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1 Introduction and main result
Let T > 1 be an integer, T := [1, T]Z = {1, 2, . . . , T}, T̂ := {0, 1, . . . , T + 1}. In this paper, we are
concerned with existence and multiplicity of positive solutions of the discrete boundary
value problem

{
�[ϕp(�u(x – 1))] + λh(x)f (u(x)) = 0, x ∈ T,
u(0) = u(T + 1) = 0,

(1.1)

where ϕp(s) = |s|p–2s, p > 1, λ > 0 is the parameter, f ∈ C(R+,R+), f (s) > 0 for all s > 0 and
h : T̂→R

+ with 0 < h∗ ≤ h(t) ≤ h∗ on T for some h∗, h∗ ∈ (0,∞).
Existence of positive solutions for discrete boundary value problems involving the p-

Laplacian difference operator has been studied by several authors, we refer to Agarwal et
al. [1], Chu and Jiang [4], and [7, 8, 10, 12] as well as the references therein. Very recently,
Nastasi et al. [14, 15] also obtained some existence results for discrete (p, q)-Laplacian
equations. In particular, by virtue of bifurcation techniques, Bai and Chen [3] established
some results of existence of positive solutions for (1.1) according to the asymptotic be-
havior of f at 0 and ∞. However, the sublinear and superlinear conditions imposed on
the nonlinearities only deduced a relatively simple “shape of the component”, and they
provided no information on the existence of at least three positive solutions.
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It is the purpose of this paper to show that (1.1) has three positive solutions for λ lying
in various intervals in R suggesting suitable conditions on the weight function and non-
linearity by using the directions of a bifurcation and the Picone-type identity (for related
results, we refer to [6, 19, 22]) for discrete p-Laplacian operators due to Řehák [20]. We
shall make the following assumptions:

(A1) h : T̂→ R
+ with 0 < h∗ ≤ h(t) ≤ h∗ on T for some h∗, h∗ ∈ (0,∞).

(A2) There exist α > 0, f0 > 0, and f1 > 0 such that

lim
s→0+

f (s) – f0sp–1

sp–1+α
= –f1.

(A3) f ∈ C(R+,R+), f (s) > 0 for all s > 0 and f∞ := lims→∞ f (s)
sp–1 = 0.

In assumption (A4) below and throughout, we use the following standard notations.
Let Y = {u|u : T → R} with the norm ‖u‖Y = maxt∈T |u(t)|. Let X = {u : T̂ → R|u(0) =
u(T + 1) = 0} with the norm ‖u‖ = maxt∈T̂ |u(t)|.

Let μ1 be the first eigenvalue of the following problem:

{
�[ϕp(�u(x – 1))] + μh(x)ϕp(u(x)) = 0, x ∈ T,
u(0) = u(T + 1) = 0.

(1.2)

Then the first eigenvalue μ1 is the minimum of the Reyleigh quotient, that is,

μ1 = inf

{ ∑T
t=0 |�u(t)|p∑T

t=0 h(t)|u(t)|p , u ∈ X
}

.

Let χ1 be the principal eigenvalue of the eigenvalue problem

{
�[ϕp(�w(x – 1))] + χϕp(w(x)) = 0, x ∈ [1, t̂ – 1]Z,
w(0) = 0, w(t̂) = 0,

(1.3)

where t̂ ∈ T satisfies T
2 ≤ t̂ ≤ T+1

2 , and let w1 be an eigenfunction corresponding to χ1.
Furthermore, we assume that
(A4) there exist s0 > 0 and 0 < σ < 1 such that

min
s∈[s0, 1

σ s0]

f (s)
s

≥ f0

μ1h∗
χ1.

Arguing the shape of bifurcation, we have the following main result.

