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1 Introduction and main results
In this paper, a meromorphic function is assumed meromorphic in the whole complex
plane. We assume that the reader is familiar with the basic symbols and fundamental re-
sults of Nevanlinna theory; see, for example, [2, 3, 10]. We say that two meromorphic
functions f and g share a point a CM (IM) if f (z) – a and g(z) – a have the same zeros
counting multiplicities (ignoring multiplicities). The logarithmic density of the set E is
defined by

lim sup
r→∞

1
log r

∫
[1,r]∩E

1
t

dt.

Denote by S(r, f ) a quantity of o(T(r, f )) as r → ∞ outside a possible exceptional set E of
logarithmic density 0.

Yang and Hua [9] obtained an important result on the uniqueness when the differen-
tial polynomials f nf ′ and gng ′ share one value CM. Recently, many studies are devoted to
the uniqueness of difference and q-difference polynomials; see [4–6, 11–14]. Zhang [12]
obtained the following result.

Theorem A ([12]) Let f (z) and g(z) be transcendental entire functions of zero order, and
let n, m, d be positive integers. If n ≥ m + 5d and f (z)n(f (z)m – 1)

∏d
i=1 f (qiz) and g(z)n ×

(g(z)m – 1)
∏d

i=1 g(qiz) share 1 CM, then f (z) ≡ tg(z), tn+d = tm = 1.
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Liu, Liu, and Cao [4] and Zhang and Korhonen [11] obtained the following two theo-
rems.

Theorem B ([4, Theorem 1.5]) Let f (z) and g(z) be transcendental zero-order entire func-
tions, and let m be a positive integer. If n ≥ m + 5 and f (z)n(f (z)m – a)f (qz + c) and
g(z)n(g(z)m – a)g(qz + c) share a nonzero polynomial p(z) CM, then f (z) ≡ g(z).

Theorem C ([11, Theorem 5.1]) Let f (z) and g(z) be transcendental zero-order meromor-
phic functions. If n ≥ 8 and f (z)nf (qz) and g(z)ng(qz) share 1 and ∞ CM, then f (z) ≡ tg(z),
tn+1 = 1.

Zhao and Zhang [13] proved the following theorem.

Theorem D ([13, Theorem 1.4]) Let f (z) and g(z) be transcendental zero-order entire func-
tions, and let k be a positive integer. If n ≥ 2k +6 and (f (z)nf (qz +c))(k) and (g(z)ng(qz +c))(k)

share 1 CM, then f (z) ≡ tg(z), where tn+1 = 1.

Wang and Ye [8] improved the conditions of Theorems B and C to n ≥ m + 4 and n ≥ 6,
respectively, by using the idea of common zeros and common poles. Here we give the main
idea of common zeros and common poles. Let f , g be two nonconstant meromorphic
functions. Denote by n0(r) or n1(r) the numbers of common zeros or poles of fg and g ,
ignoring multiplicities. Let p, q be positive integers. We assume that the Laurent series of
f and g at z0 are as follows:

f (z) =
1

(z – z0)p f1(z), g(z) = (z – z0)qg1(z),

where f1(z) and g1(z) are analytic functions at z0, and f1(z0) �= 0, g1(z0) �= 0; the other cases
can be discussed in a similar way. So z0 is a zero of g(z) with multiplicities q. If q > p, then z0

is a zero of f (z)g(z) with multiplicity q–p, and thus the contribution to n0(r) is 1 at z0. If q ≤
p, then z0 is a pole of f (z)g(z) with multiplicity p–q or an analytic point of f (z)g(z), and thus
the contribution to n0(r) is 0 at z0. A similar method can be discussed for n1(r). As usual,
denote by N0(r) or N1(r) the counting functions of the common zeros or poles of fg and
g , ignoring multiplicities. Thus we have N(r, 1

fg ) ≤ N(r, 1
f ) + N0(r) and N(r, fg) ≤ N(r, f ) +

N1(r). In this paper, we continue to consider the uniqueness of q-difference-differential
polynomials. Firstly, we improve the condition n ≥ m + 5d in Theorem A to n ≥ m + d + 3
in Theorem 1.1. Set

L(z, f ) =
d∏

i=1

f (qiz + ci),

where ci and qi �= 0 (i = 1, . . . , d) are constants, and d is a positive integer.

