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Abstract
The primary objective of this research paper is to investigate two kinds of high-order
tempered fractional differential equations integral boundary value problems. By
means of the mixed monotone operators fixed point theorems with perturbation and
the increasing ϕ – (h,σ )-concave operators fixed point theorems, we can not only
guarantee the existence-uniqueness of solution, but also construct successively
sequences for approximating the unique solution. In addition, we demonstrate the
effectiveness of the main result by using two examples.
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1 Introduction
In this paper, we investigate the following tempered fractional differential equations
Riemann–Stieltjes integral boundary values problems (BVP for short):

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α,λ
t u(t) + f (t, u(t), u(t)) + g(t, u(t)) = 0, t ∈ (0, 1),

u(0) = R
0D

γ1,λ
t u(0) = R

0D
γ2,λ
t u(0) = · · · = R

0D
γn–2,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 b(s)R
0D

β2,λ
t u(s) dA(s) +

∫ 1
0 a(s)R

0D
β3,λ
t u(s) dA(s)

(1.1)

and

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α,λ
t u(t) + ψ(t, u(t)) = c, t ∈ (0, 1),

u(0) = R
0D

γ1,λ
t u(0) = R

0D
γ2,λ
t u(0) = · · · = R

0D
γn–2,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 b(s)R
0D

β2,λ
t u(s) dA(s) +

∫ 1
0 a(s)R

0D
β3,λ
t u(s) dA(s),

(1.2)
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where R
0D

α,λ
t u, R

0D
γk ,λ
t u (k = 1, 2, . . . , n–2) and R

0D
βi ,λ
t u (i = 1, 2, 3) are the tempered fractional

derivatives defined by

R
0D

α,λ
t u(t) = e–λtR

0 Dα
t
(
eλtu(t)

)
, λ ≥ 0. (1.3)

Here, R
0 Dα

t denotes the standard Riemann–Liouville fractional derivative

R
0 Dα

t u(t) =
dn

dtn

(
0In–α

t u(t)
)
, (1.4)

where 0Iυ
t for υ > 0 is the fractional integral operator of order υ defined by

0Iυ
t ψ =

1
Γ (υ)

∫ t

0
(t – s)υ–1ψ(s) ds. (1.5)

In addition, n – 1 < α ≤ n, c > 0 is a constant, k – 1 < γk ≤ k (k = 1, 2, . . . , n – 2), n – k – 1 <
α – γk ≤ n – k (k = 1, 2, . . . , n – 2), β1 ≥ β2, β1 ≥ β3, α – βi > 1 (i = 1, 2, 3), a, b ∈ C(0, 1),
A is a function of bounded variation,

∫ η

0 b(s)R
0D

β2
t u(s) dA(s) and

∫ 1
0 a(s)R

0D
β3
t u(s) dA(s) de-

note Riemann–Stieltjes integral with respect to A. By using some fixed point theorems, we
establish sufficient conditions that ensure the existence-uniqueness of solutions for BVP
(1.1) and BVP (1.2), respectively.

Over the past few decades, more theories and experiments show that a great deal of
abnormal phenomena that occur in the applied science and engineering can be described
by fractional differential equations; therefore, fractional differential equations arise in lots
of fields such as economics, mechanics, physics, chemistry, biological science, etc.; see [1–
4] for example. It is because the fractional order derivatives provide power tools for the
description of memory and hereditary characteristics of different processes and materials
in many fields.

In addition, in order to increase the power and applicability of the fractional calculus,
Caputo and Fabrizio have recently defined a new fractional derivative possessing a sin-
gular kernel [5]. Some researchers have used distinct methods for solving some differ-
ent equations including the Caputo–Fabrizio fractional derivative (see [6–11]). For in-
stance, Aydogan and Baleanu [6] investigated the existence of solutions for two high-
order fractional differential equations including the Caputo–Fabrizio derivative. In [7],
Baleanu et al. extended the fractional Caputo–Fabrizio derivative of order 0 ≤ σ < 1 on
CR[0, 1] and investigated two high-order series-type fractional differential equations in-
volving the extended derivation. In [8], a new fractional model for human liver involving
Caputo–Fabrizio derivative with exponential kernel was introduced. By using the frac-
tional Caputo–Fabrizio derivative, Aydogan et al. [12] introduced two types of new high-
order derivations called CFD and DCF and investigated the existence of solutions for
such two types of high-order fractional integro-differential equations. In [13], the authors
showed that four fractional integro-differential inclusions had solutions. Also, it has been
proved that working with the Caputo–Fabrizio fractional derivative is much better than
with other fractional derivatives (the reader can see, for example, [14–17] and the refer-
ences therein).
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In [18], the author considered a class of boundary value problems of Caputo tempered
fractional differential equations as follows:

⎧
⎨

⎩

C
0 D

θ ,λ
t u(z) = g(z, u(z)), z ∈ [0, T],

au(0) + beλT u(T) = c,

where g(z, u(z)) : [0, T] × R → R is a continuous function, C
0 D

θ ,λ
t is the Caputo tempered

fractional derivative defined by C
0 D

θ ,λ
t u(t) = e–λtC

0 Dθ
t (eλtu(t)) with θ ∈ (0, 1) and a, b, c are

real constants. By using the principle of compressed mapping, spectral method, and sta-
bility analysis, the existence, uniqueness, structural stability, and numerical analysis of
solutions were investigated.

In [19], by using a new mixed monotone operators fixed point theorem with perturba-
tion, the authors studied the existence and uniqueness of positive solution for the following
nonlinear fractional differential equation boundary value problem:

⎧
⎨

⎩

Dα
0+ u(t) = f (t, u(t), u(t)) + g(t, u(t)), t ∈ [0, 1],

u(0) = u(1) = u′(0) = u′(1),

where Dα
0+ is the standard Riemann–Liouville fractional derivative of order 3 < α ≤

4, f (t, u, v) : [0, 1] × [0, +∞) × [0, +∞) → ×[0, +∞) is continuous, and g(t, u) : [0, 1] ×
[0, +∞) → [0, +∞) is continuous with g(t, 0) �≡ 0.

Based on the theory of μ0-positive linear operator and the Banach contraction map prin-
ciple, Zhang and Zhong in [20] obtained the existence and uniqueness for the following
fractional differential equation integral boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ z(t) + f (t, z(t)) = 0, t ∈ [0, 1],

z(0) = z′(0) = · · · = zn–2(0) = 0,

Dβ

0+ z(1) = λ
∫ η

0 h(s)Dγ

0+ z(s) ds,

where n – 1 < α ≤ n (n ≥ 3), β ≥ 1, α – β > 1, 0 < η ≤ 1, λ > 0 is a parameter, Dα
0+ is the

Riemann–Liouville fractional derivative, f (t, u, v) : [0, 1] × R → R is continuous and g ∈
L1[0, 1].