Theorem 1.1 Assume that (A1), (A2), (A3), and (A4) hold. Then there exist λ∗ ∈ (0,μ1/f0)
and λ∗ > μ1/f0 such that

(i) (1.1) has at least one positive solution if λ = λ∗;
(ii) (1.1) has at least two positive solutions if λ∗ < λ ≤ μ1/f0;

(iii) (1.1) has at least three positive solutions if μ1/f0 < λ < λ∗;
(iv) (1.1) has at least two positive solutions if λ = λ∗;
(v) (1.1) has at least one positive solution if λ > λ∗.
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Remark 1.2 To obtain our main goals, we shall employ a bifurcation technique due to Sim
and Tanaka [21]. They showed that one-dimensional p-Laplacian of differential equation
coupled with Dirichlet boundary condition has three positive solutions. Moreover, several
papers have also been devoted to elliptic equations involving the fractions of the Laplacian
(see [2, 13]). For other multiplicity results for related problems, we refer to [16–18].

The rest of the paper is organized as follows. In Sect. 2, we show the existence of bifur-
cation from the first eigenvalue for the corresponding problem according to the standard
argument and the rightward direction of bifurcation. In Sect. 3, the change of direction of
bifurcation is given. The final section is devoted to showing a priori bound of solutions
for (1.1) and completing the proof of Theorem 1.1.

2 Rightward bifurcation
In this section, we study global bifurcation phenomena from the trivial branch with the
rightward direction under suitable assumptions on h and f . We need the following pre-
liminary lemma.

Lemma 2.1 Assume that (A1) holds. Then the principal eigenvalue μ1 of (1.2) satisfies
(i) the eigenfunction φ1 corresponding to μ1 is of one sign in T;

(ii) the algebraic multiplicity of μ1 is 1.

Proof (i) Let φ1 be the eigenfunction of (1.2) with μ1, then

{
�[ϕp(�φ1(x – 1))] + μ1h(x)ϕp(φ1(x)) = 0, x ∈ T,
φ1(0) = φ1(T + 1) = 0.

(2.1)

Multiplying the equation of (2.1) by –φ–
1 and by a direct computation, one has

–
T∑

t=0

ϕp
(
�φ1(t)

)
�φ–

1 (t) = –
T∑

t=1

μ1h(t)ϕp
(
φ1(t)

)
φ–

1 (t) =
T∑

t=1

μ1h(t)
∣∣φ–

1 (t)
∣∣p.

Since

T∑
t=0

∣∣�φ–
1
∣∣p ≤ –

T∑
t=0

ϕp
(
�φ1(t)

)
�φ–

1 (t),

we obtain

0 <
T∑

t=0

∣∣�φ–
1
∣∣p ≤

T∑
t=1

μ1h(t)
∣∣φ–

1 (t)
∣∣p.

According to the definition of μ1, we know that φ–
1 is an eigenfunction of (1.2) with eigen-

value μ1.
We claim that φ–

1 > 0. Assume that there exists t0 ∈ T such that φ–
1 (t0) = 0, then

–�
[
ϕp

(
�φ–

1 (t0 – 1)
)]

= 0,
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that is, ϕp(�φ–
1 (t0 – 1)) = ϕp(�φ–

1 (t0)) = 0, which means

φ–
1 (t0 – 1) = φ–

1 (t0 + 1) = 0.

It deduces that φ–
1 ≡ 0 from repeating the steps as above, which is a contradiction.

Consequently, φ1 = –φ–
1 < 0 is of one sign in T.

(ii) Let u and v be two eigenfunctions corresponding to μ1, we only need to prove that
there exists c ∈R such that u = cv.

From (i), we know that u and v are of one sign, we can suppose that u > 0, v > 0. Let
c = mint∈T u(t)

v(t) , then there exists t0 ∈ T such that c = u(t0)
v(t0) . Thus

ϕp
(
u(t0)

)
= ϕp

(
cv(t0)

)
.

From the equation of (1.2), one has

ϕp
(
�u(t0 – 1)

)
– ϕp

(
�u(t0)

)
= ϕp

(
�

(
cv(t0 – 1)

))
– ϕp

(
�

(
cv(t0)

))
.

Since

ϕp
(
�u(t0)

)
– ϕp

(
�

(
cv(t0)

))
= ϕp

(
u(t0 + 1) – u(t0)

)
– ϕp

(
cv(t0 + 1) – cv(t0)

)
= ϕp

(
u(t0 + 1) – cv(t0)

)
– ϕp

(
cv(t0 + 1) – cv(t0)

)
and c = mint∈T u(t)

v(t) , one has u(t0 + 1) ≥ cv(t0 + 1), thus

ϕp
(
�u(t0)

)
– ϕp

(
�

(
cv(t0)

)) ≥ 0.

