σ 2
2 + σ 2

3 + σ 2
4

2
.

We choose b = μ+ρ

β
and denote K := A + μb + σ + 3μ + ρ + γ + δ + (μ+ρ)σ 2

1 +βσ 2
2 +βσ 2

3 +βσ 2
4

2β
, so

we have

LV
(
S(t), E(t), I(t), R(t)

) ≤ K ,

where K is a positive constant. Then

dV
(
S(t), E(t), I(t), R(t)

)
≤ K dt + σ1(S – b) dB1(t) + σ2(E – 1) dB2(t)

+ σ3(I – 1) dB3(t) + σ4(R – 1) dB4(t).
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For any t ∈ [0, T] and m ≥ m1, we take integration from 0 to τm ∧ T , and then take
expectation on both sides, which gives

EV
(
S(τm ∧ T), E(τm ∧ T), I(τm ∧ T), R(τm ∧ T)

)
≤ V

(
S(0), E(0), I(0), R(0)

)
+ KE(τm ∧ T)

≤ V
(
S(0), E(0), I(0), R(0)

)
+ KT < ∞.

We set Ωm = {τm ≤ T} for m ≥ m1, then P(Ωm) ≥ ε. Each component of (S(τm ∧T), E(τm ∧
T), I(τm ∧ T), R(τm ∧ T)) equals either m or 1

m for all w ∈ Ωm. Therefore, we get

∞ > V
(
S(0), E(0), I(0), R(0)

)
+ KT

≥ P{τm ≤ T}min

{
m – 1 – ln m,

1
m

– 1 + ln m
}

≥ ε min

{
m – 1 – ln m,

1
m

– 1 + ln m
}

.

Let m → ∞, which implies the contradiction

∞ > V
(
S(0), E(0), I(0), R(0)

)
+ KT ≥ ∞,

as a consequence, we have τ∞ = ∞. The proof is complete. �

3 Extinction of diseases
Extinction and persistence are two most important issues in the study of epidemic models.
For the sake of simplicity, we denote

〈
x(t)

〉
=

1
t

∫ t

0
x(s) ds.

Lemma 3.1 For any initial value (S(0), E(0), I(0), R(0)) ∈ R
4
+, the solution (S(t), E(t), I(t),

R(t)) has the following properties:

lim
t→∞

S(t)
t

= 0, lim
t→∞

E(t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

R(t)
t

= 0, a.s.

and

lim sup
t→∞

ln S(t)
t

≤ 0, lim sup
t→∞

ln E(t)
t

≤ 0,

lim sup
t→∞

ln I(t)
t

≤ 0, lim sup
t→∞

ln R(t)
t

≤ 0, a.s.

Moreover, if μ > σ 2
1 ∨σ 2

2 ∨σ 2
3 ∨σ 2

4
2 , then

lim
t→∞

1
t

∫ t

0
S(s) dB1(s) = 0, lim

t→∞
1
t

∫ t

0
E(s) dB2(s) = 0,

lim
t→∞

1
t

∫ t

0
I(s) dB3(s) = 0, lim

t→∞
1
t

∫ t

0
R(s) dB4(s) = 0.
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The proof of Lemma 3.1 is similar to the approach used in [38, 39], and we omit the
proof here.

Lemma 3.2 (Strong law of large numbers [37]) Let M = {Mt}t≥0 be a real-value continuous
local martingale vanishing at t = 0. Then

lim
t→∞〈M, M〉t = ∞, a.s. ⇒ lim

t→∞
Mt

〈M, M〉t
= 0, a.s.

and also

lim sup
t→∞

〈M, M〉t

t
< ∞, a.s. ⇒ lim

t→∞
Mt

t
= 0, a.s.

Theorem 3.1 Let (S(t), E(t), I(t), R(t)) be the solution of model (2) with any initial value in
R

4
+. If the basic reproduction number satisfies

R0 =
Aβσ

μ(σ + μ)(μ + ρ + γ )
< 1

and

μ >
σ 2

1 ∨ σ 2
2 ∨ σ 2

3 ∨ σ 2
4

2
,

then

lim
t→∞ I(t) = 0 a.s.,

then the density of the infected individuals reaches extinction.