By means of the reducing method of fractional orders, the upper and lower solutions
methods, and the Schauder fixed point theorem, Zhang, Liu, and Wu in [21] investigated
the existence of positive solutions for the following fractional differential equations multi-
point boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

–Dγ

0+ u(t) = λf (u(t), Dμ1
0+ u(t), Dμ2

0+ u(t), . . . , Dμn–1
0+ u(t)), t ∈ [0, 1],

u(0) = 0, Dμi
0+ u(0) = 0, 1 ≤ i ≤ n – 2,

Dμ

0+ u(1) =
∑p–2

j=1 ajDμ
0+u(ξj),

where Dγ

0+ is the Riemann–Liouville fractional derivative, λ > 0 is a parameter, n – 1 < γ ≤
n, n – i – 1 ≤ γ – μi ≤ n – i (i = 1, 2, . . . , n – 2), μ – μn–1 > 0, γ – μn–1 ≤ 2, γ – μ > 1, aj ≥ 0
(j = 1, 2, . . . , p – 2) 0 < ξ1 < ξ2 < · · · < 1; f : (0, +∞)n → R+ is continuous.
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Inspired by the above-mentioned excellent works, we aim to investigate the existence-
uniqueness of solutions for BVP (1.1) and BVP (1.2), respectively. As far as we know, the
high-order Riemann–Liouville tempered fractional differential equations integral bound-
ary values problems have seldom been researched up to now. The main features of the
present paper are as follows. Firstly, the tempered fractional derivative R

0D
α,λ
t is more gen-

eral than the standard Riemann–Liouville fractional derivative R
0 Dα

t . For instance, let λ = 0
and g(t, u(t)) ≡ 0, then BVP (1.1) reduces to the BVP in [22]; let λ = 0, b = 0, and a(s) ≡ 0,
then BVP (1.2) is a special case in [20]. Secondly, the integral boundary conditions in-
volving tempered fractional derivative are more general cases, which covers the common
integral boundary conditions as special cases. For example, let λ = 0, a(t) ≡ 0, b(t) ≡ 1,
then the Riemann–Stieltjes integral boundary condition in (1.1) is reduced to a general
integral boundary value condition. Finally, BVP (1.1) and BVP (1.2) are more general than
those in the above-mentioned literature works. For instance, if b = 0, 2 < α ≤ 3, and λ = 0,
BVP (1.2) presented in [23] has more special cases.

In this paper, it is not necessary for the operator to be completely continuous or com-
pact, nor fix the existence of upper and lower solutions. For system (1.1), the existence-
uniqueness and monotone iteration of positive solution are obtained by employing a class
of sum-type operators fixed point theorems; for system (1.2), the existence and unique-
ness of nontrivial solutions are investigated by means of a new fixed point theorem of in-
creasing ϕ – (h, δ)-concave operator, which is defined on a new set Ph,δ . Furthermore, our
conclusions can not only guarantee the existence-uniqueness of solutions, but also con-
struct successive sequences for approximating the unique solution. In the end, it is worth
mentioning that some important properties of the Green’s function rely on the parameter
λ.

The paper is organized as follows. In Sect. 2, we present some necessary definitions and
preliminary results that will be used to prove our main results. In Sects. 3 and 4, we prove
the main results about the existence-uniqueness of solutions for the Riemann–Stieltjes
integral boundary value problems (1.1) and (1.2), respectively. Finally, two examples are
given to illustrate the validity of our main results.

2 Preliminaries
A nonempty closed convex set P ⊂ E is a cone if it satisfies:

(I1) x ∈ P, λ ≥ 0 ⇒ λx ∈ P;
(I2) x ∈ P, –x ∈ P ⇒ x = θ .

Suppose that (E,‖ · ‖) is a real Banach space which is partially ordered by a cone P ⊂ E,
that is, x ≤ y if and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x. By θ

we denote the zero element of E.

Definition 2.1 ([19]) P is called normal if there exists M > 0 such that, for all x, y ∈ E,
θ ≤ x ≤ y implies ‖x‖ ≤ ‖y‖; in this case M is the infimum of such constant, it is called
normality constant of P.

In addition, for given h > θ , we denote by Ph the set Ph = {x ∈ E | x ∼ h}, in which ∼ is an
equivalence relation, i.e., x ∼ y means that there exist λ > 0 and μ > 0 such that λx ≥ y ≥ μx
for all x, y ∈ E.
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Definition 2.2 ([24]) An operator A : P × P → P is said to be a mixed monotone operator
if A(x, y) is increasing in x and decreasing in y, i.e., ui, vi (i = 1, 2) ∈ P, u1 < u2, v1 > v2 imply
A(u1, v1) ≤ A(u2, v2). Element x ∈ P is called a fixed point of A if A(x, x) = x.

Definition 2.3 ([19]) A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tAx, ∀t ∈ (0, 1), x ∈ P.

Lemma 2.1 ([20]) Let h(t) ∈ C[0, 1]
⋂

L1[0, 1], α > 0, then

0Iα
t

R
0 Dα

t h(t) = h(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈ R, i = 1, 2, 3, . . . , n (n = [α] + 1).

Lemma 2.2 ([25])
(1) If u ∈ L1(0, 1), α > β > 0, then

0Iα
t 0Iβ

t u(t) = 0Iα+β
t u(t), R

0 Dβ

t 0Iα
t u(t) = 0Iα–β

t , R
0 Dβ

t 0Iβ
t u(t) = u(t).

(2) If ρ > 0, μ > 0, then

R
0 Dρ

t tμ–1 =
Γ (μ)

Γ (μ – ρ)
tμ–ρ–1.