By similar methods, we get

ϕp
(
�u(t0 – 1)

)
– ϕp

(
�

(
cv(t0 – 1)

)) ≤ 0.

And accordingly,

0 ≤ ϕp
(
�u(t0)

)
– ϕp

(
�

(
cv(t0)

))
= ϕp

(
�u(t0 – 1)

)
– ϕp

(
�

(
cv(t0 – 1)

)) ≤ 0.

It deduces that u = cv from repeating the steps as above.
Moreover, coupled with (i) and (ii), the eigenfunction corresponding to μ1 can be chosen

to be positive on T. �

Following similar arguments as in Lemma 2.2 of Bai and Chen [3], we have

Lemma 2.2 Assume that (A1), (A2), and (A3) hold. Then there exists an unbounded sub-
continuum C , which is emanating from (μ1/f0, 0) for (1.1). Moreover, if (λ, u) ∈ C , then u is
a positive solution of (1.1).

Lemma 2.3 Assume that (A1), (A2), and (A3) hold. Let u be a positive solution of (1.1).
Then there exists a constant C independent of u such that

∣∣�u(x)
∣∣ ≤ λ

1
p–1 C‖u‖, x ∈ [0, T]Z. (2.2)
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Proof According to discrete Rolle’s theorem (see [9]), there exists x0 ∈ T such that
�u(x0) = 0 or �u(x0 – 1)�u(x0) < 0. Then, by a direct computation, it is easy to see that

ϕp
[
�u(x)

]
= λ

x0∑
s=x+1

h(s)f
(
u(s)

)
, x ∈ T. (2.3)

By virtue of (A2) and (A3), we get

f (s) ≤ f ∗sp–1, s ≥ 0 (2.4)

for some f ∗ > 0, it follows from (2.3) that
(i) if �u(x0) = 0, then

∣∣�u(x)
∣∣p–1 = λ

x0∑
s=x+1

h(s)f
(
u(s)

) ≤ λf ∗‖u‖p–1
x0∑

s=x+1

h(s) ≤ λf ∗
T+1∑
s=0

h(s)‖u‖p–1;

(ii) if �u(x0 – 1)�u(x0) < 0, then

∣∣�u(x)
∣∣p–1 =

∣∣∣∣∣∣∣�u(x0)
∣∣p–2

�u(x0) + λ

x0∑
s=x+1

h(s)f
(
u(s)

)∣∣∣∣∣ ≤ λf ∗
T+1∑
s=0

h(s)‖u‖p–1. �

Lemma 2.4 Assume that (A1), (A2), and (A3) hold. Let {(λn, un)} be a sequence of positive
solutions to (1.1) which satisfies ‖un‖ → 0 and λn → μ1/f0. Let φ1(x) be an eigenfunction of
(1.2) corresponding to μ1 which satisfies ‖φ1‖ = 1. Then there exists a subsequence of {un},
again denoted by {un}, such that un/‖un‖ converges uniformly to φ1 on T.

Proof Set vn := un/‖un‖. Then it is easy to see that ‖vn‖ = 1. It follows from Lemma 2.3
that ‖�vn‖ is bounded, so there is a subsequence of vn uniformly convergent to a limit
v. Furthermore, there exists a subsequence of it such that �vn(0) converges to some con-
stant c. We again denote by {vn} the subsequence. We note that v ∈ Y , v(0) = v(T + 1) = 0,
and ‖v‖ = 1. Rewriting the equation of (1.1) with (λ, u) = (λn, un), we obtain

ϕp
(
�un(x)

)
= ϕp

(
�un(0)

)
– λn

x∑
t=1

h(t)f
(
un(t)

)
. (2.5)

Dividing both sides of (2.5) by ‖un‖p–1, we get

ϕp
(
�vn(x)

)
= ϕp

(
�vn(0)

)
– λn

x∑
t=1

h(t)
f (un(t))
ϕp(un(t))

ϕp
(
vn(t)

)
=: wn(x). (2.6)

Since un(x) → 0 for all x ∈ T̂, we can get f (un(t))
ϕp(un(t)) → f0 for each fixed t ∈ T̂. It follows that

wn(x) converges to

w(x) := ϕp(c) – μ1

x∑
t=1

h(t)ϕp
(
v(t)

)
(2.7)
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for each fixed x ∈ T̂. Therefore, by recalling (2.6), one has

vn(x) =
x–1∑
s=0

ϕ–1
p

(
wn(s)

)
.