Proof Let

N(t) = S(t) + E(t) + I(t) + R(t),

we obtain that

dN(t) =
(
A – μN(t) – ρI(t)

)
dt + σ1S(t) dB1(t) + σ2E(t) dB2(t)

+ σ3I(t) dB3(t) + σ4R(t) dB4(t). (3)

Taking integration on both sides of (3) from 0 to t and according to Lemma 3.1, we see
that

lim sup
t→∞

〈
N(t)

〉 ≤ A
μ

. (4)

Now we define a C2-function W : R2
+ → R+ as follows:

W (E, I) = m1E(t) + m2I(t),
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where

m1 =
σ

(σ + μ)(μ + ρ + γ )
, m2 =

√
R0

μ + ρ + γ
. (5)

Making use of Itô’s formula, we have

d ln W
(
E(t), I(t)

)
=

1
W

(m1 dE + m2 dI) –
1

2W 2

[
m2

1(dE)2 + m2
2(dI)2]

= L
(
ln W

(
E(t), I(t)

))
dt +

m1σ2E dB2(t) + m2σ3I dB3(t)
W

.

Based on the fundamental inequality (a2 + b2)(c2 + d2) ≥ (ac + bd)2 for positive a, b, c, and
d, we obtain that

(m1E + m2I)2 =
(

m1σ2E
1
σ2

+ m2σ3I
1
σ3

)2

≤ (
m2

1σ
2
2 E2 + m2

2σ
2
3 I2)( 1

σ 2
2

+
1
σ 2

3

)
. (6)

Therefore, from (5) and (6)

L ln W
(
E(t), I(t)

)

=
1

W

[
m1βSI
ϕ(I)

– m1(σ + μ)E + m2σE – m2(μ + ρ + γ )I
]

–
m2

1σ
2
2 E2 + m2

2σ
2
3 I2

2(m1E + m2I)2

≤ 1
W

[
m1βSI
ϕ(I)

+ m1
βAI
μ

– m1(σ + μ)E + m2σE – m2(μ + ρ + γ )I
]

–
[
2
(
σ –2

2 + σ –2
3

)]–1

≤ m1βS
m2

+
1

W

{
σ

(σ + μ)(μ + ρ + γ )

[
βAI
μ

– (σ + μ)E
]

+
√

R0

μ + ρ + γ

[
σE – (μ + ρ + γ )I

]}
–

[
2
(
σ –2

2 + σ –2
3

)]–1

=
m1βS

m2
+

1
W

(
R0I –

σ

μ + ρ + γ
E +

√
R0σE

μ + ρ + γ
–

√
R0I

)
–

[
2
(
σ –2

2 + σ –2
3

)]–1

=
m1βS

m2
+

1
W

(
√

R0 – 1)
(

σ

μ + ρ + γ
E +

√
R0I

)
–

[
2
(
σ –2

2 + σ –2
3

)]–1

=
m1βS

m2
+

1
W

(
√

R0 – 1)
[
(σ + μ)m1E + (μ + ρ + γ )m2I

]
–

[
2
(
σ –2

2 + σ –2
3

)]–1

≤ m1βS
m2

+ min{σ + μ,μ + ρ + γ }(√R0 – 1) –
[
2
(
σ –2

2 + σ –2
3

)]–1,

therefore

d ln W
(
E(t), I(t)

)

≤
{

m1βS
m2

+ min{σ + μ,μ + ρ + γ }(√R0 – 1) –
[
2
(
σ –2

2 + σ –2
3

)]–1
}

dt

+
m1σ2E dB2(t)

W
+

m2σ3I dB3(t)
W

. (7)
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Now we take integration on both sides of (7) and divide it by t, which then implies the
following expression:

ln W (E(t), I(t))
t

≤ ln W (E(0), I(0))
t

+
1
t

∫ t

0

m1βS(s)
m2

ds + min{σ + μ,μ + ρ + γ }(√R0 – 1)

–
[
2
(
σ –2

2 + σ –2
3

)]–1 +
M1(t)

t
+

M2(t)
t

, (8)

where

M1(t) =
∫ t

0

m1σ2E(s)
W (s)

dB2(s), M2(t) =
∫ t

0

m2σ3I(s)
W (s)

dB3(s),

are local martingales, whose quadratic variations are 〈M1(t), M1(t)〉 ≤ σ 2
2 t, 〈M2(t), M2(t)〉≤

σ 2
3 t respectively. Applying Lemma 3.2, we conclude that

lim sup
t→∞

Mi(t)
t

= 0, i = 1, 2, a.s. (9)

Then taking the upper limit on both sides, from (7), (8), and (9), we can get

lim sup
t→∞

ln W (E(t), I(t))
t

≤ m1βA
m2μ

+ min{σ + μ,μ + ρ + γ }(√R0 – 1) –
[
2
(
σ –2

2 + σ –2
3

)]–1 := ν, a.s.