Lemma 2.3 Given g ∈ C(0, 1)
⋂

L1(0, 1), n – 1 < α ≤ n, then the unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α,λ
t u(t) + g(t) = 0, t ∈ (0, 1),

u(0) = R
0D

γ1,λ
t u(0) = R

0D
γ2,λ
t u(0) = · · · = R

0D
γn–2,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 b(s)R
0D

β2,λ
t u(s) dA(s) +

∫ 1
0 a(s)R

0D
β3,λ
t u(s) dA(s)

(2.1)

is

u(t) =
∫ 1

0
G(t, s)g(s) ds, t ∈ [0, 1], (2.2)

where

G(t, s) = G1(t, s) +
tα–1e–λt

�Γ (α – β2)

∫ η

0
b(t)G2(t, s) dA(t)

+
tα–1e–λt

�Γ (α – β3)

∫ 1

0
a(t)G3(t, s) dA(t), (2.3)

in which

� =
e–λ

Γ (α – β1)
–

δ1

Γ (α – β2)
–

δ2

Γ (α – β3)
,

δ1 =
∫ η

0
e–λssα–β2–1b(s) dA(s), δ2 =

∫ 1

0
e–λssα–β3–1a(s) dA(s),
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G1(t, s) =
eλ(s–t)

Γ (α)

⎧
⎨

⎩

tα–1(1 – s)α–β1–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

tα–1(1 – s)α–β1–1, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
eλ(s–t)

Γ (α)

⎧
⎨

⎩

tα–β2–1(1 – s)α–β1–1 – (t – s)α–β2–1, 0 ≤ s ≤ t ≤ 1,

tα–β2–1(1 – s)α–β1–1, 0 ≤ t ≤ s ≤ 1,

G3(t, s) =
eλ(s–t)

Γ (α)

⎧
⎨

⎩

tα–β3–1(1 – s)α–β1–1 – (t – s)α–β3–1, 0 ≤ s ≤ t ≤ 1,

tα–β3–1(1 – s)α–β1–1, 0 ≤ t ≤ s ≤ 1.

Proof For system (2.1), by using Lemma 2.1, it is clear to see that

eλtu(t) = –0Iα
t eλtg(t) + c1tα–1 + c2tα–2 + · · · + cn–1tα–(n–1) + cntα–n. (2.4)

From u(0) = 0, we obtain cn = 0 and

eλtu(t) = –0Iα
t eλtg(t) + c1tα–1 + c2tα–2 + · · · + cn–1tα–(n–1). (2.5)

Applying the Riemann–Liouville tempered fractional derivative operator R
0D

γ1,λ
t on both

sides of (2.5), and by Lemma 2.2, we can simply obtain

R
0D

γ1,λ
t u(t) = R

0D
γ1,λ
t

{
–e–λt

0Iα
t eλtg(t) + e–λt(c1tα–1 + c2tα–2 + · · · + cn–1tα–(n–1))}

= e–λtR
0 Dγ1

t
{

–0Iα
t eλtg(t) + c1tα–1 + c2tα–2 + · · · + cn–1tα–(n–1)}

= –e–λt
0Iα–γ1

t eλtg(t) + c1e–λtR
0 Dγ1

t tα–1

+ c2e–λtR
0 Dγ1

t tα–2 + · · · + cn–1e–λtR
0 Dγ1

t tα–(n–1)

=
–1

Γ (α – γ1)

∫ t

0
(t – s)α–γ1–1eλ(s–t)g(s) ds + c1

Γ (α)e–λt

Γ (α – γ1)
tα–1–γ1

+ c2
Γ (α – 1)e–λt

Γ (α – 1 – γ1)
tα–2–γ1 + · · · + cn–1

Γ (α – n + 2)e–λt

Γ (α – n + 2 – γ1)
tα–n+1–γ1 .

From R
0D

γ1,λ
t u(0) = 0 and n – 2 ≤ α –γ1 ≤ n – 1, we obtain cn–1 = 0. Similarly, we can deduce

that cn–2 = cn–3 = · · · = c2 = 0, therefore, (2.5) can be reduced as follows:

u(t) = –e–λt
0Iα

t eλtg(t) + c1e–λttα–1

= –e–λt
∫ t

0

(t – s)α–1eλs

Γ (α)
g(s) ds + c1e–λttα–1. (2.6)

Furthermore, applying the Riemann–Liouville tempered fractional derivative operator
R
0D

βi ,λ
t on both sides of (2.6), we obtain

R
0D

βi ,λ
t u(t) = –R

0D
βi ,λ
t

(
e–λt

0Iα
t eλtg(t)

)
+ c1

R
0D

βi ,λ
t

(
e–λttα–1)

= –e–λtR
0 Dβi

t
(

0Iα
t eλtg(t)

)
+ c1e–λtR

0 Dβi
t

(
tα–1)

= –e–λt
0Iα–βi

t
(
eλtg(t)

)
+ c1

Γ (α)
Γ (α – βi)

e–λttα–1–βi

= –
∫ t

0

(t – s)α–βi–1eλ(s–t)

Γ (α – βi)
g(s) ds + c1

Γ (α)
Γ (α – βi)

e–λttα–1–βi . (2.7)
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From (2.7), we can know that

R
0D

β1,λ
t u(1) = –

∫ 1

0

(1 – s)α–β1–1eλ(s–1)

Γ (α – β1)
g(s) ds + c1

Γ (α)
Γ (α – β1)

e–λ, (2.8)

R
0D

β2,λ
t u(t) = –

∫ t

0

(t – s)α–β2–1eλ(s–t)

Γ (α – β2)
g(s) ds + c1

Γ (α)
Γ (α – β2)

e–λttα–1–β2 , (2.9)

R
0D

β3,λ
t u(t) = –

∫ t

0

(t – s)α–β3–1eλ(s–t)

Γ (α – β3)
g(s) ds + c1

Γ (α)
Γ (α – β3)

e–λttα–1–β3 . (2.10)

Substituting (2.8)–(2.10) into the integral boundary value conditions R
0D

β1,λ
t u(1) =

∫ η

0 b(s)×
R
0D

β2,λ
t u(s) dA(s) +

∫ 1
0 a(s)R

0D
β3,λ
t u(s) dA(s), we obtain

c1 =
(
Γ (α)�

)–1
{∫ 1

0

(1 – s)α–β1–1eλ(s–1)

Γ (α – β1)
g(s) ds

–
∫ η

0
b(t) dA(t)

∫ t

0

(t – s)α–β2–1eλ(s–t)

Γ (α – β2)
g(s) ds

–
∫ 1

0
a(t) dA(t)

∫ t

0

(t – s)α–β3–1eλ(s–t)

Γ (α – β3)
g(s) ds

}

. (2.11)

At last, combining (2.11) with (2.6), we get

u(t) = –e–λt
∫ t

0

(t – s)α–1eλs

Γ (α)
g(s) ds +

e–λttα–1

Γ (α)�

{∫ 1

0

(1 – s)α–β1–1e–λ

Γ (α – β1)
eλsg(s) ds

–
∫ η

0
b(t) dA(t)

∫ t

0

(t – s)α–β2–1eλ(s–t)

Γ (α – β2)
g(s) ds

–
∫ 1

0
a(t) dA(t)

∫ t

0

(t – s)α–β3–1eλ(s–t)