The fact coupled with (2.7) yields that vn(x) converges to

v(x) =
x–1∑
s=0

ϕ–1
p

(
w(s)

)
=

x–1∑
s=0

ϕ–1
p

(
ϕp(c) – μ1

s∑
t=1

h(t)ϕp
(
v(t)

))
,

which implies that v is a nontrivial solution of (1.2) with λ = μ1, and hence v ≡ φ1. �

Lemma 2.5 Assume that (A1), (A2), and (A3) hold. Let C be as in Lemma 2.2. Then there
exists δ > 0 such that, for each (λ, u) ∈ C and |λ – μ1/f0| + ‖u‖ ≤ δ, one has λ > μ1/f0.

Proof Suppose on the contrary that there exists a sequence {(λn, un)} such that (λn, un) ∈ C ,
which satisfies λn → μ1/f0, ‖un‖ → 0, and λn ≤ μ1/f0. According to Lemma 2.4, there
exists a subsequence of {un}, for convenience denoted by {un}, such that un

‖un‖ converges
uniformly to φ1 on T̂, where φ1(x) > 0 is the first eigenfunction of (1.2) with ‖φ1‖ = 1.
Multiplying the equation of (1.1) with (λ, u) = (λn, un) by un and by a direct computation,
one has

λn

T∑
x=0

h(x)f
(
un(x)

)
un(x) =

T∑
x=0

∣∣�un(x)
∣∣p,

and accordingly

λn

T+1∑
x=0

h(x)f
(
un(x)

)
un(x) ≥ μ1

T+1∑
x=0

h(x)
∣∣u(x)

∣∣p. (2.8)

It follows from Lemma 2.4 that, after taking a subsequence and relabeling if necessary,
un

‖un‖ converges to φ1 in Y .

T∑
x=0

∣∣�φ1(x)
∣∣p = μ1

T∑
x=0

h(x)
∣∣φ1(x)

∣∣p,

then together with (2.8) one has

λn

T∑
x=0

h(x)f
(
un(x)

)
un(x) = μ1

T∑
x=0

h(x)
∣∣un(x)

∣∣p – ζ (n)‖un‖p

with a function ζ : N →R satisfying

lim
n→∞ ζ (n) = 0.
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That is,

T+1∑
x=0

h(x)
f (un(x)) – f0[un(x)]p–1

[un(x)]p–1+α

∣∣∣∣un(x)
‖un‖

∣∣∣∣
p+α

=
1

λn‖un‖α

[
(μ1 – f0λn)

T+1∑
x=0

h(x)
∣∣∣∣un(x)
‖un‖

∣∣∣∣
p

– ζ (n)

]
.

From condition (A2), we have

T+1∑
x=0

h(x)
f (un(x)) – f0[un(x)]p–1

[un(x)]p–1+α

∣∣∣∣un(x)
‖un‖

∣∣∣∣
p+α

→ –f1

T+1∑
x=0

h(x)
∣∣φ1(x)

∣∣p+α < 0

and

T+1∑
x=0

h(x)
∣∣∣∣ u(x)
‖un‖

∣∣∣∣
p

→
T+1∑
x=0

h(x)
∣∣φ1(x)

∣∣p > 0.

This contradicts λn < μ1/f0. �

3 Directional turn of bifurcation
In this section, we show that the connected components grow to the left at some point
under (A4) condition.

In Lemma 3.3 and throughout, we use the following well-known conceptions of a gen-
eralized zero and a simple generalized zero at t ∈ T in [9].