Theorem 1.1 Let f (z) and g(z) be transcendental zero-order entire functions, and let m
be a positive integer. If n ≥ m + d + 3 and f (z)n(f (z)m – 1)L(z, f ) and g(z)n(g(z)m – 1)L(z, g)
share 1 CM, then f (z) ≡ c1g(z), cn+d

1 = cm
1 = 1.

In the following theorem, we improve the condition n ≥ 2k + 6 in Theorem D to n ≥ 6.
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Theorem 1.2 Let f (z) and g(z) be transcendental zero-order meromorphic functions, and
let k be a positive integer. If n ≥ 6 and (f (z)nf (qz + c))(k) and (g(z)ng(qz + c))(k) share 1 and
∞ CM, then f (z) ≡ c2g(z), cn+1

2 = 1.

We also consider the following theorems for q-difference polynomials of different types.
The following theorem is also an improvement of Theorem C.

Theorem 1.3 Let f (z) and g(z) be transcendental zero-order meromorphic functions, and
let s be a positive integer. If n ≥ (d + 1)s + 4 and f (z)nL(z, f )s and g(z)nL(z, g)s share 1 and
∞ CM, then f (z) ≡ c3g(z), cn+sd

3 = 1.

Theorem 1.4 Let f (z) and g(z) be transcendental zero-order meromorphic functions, q, c ∈
C, and q �= 0. If n ≥ 7, and f (z)n(f (qz + c) – f (z)) and g(z)n(g(qz + c) – g(z)) share 1 and ∞
CM, then

f (z)n(f (qz + c) – f (z)
)

= g(z)n(g(qz + c) – g(z)
)
.

If g(z)
g(qz+c) is transcendental with only finitely many zeros, then f (z) ≡ c4g(z), where cn+1

4 = 1.

2 Lemmas
Combining [11, Theorem 1.1] and [1, Theorem 2.1], we easily get the following lemma.

Lemma 2.1 Let f (z) be a transcendental zero-order meromorphic function, q, c ∈ C, and
q �= 0. Then

T
(
r, f (qz + c)

)
= T(r, f ) + S(r, f )

on a set of logarithmic density 1.

Lemma 2.2 ([7]) Let f (z) be a zero-order meromorphic function q, c ∈C, and q �= 0. Then

m
(

r,
f (qz + c)

f (z)

)
= S(r, f )

on a set of logarithmic density 1.

Lemma 2.3 If f is a transcendental zero-order entire function, then

T
(
r, f (z)n(f (z)m – 1

)
L(z, f )

)
= (m + n + d)T(r, f ) + S(r, f )

on a set of logarithmic density 1.

Proof Set F(z) = f (z)n(f (z)m –1)L(z, f ). By Lemma 2.2 and the standard Valiron–Mohon’ko
theorem, if f is a transcendental zero-order entire function, then

(n + m + d)T(r, f ) = T
(
r, f n+d(f m – 1

))
+ S(r, f )

= m
(
r, f n+d(f m – 1

))
+ S(r, f )
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≤ m
(

r,
f n+d(f m – 1)

f n(f m – 1)L(z, f )

)
+ m(r, F) + S(r, f )

≤ m
(

r,
f d

L(z, f )

)
+ m(r, F) + S(r, f )

≤ T(r, F) + S(r, f )

on a set of logarithmic density 1. On the other hand, combining Lemma 2.1 with the fact
that f is a transcendental zero-order function, we have

T(r, F) ≤ T
(
r, f n(f m – 1

))
+ T

(
r, L(z, f )

)

≤ (n + m + d)T(r, f ) + S(r, f )

on a set of logarithmic density 1. �

3 Proofs of theorems

Proof of Theorem 1.1 Let F(z) = f n(f m – 1)L(z, f ) and G(z) = gn(gm – 1)L(z, g). Since F(z)
and G(z) share 1 and ∞ CM, we have that F–1

G–1 = B, that is,

F = BG + 1 – B, (1)

where B is a nonzero constant.
If B �= 1, then from the second main theorem of Nevanlinna theory, Lemma 2.1, and

Lemma 2.3 we obtain

(n + m + d)T(r, f ) = T(r, F) + S(r, f )

≤ N(r, F) + N
(

r,
1
F

)
+ N

(
r,

1
F – 1 + B

)
+ S(r, f )

≤ N
(

r,
1
f n

)
+ N

(
r,

1
f m – 1

)
+ N

(
r,

1
L(z, f )

)
+ N

(
r,

1
G

)
+ S(r, f )