Γ (α – β3)
g(s) ds

}

= –e–λt
∫ t

0

(t – s)α–1eλs

Γ (α)
g(s) ds +

(
e–λttα–1

Γ (α)
+

e–λttα–1

Γ (α)Γ (α – β2)�
δ1

+
e–λttα–1

Γ (α)Γ (α – β3)�
δ2

)∫ 1

0
(1 – s)α–β1–1eλsg(s) ds

–
e–λttα–1

Γ (α)Γ (α – β2)�

∫ η

0
b(t) dA(t)

∫ t

0
(t – s)α–β2–1eλ(s–t)g(s) ds

–
e–λttα–1

Γ (α)Γ (α – β3)�

∫ 1

0
a(t) dA(t)

∫ t

0
(t – s)α–β3–1eλ(s–t)g(s) ds

= –
∫ t

0

(t – s)α–1e–λteλs

Γ (α)
g(s) ds +

∫ 1

0

(1 – s)α–β1–1tα–1eλ(s–t)

Γ (α)
g(s) ds

+
tα–1e–λt

Γ (α – β2)�

∫ η

0
b(t) dA(t)

∫ 1

0

(1 – s)α–β1–1tα–β2–1eλ(s–t)

Γ (α)
g(s) ds

–
tα–1e–λt

Γ (α)Γ (α – β2)�

∫ η

0
b(t) dA(t)

∫ t

0

(t – s)α–β2–1eλ(s–t)

Γ (α)
g(s) ds

+
tα–1e–λt

Γ (α – β3)�

∫ 1

0
a(t) dA(t)

∫ 1

0

(1 – s)α–β1–1tα–β3–1eλ(s–t)

Γ (α)
g(s) ds

–
tα–1e–λt

Γ (α – β3)�

∫ 1

0
a(t) dA(t)

∫ t

0

(t – s)α–β3–1eλ(s–t)

Γ (α)
g(s) ds
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=
∫ 1

0
G1(t, s)g(s) ds +

tα–1e–λt

Γ (α – β2)�

∫ 1

0
g(s) ds

∫ η

0
G2(t, s)b(t) dA(t)

+
tα–1e–λt

Γ (α – β3)�

∫ 1

0
g(s) ds

∫ 1

0
G3(t, s)a(t) dA(t)

=
∫ 1

0
G(t, s)g(s) ds,

where

G(t, s) = G1(t, s) +
tα–1e–λt

�Γ (α – β2)

∫ η

0
b(t)G2(t, s) dA(t)

+
tα–1e–λt

�Γ (α – β3)

∫ 1

0
a(t)G3(t, s) dA(t)

is the Green function of system (2.1). Then, we complete the proof. �

Lemma 2.4 Suppose that

(H)
Γ (α – β1)eλ

Γ (α – β2)
δ1 +

Γ (α – β1)eλ

Γ (α – β3)
δ2 < 1,

then, for all t, s ∈ (0, 1), the Green function G(t, s) defined by (2.3) satisfies
(A1) G1(t, s) > 0, G2(t, s) > 0, G3(t, s) > 0, and G(t, s) > 0;
(A2) eλs[(1–s)α–β1–1–(1–s)α–1]

Γ (α) e–λttα–1 ≤ G1(t, s) ≤ eλs(1–s)α–β1–1

Γ (α) e–λttα–1;

(A3) eλs[(1–s)α–β1–1–(1–s)α–β2–1]
Γ (α) e–λttα–β2–1 ≤ G2(t, s) ≤ eλs(1–s)α–β1–1

Γ (α) e–λttα–β2–1;

(A4) eλs[(1–s)α–β1–1–(1–s)α–β3–1]
Γ (α) e–λttα–β3–1 ≤ G3(t, s) ≤ eλs(1–s)α–β1–1

Γ (α) e–λttα–β3–1;
(A5) m(s)e–λttα–1 ≤ G(t, s) ≤ M(s)e–λttα–1, where

M(s) =
(

1
Γ (α)

+
δ1

�Γ (α)Γ (α – β2)
+

δ2

�Γ (α)Γ (α – β3)

)

eλs(1 – s)α–β1–1

and

m(s) =
(

(1 – s)α–β1–1 – (1 – s)α–1

Γ (α)
+

(1 – s)α–β1–1 – (1 – s)α–β2–1

�Γ (α)Γ (α – β2)
δ1

+
(1 – s)α–β1–1 – (1 – s)α–β3–1

�Γ (α)Γ (α – β3)
δ2

)

eλs.

Proof From condition (H), we can get � > 0. In addition, for all Gi(t, s) (i = 1, 2, 3) and
∀t, s ∈ (0, 1), the right inequality of (A2), (A3), and (A4) holds. Now, we only need to prove
the left inequality.

If 0 ≤ s ≤ t ≤ 1, then we have 0 ≤ t –s ≤ t – ts = (1–s)t, and thus (t –s)α–1 ≤ (1–s)α–1tα–1.
Therefore, we can know that

G1(t, s) =
eλ(s–t)

Γ (α)
[
tα–1(1 – s)α–β1–1 – (t – s)α–1]

≥ eλ(s–t)

Γ (α)
[
tα–1(1 – s)α–β1–1 – (1 – s)α–1tα–1]

=
eλs[(1 – s)α–β1–1 – (1 – s)α–1]

Γ (α)
e–λttα–1.
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If 0 ≤ t ≤ s ≤ 1,

G1(t, s) =
eλ(s–t)

Γ (α)
tα–1(1 – s)α–β1–1

≥ eλs[(1 – s)α–β1–1 – (1 – s)α–1]
Γ (α)

e–λttα–1.

Also, because of (1 – s)α–β1–1 > (1 – s)α–1, we get G1(t, s) ≥ 0. In the same way, the similar
conclusions can be obtained for G2(t, s) and G3(t, s). Finally, from (A2), (A3), and (A4),
conclusion (A5) holds and G(t, s) ≥ 0. Hence, the proof is complete. �

Lemma 2.5 ([19]) Let α ∈ (0, 1), A : P × P → P be a mixed monotone operator and satisfy

A
(
tx, t–1y

) ≥ tαA(x, y), t ∈ (0, 1), x, y ∈ P. (2.12)

B : P → P is an increasing sub-homogeneous operator. Assume that
(I) there is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;

(II) there exists a constant δ0 > 0 such that A(x, y) ≥ δ0Bx, ∀x, y ∈ P.
Then

(1) A : Ph × Ph → Ph, B : Ph → Ph;
(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) + Bu0 ≤ A(v0, u0) + B(v0) ≤ v0;

(3) the operator equation A(x, x) + Bx = x has a unique solution x∗ in Ph;
(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn–1, yn–1) + Bxn–1, yn = A(yn–1, xn–1) + Byn–1, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

3 Existence-uniqueness of positive solution for BVP (1.1)
In this section, we consider the Banach space C[0, 1], the space of all continuous functions
on [0, 1]. It is evident that this space can be equipped with a partial order

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t) for t ∈ [0, 1].