Definition 3.1 Suppose that a function y : T̂ → R. If y(t0) = 0, then t0 is a zero of y. If
y(t0) = 0 or y(t0)y(t0 + 1) < 0 for some t0 ∈ {1, . . . , T – 1}, then y has a generalized zero at
t0 ∈ T.

Lemma 3.2 Assume that (A1) holds. Let u be a positive solution of (1.1). Then there exists
t0 ∈ T such that ‖u‖ = u(t0). Moreover,

σ‖u‖ ≤ u(x) ≤ ‖u‖, x ∈
{

t ∈ Z :
T + 1

4
≤ t ≤ 3(T + 1)

4

}
=: I, (3.1)

where σ = min{min I
T+1 , T+1–max I

T+1 }.

Proof It is an immediate consequence of the fact that u is concave down in T̂. �

Following similar arguments as in the proof of Lemma 3.1 of Dai and Ma [5], we have

Lemma 3.3 Let Pk ≥ pk for k ∈ [m, n + 1]Z. Also let y(k), z(k) be solutions of the following
difference equations:

�
[
ϕp

(
�y(k)

)]
+ pkϕp

(
y(k + 1)

)
= 0,

�
[
ϕp

(
�z(k)

)]
+ Pkϕp

(
z(k + 1)

)
= 0,
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respectively. If y(m) = y(n + 1) = 0 but without any generalized zeros in [m + 1, n]Z, then
either there exists τ ∈ [m + 1, n]Z such that τ is a generalized zero of z or Pk = pk and
�y(k)
y(k) = �z(k)

z(k) .

Proof If z has a generalized zero in [m + 1, n]Z, the conclusion is done. If there is no gen-
eralized zero of z on [m, n + 1]Z, then we can assume without loss of generality that y > 0,
z > 0 in [m + 1, n]Z. By the Picone-type identity [11, 20], we have

�

{
y(k)

ϕp(z(k))
[
ϕp

(
z(k)

)
ϕp

(
�y(k)

)
– ϕp

(
y(k)

)
ϕp

(
�z(k)

)]}

= (Pk – pk)
∣∣y(k + 1)

∣∣α
+

{∣∣�y(k)
∣∣α –

ϕp(�z(k))
ϕp(z(k + 1))

∣∣y(k + 1)
∣∣α +

ϕp(�z(k))
ϕp(z(k))

∣∣y(k)
∣∣α}

.

By a direct computation, one has

y(n + 1)
ϕp(z(n + 1))

[
ϕp

(
z(n + 1)

)
ϕp

(
�y(n + 1)

)
– ϕp

(
y(n + 1)

)
ϕp

(
�z(n + 1)

)]

–
y(m)

ϕp(z(m))
[
ϕp

(
z(m)

)
ϕp

(
�y(m)

)
– ϕp

(
y(m)

)
ϕp

(
�z(m)

)]

=
n∑

k=m

{
(Pk – pk)

∣∣y(k + 1)
∣∣α

+
[∣∣�y(k)

∣∣α –
ϕp(�z(k))

ϕp(z(k + 1))
∣∣y(k + 1)

∣∣α +
ϕp(�z(k))
ϕp(z(k))

∣∣y(k)
∣∣α]}

. (3.2)

The left-hand side of (3.2) equals zero. Hence, the right-hand side of (3.2) also equals
zero.

Since

∣∣�y(k)
∣∣α –

ϕp(�z(k))
ϕp(z(k + 1))

∣∣y(k + 1)
∣∣α +

ϕp(�z(k))
ϕp(z(k))

∣∣y(k)
∣∣α ≥ 0, k ∈ [m, n]Z,

and the equality holds if and only if �y(k) = y(k)(�z(k)/z(k)), we conclude that there exists
a constant ν 
= 0 such that z(k) = νy(k) and Pk = pk . �

Lemma 3.4 Assume that (A1) and (A4) hold. Let u be a positive solution of (1.1) with
‖u‖ = 1

σ
s0. Then λ < μ1/f0.

Proof Let u be a positive solution of (1.1). It follows from Lemma 3.2 that

σ‖u‖ ≤ u(x) ≤ ‖u‖, x ∈ I.