If ν < 0, we obtain that

lim sup
t→∞

ln I(t)
t

< 0, a.s.,

which suggests that limt→∞ I(t) = 0. This indicates that the disease would tend to extinc-
tion. The proof is complete. �

4 Persistence in the mean
In this section, we will demonstrate some useful results about the persistence of the dis-
eases.

Theorem 4.1 Let (S(t), E(t), I(t), R(t)) be a solution of system (2) with any initial value in
R

4
+. If

R̃0 =
2Aβσ

(μ + σ 2
1
2 )(μ + σ + σ 2

2
2 )(2μ + δ + σ 2

4
2 + Ml + ρ + γ + σ 2

3
2 )

> 1,

then system (2) has the following property:

lim inf
t→∞ 〈I〉t ≥ 1

γ̄

(
2μ + δ +

σ 2
4

2
+ Ml + ρ + γ +

σ 2
3

2

)
(̃R0 – 1) > 0,
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where

γ̄ =
Aβ2σ + Aβσ (μ + ρ + γ )(μ + σ 2

1
2 )

(μ + σ 2
1
2 )2(μ + σ + σ 2

2
2 )

.

That is to say, the disease will be prevalent.

Proof In order to testify the persistence, we establish a C2-function V1 : R4
+ → R as fol-

lows:

V1(S, E, I, R) = –c1 ln S – c2 ln E – c3I – ln R – ln I, (10)

where c1, c2, c3 are positive constants to be determined later. Next we apply Itô’s formula
to (10). Then we get the following result:

dV1
(
S(t), E(t), I(t), R(t)

)

= –
c1

S
dS –

c2

E
dE – c3 dI –

1
R

dR +
c1

2S2 (dS)2

+
c2

2E2 (dE)2 +
1

2R2 (dR)2–
1
I

dI +
1

2I2 (dI)2

= –
c1

S

[
A – μS + δR –

βSI
ϕ(I)

]
dt – c1σ1 dB1(t) –

c2

E

[
βSI
ϕ(I)

– (μ + σ )E
]

dt

– c2σ2 dB2(t) – c3
[
σE – (μ + ρ + γ )I

]
dt – c3σ3I dB3(t) –

1
R

[
γ I – (μ + δ)R

]
dt

– σ4 dB4(t) +
(

c1σ
2
1

2
+

c2σ
2
2

2
+

σ 2
4

2

)
dt+

(
–

σE
I

+ μ + ρ + γ +
σ 2

3
2

)
dt – σ3 dB3(t)

=
[

–
c1A

S
+ c1μ –

c1δR
S

+
c1βI
ϕ(I)

–
c2βSI
Eϕ(I)

+ c2(μ + σ ) – c3σE + c3(μ + ρ + γ )I

–
γ I
R

+ μ + δ +
c1σ

2
1

2
+

c2σ
2
2

2
+

σ 2
4

2
–

σE
I

+ μ + ρ + γ +
σ 2

3
2

]
dt

– c1σ1 dB1(t) – c2σ2 dB2(t) – c3σ3I dB3(t) – σ4 dB4(t) – σ3 dB3(t), (11)

where

LV1
(
S(t), E(t), I(t), R(t)

)

= –
c1A

S
+ c1μ –

c1δR
S

+
c1βI
ϕ(I)

–
c2βSI
Eϕ(I)

+ c2(μ + σ ) – c3σE + c3(μ + ρ + γ )I

–
γ I
R

+ μ + δ +
c1σ

2
1

2
+

c2σ
2
2

2
+

σ 2
4

2
–

σE
I

+ μ + ρ + γ +
σ 2

3
2

< –
c1A

S
+ c1μ +

[
c1β + c3(μ + ρ + γ )

]
I –

c2βSI
Eϕ(I)

+ c2(μ + σ ) – c3σE + μ + δ

+
c1σ

2
1 + c2σ

2
2 + σ 2

4
2

–
ϕ(I)

I
+

ϕ(I)
I

+ μ + ρ + γ +
σ 2

3
2

≤ –
c1A

S
–

c2βSI
Eϕ(I)