Setting P = {x ∈ C[0, 1] | x(t) ≥ 0, t ∈ [0, 1]} and h(t) = e–λttα–1, we know that P is a normal
cone in C[0, 1].

Theorem 3.1 Assume that condition (H) holds and
(H1) f (t, u, v) : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) is continuous, g(t, u) : [0, 1] ×

[0, +∞) → [0, +∞) is continuous with g(t, 0) �≡ 0, a(t), b(t) : [0, 1] → R+ are con-
tinuous;

(H2) f (t, u, v) is increasing in u ∈ [0, +∞) for fixed t ∈ [0, 1] and v ∈ [0, +∞), decreasing
in v ∈ [0, +∞) for fixed t ∈ [0, 1] and u ∈ [0, +∞), and g(t, u) is increasing in u ∈
[0, +∞) for fixed t ∈ [0, 1];
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(H3) for ∀t ∈ [0, 1], γ ∈ (0, 1), u, v ∈ [0, +∞), there exists a constant ξ ∈ (0, 1) such that
f (t,γ u,γ –1v) ≥ γ ξ f (t, u, v) and g(t,γ u) ≥ γ g(t, u);

(H4) for ∀t ∈ [0, 1] and u, v ∈ [0, +∞), there exists a constant δ0 > 0 such that f (t, u, v) ≥
δ0g(t, u).

Then we have:
(I) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)f

(
s, u0(s), v0(s)

)
ds +

∫ 1

0
G(t, s)g

(
s, u0(s)

)
ds, t ∈ [0, 1],

v0(t) ≥
∫ 1

0
G(t, s)f

(
s, v0(s), u0(s)

)
ds +

∫ 1

0
G(t, s)g

(
s, v0(s)

)
ds, t ∈ [0, 1],

where h(t) = e–λttα–1, t ∈ [0, 1];
(II) BVP (1.1) has a unique positive solution u∗ ∈ Ph;

(III) for any initial values x0, y0 ∈ Ph, making successively the sequences

xn =
∫ 1

0
G(t, s)f

(
s, xn–1(s), yn–1(s)

)
ds +

∫ 1

0
G(t, s)g

(
s, xn–1(s)

)
ds,

yn =
∫ 1

0
G(t, s)f

(
s, yn–1(s), xn–1(s)

)
ds +

∫ 1

0
G(t, s)g

(
s, yn–1(s)

)
ds,

we obtain xn → u∗ and yn → u∗ as n → ∞.

Proof To begin with, from Lemma 2.3, BVP (1.1) has an integral formulation given by

u(t) =
∫ 1

0
G(t, s)

[
f
(
s, u(s), u(s)

)
+ g

(
s, u(s)

)]
ds,

where G(t, s) is given as in (2.3). Define two operators A : P × P → E and B : P → E by

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds, (Bu)(t) =

∫ 1

0
G(t, s)g

(
s, u(s)

)
ds. (3.1)

Evidently, u is a solution of BVP (1.1) if and only if u = A(u, u) + B(u). From (H1) and (H2),
it is easy to know that A : P × P → P is a mixed monotone operator and B : P → P is an
increasing operator. Again, from (H3), for ∀γ ∈ (0, 1) and u, v ∈ P, we obtain

A
(
γ u,γ –1v

)
(t) =

∫ 1

0
G(t, s)f

(
s,γ u(s),γ –1v(s)

)
ds

≥ γ ξ

∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds

= γ ξ A(u, v)(t). (3.2)

That is, A(γ u,γ –1v) ≥ γ ξ A(u, v) for ∀γ ∈ (0, 1) and u, v ∈ P. Hence, the operator A satisfies
condition (2.12) in Lemma 2.5. In addition, for any u ∈ P and γ ∈ (0, 1), from (H3) we know
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that

B(γ u)(t) =
∫ 1

0
G(t, s)g

(
s,γ u(s)

)
ds ≥ γ

∫ 1

0
G(t, s)g

(
s, u(s)

)
ds = γ Bu(t), (3.3)

so the operator B is a sub-homogeneous operator.
Next, since h ∈ Ph, setting h0 = h, we show that A(h, h) ∈ Ph and Bh ∈ Ph. From

Lemma 2.3 and Lemma 2.4, we have

A(h, h)(t) =
∫ 1

0
G(t, s)f

(
s, h(s), h(s)

)
ds ≤

∫ 1

0
M(s)e–λttα–1f

(
s, h(s), h(s)

)
ds

≤
∫ 1

0
M(s)e–λttα–1f (s, hmax, 0) ds

=
∫ 1

0
M(s)f (s, hmax, 0) ds · h(t)

and

A(h, h)(t) =
∫ 1

0
G(t, s)f

(
s, h(s), h(s)

)
ds ≥

∫ 1

0
m(s)e–λttα–1f

(
s, h(s), h(s)

)
ds

≥
∫ 1

0
m(s)e–λttα–1f (s, 0, hmax) ds

=
∫ 1

0
m(s)f (s, 0, hmax) ds · h(t),

where hmax = max{h(t) : t ∈ [0, 1]}. Letting L =
∫ 1

0 M(s)f (s, hmax, 0) ds and l =
∫ 1

0 m(s)f (s, 0,
hmax) ds. It is evident that L > l > 0, we get lh(t) ≤ A(h, h) ≤ Lh(t), that is, A(h, h) ∈ Ph.
Similarly, from

∫ 1

0
m(s)g(s, 0) ds · h(t) ≤ (Bh)(t) ≤

∫ 1

0
M(s)g(s, hmax) ds · h(t),

we obtain Bh ∈ Ph. Then, condition (I1) of Lemma 2.5 is satisfied.
Finally, we show that condition (I2) of Lemma 2.5 is also satisfied. For ∀u, v ∈ P, from

(3.1) and (H4), we get

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds ≥ δ0

∫ 1

0
G(t, s)g

(
s, u(s)

)
ds = δ0Bu(t).