We note that u is a solution of

�
[
ϕp

(
�

(
u(x)

))]
+ λh(x)

f (u(x))
ϕp(u(x))

ϕp
(
u(x)

)
= 0, x ∈ I.
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Suppose on the contrary that λ ≥ μ1/f0. Then, for x ∈ I , we have from (A4) that

λh(x)
f (u(x))

u(x)
≥ μ1

f0
h∗

f0

μ1h∗
χ1 = χ1.

Choose b > 0 such that [b, b + t̂]Z ⊂ I . Set

y(x) = w1(x – b), x ∈ [b, b + t̂]Z,

then

{
�[ϕp(�(y(x – 1)))] + χ1ϕp(y(x)) = 0, x ∈ [b + 1, b + t̂ – 1]Z,
y(b) = 0, y(b + t̂) = 0.

It deduces from Lemma 3.3 that u has at least one generalized zero on I . This contradicts
the fact that u(x) > 0 on I . �

4 Proof of Theorem 1.1
The main ingredient of this section is a priori estimate, and finally we shall give a proof of
Theorem 1.1.

Lemma 4.1 Assume that (A2) and (A3) hold. Let u be a positive solution of (1.1). Then
there exists λ∗ > 0 such that λ ≥ λ∗.

Proof From Lemma 2.3, there exists a constant C > 0, which is independent of u, such that
(2.2) holds. Let ‖u‖ = u(x0), then it follows from (2.2) that

‖u‖ = u(x0)

=
x0–1∑
s=0

�
(
u(s)

) ≤
x0–1∑
s=0

λ
1

p–1 C‖u‖ ≤ λ
1

p–1 CT‖u‖,

that is, λ ≥ (CT)1–p. �

Lemma 4.2 Assume that (A1), (A2), and (A3) hold. Let J be an interval in (0, +∞). Then
there exists a constant MJ > 0 such that, for all λ ∈ J , one has that all possible positive
solutions u of (1.1) satisfy ‖u‖ ≤ MJ .

Proof Suppose on the contrary that there exists a sequence {un} of positive solutions of
(1.1) with {λn} ⊂ J � [a, b] and ‖un‖ → ∞ as n → ∞. Let

β ∈
(

0,
1

bϕp(γpQT)

)
,

where γp = max{1, 2–p
2p–1 }, Q = ϕ–1

p (
∑T

s=1 h(s)). Then, by (A3), there exists uβ > 0 such that
u > uβ implies f (u) < βup–1.
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Let mβ � maxu∈[0,uβ ] f (u) and let An � {t ∈ T : un(t) ≤ uβ} and Bn � {t ∈ T : un(t) > uβ}.
Put �un(δn) = 0 or �un(δn – 1)�un(δn) < 0. Then we have

∥∥un(δn)
∥∥ =

δn∑
s=1

ϕ–1
p

(
ϕp

[
�un(δn)

]
+

δn∑
t=s

λnh(t)f
(
un(t)

))

≤
δn∑

s=1

ϕ–1
p

(
δn∑

t=1

λnh(t)f
(
un(t)

))

≤ ϕ–1
p (λn)

δn∑
s=1

ϕ–1
p

(∑
t∈An

h(t)f
(
un(t)

)
+

∑
t∈Bn

h(t)f
(
un(t)

))

for 0 ≤ s ≤ δn. Thus

1
ϕ–1

p (λn)
≤ γp

δn∑
s=1

[
ϕ–1

p (mβ )Q
‖un‖ + ϕ–1

p

(∑
t∈Bn

h(t)f (un(t))
‖un‖p–1

)]
.

On Bn, un(s) > uβ implies f (un(s))
‖un‖p–1 ≤ f (un(s))

up–1
n (s)

≤ β . And accordingly

1
ϕ–1

p (λn)
≤ γpT

[
ϕ–1

p (mβ )Q
‖un‖ + ϕ–1

p (β)Q
]

.

Since 0 < a < λn ≤ b for all n, we have 1
ϕ–1

p (λn) ≥ 1
ϕ–1

p (b) for all n, and

1
ϕ–1

p (b)
≤ γpT

[
ϕ–1

p (mβ )Q
‖un‖ + ϕ–1

p (β)Q
]

.