– c3σE –
ϕ(I)

I
+ c1

(
μ +

σ 2
1

2

)
+

[
c1β + c3(μ + ρ + γ )

]
I
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+ c2

(
μ + σ +

σ 2
2

2

)
+ μ + δ +

σ 2
4

2
+ Ml+μ + ρ + γ +

σ 2
3

2

≤ –4(c1c2c3Aβσ )
1
4 + c1

(
μ +

σ 2
1

2

)
+

[
c1β + c3(μ + ρ + γ )

]
I + c2

(
μ + σ +

σ 2
2

2

)

+ 2μ + δ +
σ 2

4
2

+ Ml + ρ + γ +
σ 2

3
2

.

Let

c1 =
Aβσ

(μ + σ 2
1
2 )2(μ + σ + σ 2

2
2 )

, c2 =
Aβσ

(μ + σ 2
1
2 )(μ + σ + σ 2

2
2 )2

,

c3 =
Aβσ

(μ + σ 2
1
2 )(μ + σ + σ 2

2
2 )

.

Then

LV1
(
S(t), E(t), I(t), R(t)

)

≤ –4Aβσ

(μ + σ 2
1
2 )(μ + σ + σ 2

2
2 )

+
Aβσ

(μ + σ 2
1
2 )(μ + σ + σ 2

2
2 )

+
[
c1β + c3(μ + ρ + γ )

]
I

+
Aβσ

(μ + σ 2
1
2 )(μ + σ + σ 2

2
2 )

+2μ + δ +
σ 2

4
2

+ Ml + ρ + γ +
σ 2

3
2

=
–2Aβσ

(μ + σ 2
1
2 )(μ + σ + σ 2

2
2 )

+2μ + δ +
σ 2

4
2

+ Ml + ρ + γ +
σ 2

3
2

+
[
c1β + c3(μ + ρ + γ )

]
I

= –
(

2μ + δ +
σ 2

4
2

+ Ml + ρ + γ +
σ 2

3
2

)

×
[

2Aβσ

(μ + σ 2
1
2 )(μ + σ + σ 2

2
2 )(2μ + δ + σ 2

4
2 + Ml + ρ + γ + σ 2

3
2 )

– 1
]

+
[
c1β + c3(μ + ρ + γ )

]
I

= –
(

2μ + δ +
σ 2

4
2

+ Ml + ρ + γ +
σ 2

3
2

)
(R̃0 – 1) +

[
c1β + c3(μ + ρ + γ )

]
I

≤ –λ + γ̄ I, (12)

where

λ =
(

2μ + δ +
σ 2

4
2

+ Ml + ρ + γ +
σ 2

3
2

)
(R̃0 – 1), γ̄ = c1β + c3(μ + ρ + γ ).

Hence, from (11) and (12) we get

dV1
(
S(t), E(t), I(t), R(t)

)
≤ (–λ + γ̄ I) dt – c1σ1 dB1(t) – c2σ2 dB2(t) – c3σ3I dB3(t) – σ4 dB4(t) – σ3 dB3(t),
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where

M3(t) =
∫ t

0
c1σ1 dB1(s)+

∫ t

0
c2σ2 dB2(s)+

∫ t

0
c3σ3I(s) dB3(s)+

∫ t

0
σ4 dB4(s)+

∫ t

0
σ3 dB3(s)

is a local martingale. Using Lemma 3.2 yields

lim
t→∞

M3(t)
t

= 0.

Therefore

lim inf
t→∞ γ̄ 〈I〉t

≥
(

2μ + δ +
σ 2

4
2

+ Ml + ρ + γ +
σ 2

3
2

)
(R̃0 – 1) + lim inf

t→∞
V1(S(t), E(t), I(t), R(t))

t

– lim sup
t→∞

V1(S(0), E(0), I(0), R(0))
t

+ lim inf
t→∞

M3(t)
t

≥
(

2μ + δ +
σ 2

4
2

+ Ml + ρ + γ +
σ 2

3
2

)
(̃R0 – 1) > 0.

The proof is complete. �

5 Stationary distribution
In this section, we will establish sufficient conditions for the existence of a unique ergodic
stationary distribution. First of all, we present a lemma which will be used later.