That is, A(u, v) ≥ δ0Bu for ∀u, v ∈ Ph. Then, the conclusion of Theorem 3.1 follows
Lemma 2.5. �

Corollary 3.1 Assume that condition (H) holds and
(H ′

1) f (t, u, v) : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) is a continuous function with
f (t, 0, hmax) �≡ 0, a(t), b(t) : [0, 1] → R+ are continuous;

(H ′
2) f (t, u, v) is increasing in u ∈ [0, +∞) for fixed t ∈ [0, 1] and v ∈ [0, +∞), decreasing

in v ∈ [0, +∞) for fixed t ∈ [0, 1] and u ∈ [0, +∞);
(H ′

3) for ∀t ∈ [0, 1], γ ∈ (0, 1), u, v ∈ [0, +∞), there exists a constant ξ ∈ (0, 1) such that
f (t,γ u,γ –1v) ≥ γ ξ f (t, u, v).
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Then we have:
(I) the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α,λ
t u(t) + f (t, u(t), u(t)) = 0, t ∈ (0, 1),

u(0) = R
0D

γ1,λ
t u(0) = R

0D
γ2,λ
t u(0) = · · · = R

0D
γn–2,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 b(s)R
0D

β2,λ
t u(s) dA(s) +

∫ 1
0 a(s)R

0D
β3,λ
t u(s) dA(s)

has a unique positive solution u∗ ∈ Ph;
(II) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)f

(
s, u0(s), v0(s)

)
ds,

v0(t) ≥
∫ 1

0
G(t, s)f

(
s, v0(s), u0(s)

)
ds,

where h(t) = e–λttα–1, t ∈ [0, 1];
(III) for any initial values x0, y0 ∈ Ph, making successively the sequences

xn =
∫ 1

0
G(t, s)f

(
s, xn–1(s), yn–1(s)

)
ds,

yn =
∫ 1

0
G(t, s)f

(
s, yn–1(s), xn–1(s)

)
ds,

we obtain xn → u∗ and yn → u∗ as n → ∞.

Proof Let g(t, u(t)) ≡ 0, from Theorem 3.1, we get the conclusions. �

4 Existence-uniqueness of nontrivial solution for BVP (1.2)
In this section, for h > θ , taking another σ ∈ P with θ ≤ σ ≤ h, we define a new set
Ph,σ = {x ∈ E | x + σ ∈ Ph}. Then we can see that h ∈ Ph,σ and Ph,σ = {x ∈ E | there exist μ >
0 and v > 0 such that μh ≤ x + σ ≤ vh}. If σ = θ , then Ph,σ = Ph.

Remark 4.1 Ph ⊆ Ph,σ and Ph,σ is not a subset of P for some σ , Ph and Ph,σ are different
two sets.

Definition 4.1 ([23]) Let A : Ph,σ → E be a given operator. For any x ∈ Ph,σ and t ∈ (0, 1),
there exist ϕ(t) > t such that

A
(
tx + (t – 1)σ

) ≥ ϕ(t)Ax +
(
ϕ(t) – 1

)
σ . (4.1)

Then A is called a ϕ – (h,σ )-concave operator.

Lemma 4.1 ([23]) Let P be normal and A be an increasing ϕ – (h,σ )-concave operator
with Ah ∈ Ph,σ . Then A has a unique fixed point x∗ in Ph,σ . Moreover, making the sequence
ωn = Aωn–1, n = 1, 2, . . . , we obtain ‖ωn – x∗‖ → 0 as n → ∞.
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Now, we define a new function h̃(t) by h̃(t) :� ρe–λttα–1, where ρ > 0 is a constant and

ρ ≥ c
∫ 1

0

(
1

Γ (α)
+

δ1

�Γ (α)Γ (α – β2)

)

eλs(1 – s)α–β1–1 ds

+ c
∫ 1

0

δ2

�Γ (α)Γ (α – β3)
eλs(1 – s)α–β1–1 ds. (4.2)

In addition, setting

σ (t) :� c
∫ 1

0
G1(t, s) ds + c · tα–1e–λt

�Γ (α – β2)

∫ 1

0
ds

∫ η

0
b(t)G2(t, s) dA(t)

+ c · tα–1e–λt

�Γ (α – β3)

∫ 1

0
ds

∫ 1

0
a(t)G3(t, s) dA(t), (4.3)

from (4.3) and Lemma 2.4, we can know that σ (t) ≥ ce–λttα–1 ∫ 1
0 m(s) ds ≥ 0 for ∀t ∈ [0, 1],

so we get σ ∈ P. Furthermore, from (4.2) we have

σ (t) ≤
{

c
∫ 1

0

[
1

Γ (α)
+

δ1

�Γ (α)Γ (α – β2)

]

eλs(1 – s)α–β1–1 ds

+ c
∫ 1

0

δ2

�Γ (α)Γ (α – β3)
eλs(1 – s)α–β1–1 ds

}

e–λttα–1

≤ ρe–λttα–1 = h̃(t).

Hence, it is easy to know that 0 ≤ σ (t) ≤ h̃(t) and Ph̃,σ = {u ∈ C[0, 1] | u + σ ∈ Ph̃}.

Theorem 4.1 Suppose that condition (H) holds, c > 0 and
(H5) ψ : [0, 1]× [–σ ∗, +∞) → (–∞, +∞) is increasing with respect to the second variable,

where σ ∗ = max{σ (t) | t ∈ [0, 1]}, a(t), b(t) : [0, 1] → R+ are continuous;
(H6) for any γ ∈ [0, 1], there exist ϕ(γ ) > γ such that

ψ
(
t,γ x + (γ – 1)y

) ≥ ϕ(γ )ψ(t, x), ∀t ∈ [0, 1], x ∈ (–∞, +∞), y ∈ [
0,σ ∗];

(H7) ψ(t, 0) ≥ 0 with ψ(t, 0) �≡ 0 for t ∈ [0, 1].
Then, BVP (1.2) has a unique nontrivial solution u∗ in Ph̃,σ . Moreover, for any given ω0 ∈
Ph̃,σ , constructing successively the sequences

ωn =
∫ 1

0
G(t, s)ψ

(
s,ωn–1(s)

)
ds – c

∫ 1

0
G1(t, s) ds

–
ctα–1e–λt

�Γ (α – β2)

∫ 1

0
ds

∫ η

0
b(t)G2(t, s) dA(t)

–
cbtα–1e–λt

�Γ (α – β3)

∫ 1

0
ds

∫ 1

0
a(t)G3(t, s) dA(t), (4.4)

we have ωn(t) → u∗(t) as n → ∞.
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Proof Firstly, from Lemma 2.3, we can know that BVP (1.2) is equivalent to

u(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds – c

∫ 1

0
G(t, s) ds

=
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds – c

∫ 1

0
G1(t, s) ds

– c · tα–1e–λt

�Γ (α – β2)

∫ 1

0
ds

∫ η

0
b(t)G2(t, s) dA(t)

– c · tα–1e–λt

�Γ (α – β3)

∫ 1

0
ds

∫ 1

0
a(t)G3(t, s) dA(t)

=
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds – σ (t).