According to the fact ‖un‖ → ∞ as n → ∞, we get

1
ϕ–1

p (b)
≤ γpTϕ–1

p (β)Q < γpTϕ–1
p

(
1

bϕp(γpQT)

)
Q <

1
ϕ–1

p (b)
.

This contradiction completes the proof. �

Lemma 4.3 Assume that (A1), (A2), and (A3) hold. Let u be a positive solution of (1.1).
Then there exists a constant C > 0 independent of u such that λf (‖u‖) ≤ C, where f (s) =
minσ s≤t≤s

f (t)
t .

Proof It is well known that

{
�[ϕp(�u(x – 1))] + λh(x)f (u(x)) = 0, x ∈ T,
u(0) = u(T + 1) = 0

is equivalent to the operator equation

u = T(u),
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where

T(u)(x) =

{∑x–1
s=0 ϕq(

∑σu
τ=s+1 λh(τ )f (u(τ ))), x ∈ [1,σu]Z,∑T

s=x ϕq(
∑σu

τ=s+1 λh(τ )f (u(τ ))), x ∈ [σu, T]Z,

with 1
p + 1

q = 1, σu ∈ T is the unique solution of

cu =
σu∑
τ=1

λh(τ )f
(
u(τ )

)

and cu is the unique solution of

T∑
s=0

(
cu –

s∑
τ=1

λh(τ )f
(
u(τ )

))
= 0.

Let t̂ ∈ T be as in (1.3) and

J1 := [min I, t̂], J2 := [t̂, max I].

Then we have

‖u‖ ≥ ∣∣u(t̂)
∣∣

=

{∑t̂–1
s=0 ϕq(

∑σu
τ=s+1 λh(τ )f (u(τ )), t̂ ∈ [1,σu]Z,∑T

s=t̂ ϕq(
∑s

τ=σu λh(τ )f (u(τ )), t̂ ∈ [σu, T]Z,

≥
{∑

s∈J1
ϕq(

∑σu
τ=s+1 λh(τ )f (u(τ )), t̂ ∈ [1,σu]Z,∑

s∈J2
ϕq(

∑s
τ=σu λh(τ )f (u(τ )), t̂ ∈ [σu, T]Z,

=

⎧⎨
⎩

‖u‖∑
s∈J1

ϕq(
∑σu

τ=s+1 λh(τ ) f (u(τ ))
ϕp(u(τ ))

ϕp(u(τ ))
‖u‖p–1 ), t̂ ∈ [1,σu]Z,

‖u‖∑
s∈J2

ϕq(
∑s

τ=σu λh(τ ) f (u(τ ))
ϕp(u(τ ))

ϕp(u(τ ))
‖u‖p–1 ), t̂ ∈ [σu, T]Z,

≥
⎧⎨
⎩

‖u‖∑
s∈J1

ϕq(
∑σu

τ=s+1 λh(τ ) minτ∈J1
f (u(τ ))
ϕp(u(τ ))

ϕp(u(τ ))
‖u‖p–1 ), t̂ ∈ [1,σu]Z,

‖u‖∑
s∈J2

ϕq(
∑s

τ=σu λh(τ ) minτ∈J2
f (u(τ ))
ϕp(u(τ ))

ϕp(u(τ ))
‖u‖p–1 ), t̂ ∈ [σu, T]Z,

≥
⎧⎨
⎩

‖u‖∑
s∈J1

ϕq(
∑σu

τ=s+1 λh(τ ) minσ‖u‖≤r≤‖u‖ f (r)
ϕp(r)

ϕp(u(τ ))
‖u‖p–1 ), t̂ ∈ [1,σu]Z,

‖u‖∑
s∈J2

ϕq(
∑s

τ=σu λh(τ ) minσ‖u‖≤r≤‖u‖ f (r)
ϕp(r)