Let x(t) be a homogeneous Markov process in El (El denotes an l-dimensional Euclidean
space) and be described by the following stochastic differential equation:

dx(t) = b(x) dt +
k∑

r=1

gr(x) dBr(t).

The diffusion matrix is defined as follows:

Ã(x) =
(
aij(x)

)
=

k∑
r=1

gi
r(x)gj

r(x).

Lemma 5.1 ([40]) The Markov process x(t) has a unique ergodic stationary distribution
μ(·) if there exists a bounded domain U ⊂ El with regular boundary Γ and

(A1) There is a positive number M such that
∑l

i,j=1 aij(x)ξiξj ≥ M|ξ |2, x ∈ U , ξ ∈R
l .

(A2) There exists a nonnegative C2-function V such that LV is negative for any El \ U .
Then

Px

{
lim

T→∞
1
T

∫ T

0
f
(
x(t)

)
dt =

∫
El

f (y)μ(dy)
}

= 1

for all x ∈ El , where f (·) is a function integrable with respect to the measure μ.

Theorem 5.1 Assume that R̃0 > 1. Then, for any initial value (S(0), E(0), I(0), R(0)) ∈ R
4
+,

there is a stationary distribution μ(·) for system (2) and the ergodicity holds.
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Proof The diffusion matrix of system (2) is given by Ã = diag(σ 2
1 S2,σ 2

2 E2,σ 2
3 I2,σ 2

4 R2). We
choose M = min(S,E,I,R)∈Dk⊂R

4
+
{σ 2

1 S2,σ 2
2 E2,σ 2

3 I2,σ 2
4 R2}. We get

4∑
i,j=1

aij(S, E, I, R)ξiξj = (ξ1, ξ2, ξ3, ξ4)Ã(ξ1, ξ2, ξ3, ξ4)T

= σ 2
1 S2ξ 2

1 + σ 2
2 E2ξ 2

2 + σ 2
3 I2ξ 2

3 + σ 2
4 R2ξ 2

4

≥ M‖ξ‖2

for any (S, E, I, R) ∈ Dk , ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R
4
+, where Dk = [ 1

k , k] × [ 1
k , k] × [ 1

k , k] × [ 1
k , k]

and k > 1 is a sufficiently large integer. Then condition (A1) holds, where El = R
4
+, U = Dk .

Next we construct a nonnegative C2-function V̄ : R4
+ →R in the following form:

Ṽ (S, E, I, R) = M(–c1 ln S – c2 ln E – c3I – ln R – ln I)

– ln S – ln R – ln(S + E + I + R) +
(S + E + I + R)n+1

n + 1
.

It is easy to check that

lim inf
k→∞,(S,E,I,R)∈R4

+\Uk
Ṽ (S, E, I, R) = +∞,

where Uk = ( 1
k , k) × ( 1

k , k) × ( 1
k , k) × ( 1

k , k). Besides, Ṽ (S, E, I, R) is a continuous function.
Hence, Ṽ (S, E, I, R) must admit a minimum point (S∗, E∗, I∗, R∗) in the interior of R4

+. Then
we define a nonnegative C2-function V̄ as follows:

V̄ (S, E, I, R) = Ṽ (S, E, I, R) – Ṽ
(
S∗, E∗, I∗, R∗)

= MV1 + V2 + V3 + V4 + V5 – Ṽ
(
S∗, E∗, I∗, R∗),

where V1 is presented in (10), and

V2 = – ln S, V3 = – ln R, V4 = – ln(S + E + I + R), V5 =
(S + E + I + R)n+1

n + 1
,

where n is a sufficiently small constant and M > 0 satisfying the following condition:

η = μ –
n(σ 2

1 ∨ σ 2
2 ∨ σ 2

3 ∨ σ 2
4 )

2
> 0,

–Mλ + 5μ + δ + ρ +
2σ 2

1 + σ 2
2 + σ 2

3 + 2σ 2
4

2
+ B ≤ –2,

where

B = sup
(S,E,I,R)∈R4

+

{
A(S + E + I + R)n –

η

2
(
Sn+1 + En+1 + In+1 + Rn+1)}.