Furthermore, for any u ∈ Ph̃,σ , let

Φu(t) =
∫ 1

0
G(t, s)ψ

(
s, u(s)

)
ds – σ (t), t ∈ [0, 1]. (4.5)

Then, u is a solution of BVP (1.2) if and only if Φu = u.
Secondly, we prove that Φ : Ph̃,σ → E is an increasing ϕ – (h̃,σ )-concave operator. For

∀u ∈ Ph̃,σ and γ ∈ (0, 1), from (H6) we have

Φ
(
γ u + (γ – 1)σ

)
(t) =

∫ 1

0
G(t, s)ψ

(
s,γ u(s) + (γ – 1)σ (s)

)
ds – σ (t)

≥ ϕ(γ )
∫ 1

0
G(t, s)ψ

(
s, u(s)

)
ds – σ (t)

= ϕ(γ )
[∫ 1

0
G(t, s)ψ

(
s, u(s)

)
ds – σ (t)

]

+
[
ϕ(γ ) – 1

]
σ (t)

= ϕ(γ )Φu(t) +
(
ϕ(γ ) – 1

)
σ (t),

that is,

Φ
(
γ u + (γ – 1)σ

) ≥ ϕ(γ )Φu +
(
ϕ(γ ) – 1

)
σ for ∀γ ∈ (0, 1) and u ∈ Ph̃,σ .

In addition, for ∀u1, u2 ∈ Ph,σ , and u1 > u2, from the definition of Ph̃,σ , we have ui + σ ∈ Ph̃,
where i = 1, 2, so there exists μi > 0 such that ui(t) +σ (t) ≥ μih(t) for ∀t ∈ [0, 1] and i = 1, 2,
that is, ui(t) ≥ μih(t) – σ (t) ≥ –σ (t) ≥ –σ ∗(t). Hence, from Lemma 2.4, (H5), and (4.5), we
know that

Φu1(t) – Φu2(t) =
∫ 1

0
G(t, s)ψ

(
s, u1(s)

)
ds –

∫ 1

0
G(t, s)ψ

(
s, u2(s)

)
ds

=
∫ 1

0
G(t, s)

[
ψ

(
s, u1(s)

)
– ψ

(
s, u2(s)

)]
ds

> 0,

that is, Φu1 > Φu2 for ∀t ∈ [0, 1]. Evidently, Φ : Ph̃,σ → E is an increasing ϕ –(h̃,σ )-concave
operator.
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Finally, we show that Φh̃ ∈ Ph̃,σ . From (H5), (4.5), and Lemma 2.4, we obtain

Φh̃(t) + σ (t) =
∫ 1

0
G(t, s)ψ

(
s, h̃(s)

)
ds =

∫ 1

0
G(t, s)ψ

(
s,ρe–λtsα–1)ds

≤
∫ 1

0
M(s)e–λttα–1ψ

(
s,ρsα–1)ds

=
1
ρ

∫ 1

0
M(s)ψ

(
s,ρsα–1)ds · h̃(t)

and

Φh̃(t) + σ (t) =
∫ 1

0
G(t, s)ψ

(
s, h̃(s)

)
ds =

∫ 1

0
G(t, s)ψ

(
s,ρe–λtsα–1)ds

≥
∫ 1

0
m(s)e–λttα–1ψ(s, 0) ds

=
1
ρ

∫ 1

0
m(s)ψ(s, 0) ds · h̃(t).

Let

N =
1
ρ

∫ 1

0
M(s)ψ

(
s,ρsα–1)ds, n =

1
ρ

∫ 1

0
m(s)ψ(s, 0) ds.

It is evident that N ≥ n > 0 and nh̃ ≤ Φh̃ + σ ≤ Nh̃, that is, Φh̃ ∈ Ph̃,σ .
So far, we have verified that all the conditions in Lemma 4.1 are satisfied, hence, the

operator Φ has a unique fixed point u∗ in Ph̃,σ . Moreover, for any ω0 ∈ Ph̃,σ , constructing
successively the sequences

ωn =
∫ 1

0
G(t, s)ψ(s,ωn–1) ds – σ (t), n = 1, 2, . . . ,

we have ωn → u∗ as n → ∞. �

Corollary 4.1 Suppose that condition (H) holds and
(H ′

5) ψ : [0, 1] × [0, +∞) → (0, +∞) is increasing with respect to the second variable,
a(t), b(t) : [0, 1] → R+ are continuous;

(H ′
6) for any γ ∈ [0, 1], there exists ϕ(γ ) > γ such that

ψ(t,γ x) ≥ ϕ(γ )ψ(t, x), ∀t ∈ [0, 1], x ∈ (0, +∞).

Then the following integral boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α,λ
t u(t) + ψ(t, u(t)) = 0,

u(0) = R
0D

γ1,λ
t u(0) = R

0D
γ2,λ
t u(0) = · · · = R

0D
γn–2,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 b(s)R
0D

β2,λ
t u(s) dA(s) +

∫ 1
0 a(s)R

0D
β3,λ
t u(s) dA(s)
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has a unique positive solution u∗ in Ph with h = e–λttα–1. Moreover, for any given ω0 ∈ Ph,
constructing successively the sequences

ωn =
∫ 1

0
G(t, s)ψ

(
s,ωn–1(s)

)
ds,

we have ωn(t) → u∗(t) as n → ∞.

Proof Letting c = 0 and ρ = 1, from Theorem 4.1, we arrive at the conclusions. �

5 Applications
To test our results established in the previous section, we provide two adequate problems.

Example 5.1 We investigate the tempered fractional differential system as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R
0D

5
2 ,λ
t u(t) + f (t, u(t), u(t)) + g(t, u(t)) = 0, t ∈ (0, 1)

u(0) = R
0D

3
4 ,λ
t u(0) = 0,

R
0D

1,λ
t u(1) =

∫ η

0
R
0D

5
8 ,λ
t u(s) dA(s) +

∫ 1
0

R
0D

7
8 ,λ
t u(s) dA(s),

(5.1)

where f (t, u, v) = (1–t)– 1
3 t– 2

3 u 1
3 +v– 1

5 , g(t, u) = (1–t)– 1
8 t– 1

6 u 1
3 , λ = 1 > 0, η = 1, and A(t) = t

2 .
For any t ∈ (0, 1), u > 0 and v > 0. In system (5.1), we see that α = 5

2 , β1 = 1, β2 = 5
8 , β3 = 7

8 ,
γ1 = 3

4 , a(t) = b(t) ≡ 1.
Let us check that all the conditions of Theorem 3.1 are satisfied.
(1) Since Γ (α–β1)eλ

Γ (α–β2) δ1 + Γ (α–β1)eλ

Γ (α–β3) δ2 = 0.8221 < 1, clearly, condition (H) holds, and
f (t, u, v) : (0, 1) × R+ × R+ → R+ and g(t, u) : (0, 1) × R+ → R+ are continuous.