ϕp(u(τ ))
‖u‖p–1 ), t̂ ∈ [σu, T]Z,

≥
⎧⎨
⎩

‖u‖∑
s∈J1

ϕq(
∑σu

τ=s+1 λh(τ )f (‖u‖) ϕp(u(τ ))
‖u‖p–1 ), t̂ ∈ [1,σu]Z,

‖u‖∑
s∈J2

ϕq(
∑s

τ=σu λh(τ )f (‖u‖) ϕp(u(τ ))
‖u‖p–1 ), t̂ ∈ [σu, T]Z,

≥
{

‖u‖∑
s∈J1

ϕq(σu – s – 1)[λh∗f (‖u‖)σ p–1]q–1, t̂ ∈ [1,σu]Z,
‖u‖∑

s∈J2
ϕq(s + 1 – σu)[λh∗f (‖u‖)σ p–1]q–1, t̂ ∈ [σu, T]Z,

≥
{

‖u‖∑
s∈J1

ϕq(t̂ – s – 1)[λh∗f (‖u‖)σ p–1]q–1, t̂ ∈ [1,σu]Z,
‖u‖∑

s∈J2
ϕq(s + 1 – t̂)[λh∗f (‖u‖)σ p–1]q–1, t̂ ∈ [σu, T]Z,
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≥ ‖u‖min

{∑
s∈J1

ϕq(t̂ – s – 1),
∑
s∈J2

ϕq(s + 1 – t̂)
}[

λh∗f
(‖u‖)σ p–1]q–1

≥ σ‖u‖min

{∑
s∈J1

ϕq(t̂ – s – 1),
∑
s∈J2

ϕq(s + 1 – t̂)
}[

λh∗f
(‖u‖)]q–1.

This completes the proof. �

Lemma 4.4 Assume that (A1), (A2), (A3), and (A4) hold. Then there exists {(λn, un)} such
that (λn, un) ∈ C , λn → ∞ and ‖un‖ → ∞ as n → ∞.

Proof It follows from Lemma 2.2 that C is unbounded, so there exists a sequence {(λn, un)}
of solutions of (1.1) such that (λn, un) ∈ C and |λn| + ‖un‖ → ∞. Moreover, Lemma 4.1
implies that λn > 0. Suppose on the contrary that there exists a bounded subsequence
{(λnk , unk )}. Then, from Lemma 4.2, ‖unk ‖ is bounded, which contradicts the fact that |λn|+
‖un‖ → ∞. Therefore, λn → ∞. Then Lemma 4.3 implies that f (‖un‖) → 0. It deduces
from (A4) that ‖un‖ → ∞. �

Proof of Theorem 1.1 Let C be as in Lemma 2.2.
It follows from Lemma 2.5 that C is emanating from (μ1/f0, 0) and goes rightward. Let

{(λn, un)} be as in Lemma 4.4. Then there exists (λ0, u0) ∈ C such that ‖u0‖ = 1
σ

s0. By
Lemma 3.4, one has λ0 < μ1/f0.

By virtue of Lemmas 2.5, 3.4, and 4.2, C passes through some points (μ1/f0, v1) and
(μ1/f0, v2) with

‖v1‖ <
1
σ

s0 < ‖v2‖.

By Lemmas 2.5, 3.4, and 4.2 again, there exist λ and λ̄ which satisfy 0 < λ < μ1/f0 < λ̄ and
(i) if λ ∈ (μ1/f0, λ̄], then there exist u and v such that (λ, u), (λ, v) ∈ C and

‖u‖ < ‖v‖ <
1
σ

s0;

(ii) if λ ∈ [λ,μ1/f0], then there exist u and v such that (λ, u), (λ, v) ∈ C and

‖u‖ <
1
σ

s0 < ‖v‖.

Define

λ∗ = sup
{
λ̄ : λ̄ satisfies (i)

}
, λ∗ = inf

{
λ : λ satisfies (ii)

}
.

Then, by the standard argument, (1.1) has a positive solution at λ = λ∗ and λ = λ∗, respec-
tively. Since C passes through (μ1/f0, v2) and (λn, un), Lemma 3.4 implies that there exists w
such that, for each λ > μ1/f0, one has (λ, w) ∈ C and ‖w‖ > 1

σ
s0. This completes the proof. �
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