According to similar discussions as shown in Theorem 4.1, we have

LV2 = –
A
S

+ μ –
δR
S

+
βI
ϕ(I)

+
σ 2

1
2

< –
A
S

+ μ + βI +
σ 2

1
2

,
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LV3 = –
γ I
R

+ μ + δ +
σ 2

4
2

,

LV4 = –
1

S + E + I + R
[
A – μS – μE – (μ + ρ)I – μR

]
+

σ 2
1 S2 + σ 2

2 E2 + σ 2
3 I2 + σ 2

4 R2

2(S + E + I + R)2

<
μS + (μ + ρ)I + μR

S + E + I + R
+

μE
S + E + I + R

+
σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4

2

≤ 3μ + ρ +
μE

S + E + I + R
+

σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4
2

and

LV5 = (S + E + I + R)n[A – μ(S + E + I + R) – ρI
]

+
n(S + E + I + R)n–1

2
[
σ 2

1 S2 + σ 2
2 E2 + σ 2

3 I2 + σ 2
4 R2]

< A(S + E + I + R)n –
[
μ –

n(σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4 )
2

]
(S + E + I + R)n+1

≤ B –
η

2
(S + E + I + R)n+1

< B –
η

2
(
Sn+1 + En+1 + In+1 + Rn+1).

Therefore

LV̄ ≤ –Mλ + Mγ̄ I –
A
S

+ μ + βI +
σ 2

1
2

–
γ I
R

+ μ + δ +
σ 2

4
2

+ 3μ + ρ +
μE

S + E + I + R

+
σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4

2
+ B –

η

2
(
Sn+1 + En+1 + In+1 + Rn+1)

= –Mλ + (Mγ̄ + β)I –
A
S

–
γ I
R

+
μE

S + E + I + R
–

η

2
(
Sn+1 + En+1 + In+1 + Rn+1)

+ 5μ + δ + ρ +
2σ 2

1 + σ 2
2 + σ 2

3 + 2σ 2
4

2
+ B

≤ –Mλ + (Mγ̄ + β)I –
A
S

–
γ I
R

+
μE

S + E + I + R

–
η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N ,

where N = 5μ + δ + ρ + 2σ 2
1 +σ 2

2 +σ 2
3 +2σ 2

4
2 + B.

Now we are in a position to construct a compact subset D such that condition (A2) in
Lemma 5.1 holds. Define the bounded closed set

D =
{

(S, E, I, R) ∈R
4
+ : ε1 ≤ S ≤ 1

ε1
, ε2 ≤ E ≤ 1

ε2
, ε3 ≤ I ≤ 1

ε3
, ε4 ≤ R ≤ 1

ε4

}
,

where εi > 0 (i = 1, 2, 3, 4) are sufficiently small constants satisfying the following condi-
tions:

–
A
ε1

+ P ≤ –1, (13)

–Mλ + (Mγ̄ + β)ε2 + Q ≤ –1, (14)
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–Mλ +
με3

ε1 + ε2
+ T ≤ –1, (15)

–
γ ε2

ε4
+ P ≤ –1, (16)

–
η

4εn+1
1

+ F ≤ –1, (17)

–
η

4εn+1
2

+ G ≤ –1, (18)

–
η

4εn+1
3

+ H ≤ –1, (19)

–
η

4εn+1
4

+ L ≤ –1, (20)

where P, Q, T , F , G, H , L are presented in (21), (22), (23), (24), (25), (26), (27), respectively.
For convenience, we divide R

4
+ \ D into eight domains:

D1 =
{

(S, E, I, R) ∈ R
4
+ : 0 < S < ε1

}
, D2 =

{
(S, E, I, R) ∈R

4
+ : 0 < I < ε2, S ≥ ε1

}
,

D3 =
{

(S, E, I, R) ∈ R
4
+ : S ≥ ε1, I ≥ ε2, 0 < E < ε3

}
,

D4 =
{

(S, E, I, R) ∈ R
4
+ : 0 < R < ε4, I ≥ ε2

}
,

D5 =
{

(S, E, I, R) ∈R
4
+ : S >

1
ε1

}
, D6 =

{
(S, E, I, R) ∈R

4
+ : E >

1
ε2

}
,

D7 =
{

(S, E, I, R) ∈R
4
+ : I >

1
ε3

}
, D8 =

{
(S, E, I, R) ∈R

4
+ : R >

1
ε4

}
.

Obviously, DC = D1 ∪ D2 ∪ · · · ∪ D8. Next we only need to show that LV̄ (S, E, I, R) ≤ –1 on
DC .