(2) It is evident that f (t, u, v) is increasing in u for fixed t ∈ (0, 1) and v ∈ R+, decreasing
in v for fixed t ∈ (0, 1) and u ∈ R+; in addition, for fixed t ∈ (0, 1), g(t, u) is increasing
in u.

(3) For any γ ∈ (0, 1), t ∈ (0, 1), u, v > 0, taking ξ = 1
2 , then γ ξ ∈ (γ , 1) and we obtain

f
(
t,γ u,γ –1v

)
= (1 – t)– 1

3 t– 2
3 (γ u)

1
3 +

(
γ –1v

)– 1
5

= γ
1
3 (1 – t)– 1

3 t– 2
3 u

1
3 + γ

1
5 v– 1

5

≥ γ
1
2
[
(1 – t)– 1

3 t– 2
3 u

1
3 + v– 1

5
]

= γ ξ f (t, u, v)

and

g(t,γ u) = (1 – t)– 1
8 t– 1

6 (γ u)
1
3

= γ
1
3 (1 – t)– 1

8 t– 1
6 u

1
3

≥ γ
[
(1 – t)– 1

8 t– 1
6 u

1
3
]

= γ g(t, u).
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(4) Taking δ0 = 1
2 , for ∀t ∈ (0, 1) and u, v ∈ [0, +∞), we have

f (t, u, v) = (1 – t)– 1
3 t– 2

3 u
1
3 + v– 1

5

≥ 1
2
[
(1 – t)– 1

8 t– 1
6 u

1
3
]

= δ0g(t, u).

Now, all the assumptions of Theorem 3.1 are satisfied. Hence, Theorem 3.1 implies that
BVP (5.1) has a unique positive solution u∗ ∈ Ph, where h(t) = e–ttα–1. Moreover, for any
initial values x0, y0 ∈ Ph, making successively the sequences

xn =
∫ 1

0
G(t, s)

(
(1 – t)– 1

3 t– 2
3 x

1
3
n–1 + y– 1

5
n–1

)
ds +

∫ 1

0
G(t, s)(1 – t)– 1

8 t– 1
6 x

1
3
n–1 ds,

yn =
∫ 1

0
G(t, s)

(
(1 – t)– 1

3 t– 2
3 y

1
3
n–1 + x– 1

5
n–1

)
ds +

∫ 1

0
G(t, s)(1 – t)– 1

8 t– 1
6 y

1
3
n–1 ds,

we obtain xn → u∗ and yn → u∗ as n → ∞.

Example 5.2 We consider the following integral boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

9
4 ,λ
t u(t) + ψ(t, u(t)) = 1, t ∈ (0, 1)

u(0) = R
0D

1
2 ,λ
t u(0) = 0,

R
0D

3
4 ,λ
t u(1) =

∫ η

0
R
0D

3
8 ,λ
t u(s) dA(s) +

∫ 1
0

R
0D

5
8 ,λ
t u(s) dA(s),

(5.2)

where λ = 0, η = 1, A(t) = t
2 , α = 9

4 , β1 = 3
4 , β2 = 3

8 , β3 = 5
8 , γ1 = 1

2 , a(t) = b(t) ≡ 1. Evidently,
Γ (α–β1)eλ

Γ (α–β2) δ1 + Γ (α–β1)eλ

Γ (α–β3) δ2 = 0.552 < 1, condition (H) is satisfied. In addition,

ψ(t, u) =
[(

–
8

135Γ ( 5
4 )

u –
2

45Γ ( 5
4 )

)

t
9
4 +

(

mu +
m
8

)

t
5
4

] 1
3

,

in which

m =
8

15Γ ( 5
4 )

+
352�–1

5175Γ ( 5
4 )Γ ( 15

8 )
+

32�–1

455Γ ( 5
4 )Γ ( 13

8 )
,

� =
1

Γ ( 3
2 )

–
4

2Γ (15 15
8 )

–
4

13Γ ( 13
8 )

> 0.

Furthermore, we can get

σ (t) =
∫ 1

0
G(t, s) ds =

∫ 1

0
G1(t, s) ds +

t 5
4

�Γ ( 15
8 )

∫ 1

0
ds

∫ 1

0
G2(t, s)d

t
2

+
t 5

4

�Γ ( 13
8 )

∫ 1

0
ds

∫ 1

0
G3(t, s)d

t
2
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=
(

8
15Γ ( 5

4 )
+

352�–1

5175Γ ( 5
4 )Γ ( 15

8 )
+

32�–1

455Γ ( 5
4 )Γ ( 13

8 )

)

t
5
4 –

16
45Γ ( 5

4 )
t

9
4

= mt
5
4 –

16
45Γ ( 5

4 )
t

9
4 .

Setting h̃(t) = ρt 5
4 with ρ ≥ 6 and t ∈ [0, 1], it is easy to know 0 ≤ σ (t) ≤ 6t 5

4 ≤ ρt 5
4 = h̃(t),

σ ∗ ≤ 6, and ψ : [0, 1] × [–σ ∗, +∞) → R is continuous and increasing with respect to the
second variable. In addition, let ϕ(γ ) = γ

1
3 for γ ∈ (0, 1), we have

ψ
(
t,γ u + (γ – 1)v

) ≥ ϕ(γ )ψ(t, u), ∀t ∈ [0, 1],

where u ∈ (–∞, +∞), v ∈ [0,σ ∗]. Now, all the assumptions of Theorem 4.1 are satisfied,
therefore, we can have a clear mind that BVP (5.2) has a unique nontrivial solution in Ph̃,σ ,
and for ∀u0 ∈ Ph̃,σ , let

un =
∫ 1

0
G(t, s)

((

–
8

135Γ ( 5
4 )

un–1(s) –
2

45Γ ( 5
4 )

)

s
9
4 +

(

mu +
m
8

)

s
5
4

) 1
3

ds

+
16

45Γ ( 5
4 )

t
9
4 – mt

5
4 ,

we have un → u∗ as n → ∞.

6 Conclusion
A fractional derivative (or integral) is a convolution with a power law, and a tempered frac-
tional derivative multiplies that power law kernel by an exponential factor. Furthermore,
the tempered fractional differential equations models open up a new kind of possibility
for robust mathematical modeling of complex multi-scale problems and anomalous phe-
nomena. Therefore, the emerging theory of tempered fractional calculus provides a sound
mathematical basis for applications.
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