Case 1. If (S, E, I, R) ∈ D1, by (13) we get that

LV̄ ≤ –Mλ + (Mγ̄ + β)I –
A
S

–
γ I
R

+
μE

S + E + I + R

–
η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

< (Mγ̄ + β)I –
A
S

+ μ –
η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

≤ –
A
ε1

+ P ≤ –1,

where

P = sup
(S,E,I,R)∈R4

+

{
(Mγ̄ + β)I + μ –

η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

}
. (21)

Case 2. If (S, E, I, R) ∈ D2, by (14) we have that

LV̄ < –Mλ + (Mγ̄ + β)I + μ –
η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

≤ –Mλ + (Mγ̄ + β)I + Q

≤ –Mλ + (Mγ̄ + β)ε2 + Q ≤ –1,
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where

Q = sup
(S,E,I,R)∈R4

+

{
μ –

η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

}
. (22)

Case 3. If (S, E, I, R) ∈ D3, by (15) we have that

LV̄ < –Mλ +
μE

S + I
+ (Mγ̄ + β)I –

η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

≤ –Mλ +
μE

S + I
+ T

≤ –Mλ +
με3

ε1 + ε2
+ T ≤ –1,

where

T = sup
(S,E,I,R)∈R4

+

{
(Mγ̄ + β)I –

η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

}
. (23)

Case 4. If (S, E, I, R) ∈ D4, by (16) we get that

LV̄ < (Mγ̄ + β)I –
γ I
R

+ μ –
η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

≤ –
γ I
R

+ P

≤ –
γ ε2

ε4
+ P ≤ –1.

Case 5. If (S, E, I, R) ∈ D5, by (17) we get that

LV̄ < (Mγ̄ + β)I + μ –
η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

= –
η

4
Sn+1 + (Mγ̄ + β)I + μ –

η

4
Sn+1 –

η

2
(
En+1 + In+1 + Rn+1) + N

≤ –
η

4εn+1
1

+ F ≤ –1,

where

F = sup
(S,E,I,R)∈R4

+

{
(Mγ̄ + β)I + μ –

η

4
Sn+1 –

η

2
(
En+1 + In+1 + Rn+1) + N

}
. (24)

Case 6. If (S, E, I, R) ∈ D6, by (18) we get that

LV̄ < (Mγ̄ + β)I + μ –
η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

= –
η

4
En+1 + (Mγ̄ + β)I + μ –

η

4
En+1 –

η

2
(
Sn+1 + In+1 + Rn+1) + N

≤ –
η

4εn+1
2

+ G ≤ –1,
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where

G = sup
(S,E,I,R)∈R4

+

{
(Mγ̄ + β)I + μ –

η

4
En+1 –

η

2
(
Sn+1 + In+1 + Rn+1) + N

}
. (25)

Case 7. If (S, E, I, R) ∈ D7, by (19) we get that

LV̄ < (Mγ̄ + β)I + μ –
η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

= –
η

4
In+1 + (Mγ̄ + β)I + μ –

η

4
In+1 –

η

2
(
Sn+1 + En+1 + Rn+1) + N

≤ –
η

4εn+1
3

+ H ≤ –1,

where

H = sup
(S,E,I,R)∈R4

+

{
(Mγ̄ + β)I + μ –

η

4
In+1 –

η

2
(
Sn+1 + En+1 + Rn+1) + N

}
. (26)

Case 8. If (S, E, I, R) ∈ D8, by (20) we get that

LV̄ < (Mγ̄ + β)I + μ –
η

2
(
Sn+1 + En+1 + In+1 + Rn+1) + N

= –
η

4
Rn+1 + (Mγ̄ + β)I + μ –

η

4
Rn+1 –

η

2
(
Sn+1 + En+1 + In+1) + N

≤ –
η

4εn+1
4

+ L ≤ –1,

where

L = sup
(S,E,I,R)∈R4

+

{
(Mγ̄ + β)I + μ –

η

4
Rn+1 –

η

2
(
Sn+1 + En+1 + In+1) + N

}
. (27)

The proof is complete. �

6 Examples and simulations
For the numerical simulation, we use Milstein’s higher order method mentioned in [41] to
obtain the following discretization transformation of system (2):

S(j + 1) = S(j) +
[

A – μS(j) + δR(j) –
βS(j)I(j)
ϕ(I(j))

]
�t + σ1S(j)ξ1

√
�t +

σ 2
1

2
S(j)

(
ξ 2

1 – 1
)
�t,

E(j + 1) = E(j) +
[

βS(j)I(j)
ϕ(I(j))

– (μ + σ )E(j)
]
�t + σ2E(j)ξ2

√
�t +

σ 2
2

2
E(j)

(
ξ 2

2 – 1
)
�t,

I(j + 1) = I(j) +
[
σE(j) – (μ + ρ + γ )I(j)

]
�t + σ3I(j)ξ3

√
�t +

σ 2
3

2
I(j)

(
ξ 2

3 – 1
)
�t,

R(j + 1) = R(j) +
[
γ I(j) – (μ + δ)R(j)

]
�t + σ4R(j)ξ4

√
�t +

σ 2
4

2
R(j)

(
ξ 2

4 – 1
)
�t,

where the time increment �t > 0, σ 2
i > 0 (i = 1, 2, 3, 4) are the intensities of the white noise,

ξi (i = 1, 2, 3, 4) are independent Gaussian random variables which follow the distribution
N(0, 1) for j = 0, 1, 2, . . . , n.
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Figure 1 A realization of extinction of the exposed
and infected to model (2)

Figure 2 A realization of extinction of the exposed
and infected to model (2)

Figure 3 Histogram of the susceptible, the exposed, the infected, and the recovered to model (2)

We take the parameters of model (2) as follows: A = 0.7, β = 0.055, μ = 0.1, γ = 0.2,
ρ = 0.15, σ = 0.3, �t = 0.001, ϕ(I) = 1+0.6I , δ = 0.04, σ1 = 0.009, σ2 = 0.1, σ3 = 0.1, σ4 = 0.1,
S(0) = 0.8, E(0) = 0.7, I(0) = 0.6, R(0) = 0.5. By condition of Theorem 3.1, we have

R0 = 0.6417 < 1, μ = 0.1 >
σ 2

1 ∨ σ 2
2 ∨ σ 2

3 ∨ σ 2
4

2
= 0.005,

which indicates the extinction of infected individuals. The corresponding realizations of
model (2) demonstrate their properties in Fig. 1, when n = 25,000. At the same time, we
get that the disease will reach extinction faster as the environmental disturbance increases.
For example, when σ1 = 0.054, σ2 = 0.6, σ3 = 0.6, σ4 = 0.6, for the corresponding dynamics
see Fig. 2, when n = 5000.
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Figure 4 A realization of persistence in the mean for the susceptible, the exposed, the infected, and the
recovered to model (2)

We further assume that the parameters of model (2) are A = 0.5, β = 0.1, μ = 0.01,
γ = 0.2, ρ = 0.1, σ = 0.2, σ1 = 0.008, σ2 = 0.06, σ3 = 0.008, σ4 = 0.006, δ = 0.08, ϕ(I) =
1 + 0.15I . By the condition of Theorem 4.1 and Theorem 5.1, we have R̃0 = 6.0725 > 1,
and lim inft→∞〈I〉t ≥ 0.1625, model (2) admits a unique stationary distribution as shown
in Fig. 3, and the solution of model (2) is persistent in the mean as shown in Fig. 4, when
n = 200,000.

7 Conclusions
In this paper, we intend to investigate an epidemic model of having four stages: the sus-
ceptible, the exposed, the infected, and the recovered. And we focus on extinction, persis-
tence, and stationary distribution of a positive solution to epidemic model with nonlinear
incidence rate and independent environmental fluctuations.

We firstly, by constructing an appropriate function, show that model (2) admits a unique
global positive solution with any initial value. Moreover, we also find that the extinction of
disease depends on the basic reproduction number R0 (a threshold for its corresponding
deterministic model). When R0 < 1 and ν < 0, the disease under independent environmen-
tal fluctuations dies out as demonstrated in Theorem 3.1, and its corresponding dynamics
could be found in Fig. 1. While, by constructing several C2-functions, under the condition
R̃0 > 1, we derive sufficient conditions for persistence and existence of a unique ergodic sta-
tionary distribution to model (2), the corresponding realizations could be found in Fig. 2
and Fig. 3, respectively.

We further present numerical simulations on ergodicity of model (2) at the end of this
paper and point out that extinction time of infected individuals decreases when intensi-
ties of environmental fluctuations σi (i = 1, 2, 3, 4) increase. These results provide readers
a biological perspective when understanding an epidemic model with fluctuated environ-
ments.
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