≤ (m + d + 1)
(
T(r, f ) + T(r, g)

)
+ S(r, f ) + S(r, g). (2)

Using the same method, we have

(n + m + d)T(r, g) ≤ (m + d + 1)
(
T(r, f ) + T(r, g)

)
+ S(r, f ) + S(r, g). (3)

Combining (2) with (3), we have

(n – m – d – 2)
(
T(r, f ) + T(r, g)

) ≤ S(r, f ) + S(r, g),

which contradicts to n ≥ m + d + 3. Thus B = 1, and from (1) we have

f n(f m – 1
)
L(z, f ) = gn(gm – 1

)
L(z, g). (4)
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Let h(z) = f (z)
g(z) . So L(z,f )

L(z,g) =
∏d

i=1
f (qiz+ci)
g(qiz+ci)

=
∏d

i=1 h(qiz+ci) = L(z, h), and then (4) can be written
as

gm(
hn+mL(z, h) – 1

)
= hnL(z, h) – 1. (5)

Next, we prove that h(z) ≡ c1 and cn+d
1 = cm

1 = 1, where c1 is a constant. Assume on the
contrary that h(z) is not a constant. From Lemma 2.1 we have

T
(
r, hn+mL(z, h)

) ≤ (n + m + d)T(r, h) + S(r, h).

We also have

(n + m)T(r, h) = T
(
r, hn+m)

≤ T
(

r,
1

hn+mL(z, h)

)
+ T

(
r, L(z, h)

)
) + O(1)

≤ T
(
r, hn+mL(z, h)

)
+ dT(r, h) + S(r, h).

Since n ≥ m + d + 3, from the last two inequalities it follows that S(r, hn+mL(z, h)) = S(r, h).
Denote by N1(r) the counting function of the common poles of hn+mL(z, h) and L(z, h)
ignoring multiplicities. Then

N
(
r, hn+mL(z, h)

) ≤ N(r, h) + N1(r).

Here we should remark that the poles of L(z, h) may be the zeros of h and the zeros of L(z, h)
may be the poles of h. Similarly, denote by N0(r) the counting function of the common
zeros of hn+mL(z, h) and L(z, h) ignoring multiplicities, and then

N
(

r,
1

hn+mL(z, h)

)
≤ N

(
r,

1
h

)
+ N0(r).

From the second main theorem of Nevanlinna theory and the last two inequalities we have

T
(
r, hn+mL(z, h)

) ≤ N
(
r, hn+mL(z, h)

)
+ N

(
r,

1
hn+mL(z, h)

)

+ N
(

r,
1

hn+mL(z, h) – 1

)
+ S

(
r, hn+mL(z, h)

)

≤ N(r, h) + N1(r) + N
(

r,
1
h

)
+ N0(r)

+ N
(

r,
1

hn+mL(z, h) – 1

)
+ S(r, h). (6)

On the other hand,

(n + m)m(r, h) = m
(
r, hn+m) ≤ m

(
r, hn+mL(z, h)

)
+ m

(
r,

1
L(z, h)

)
+ O(1), (7)
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(n + m)N(r, h) = N
(
r, hn+m)

= N
(

hn+mL(z, h)
L(z, h)

)

≤ N
(
r, hn+mL(z, h)

)
+ N

(
r,

1
L(z, h)

)
– N1(r) – N0(r). (8)

From (7) and (8) we get

(n + m)T(r, h) ≤ T
(
r, hn+mL(z, h)

)
+ T

(
r,

1
L(z, h)

)

– N1(r) – N0(r) + O(1). (9)

From (6) and (9) we get

(n + m)T(r, h) ≤ N(r, h) + N
(

r,
1
h

)
+ N

(
r,

1
hn+mL(z, h) – 1

)

+ T
(

r,
1

L(z, h)

)
+ S(r, h)

≤ (d + 2)T(r, h) + N
(

r,
1

hn+mL(z, h) – 1

)
+ S(r, h). (10)

Since n ≥ m + d + 3, the value 1 is not the Picard exceptional value of hn+mL(z, h) from (10).
Furthermore, we prove hn+mL(z, h) ≡ 1 and h(z) ≡ c1 is a nonzero constant. If hn+mL(z, h) �≡
1,then since 1 is not the Picard exceptional value of hn+mL(z, h), there exists a point z0

satisfying h(z0)n+mL(z, h(z0)) = 1. From the condition that g(z) is an entire function and (5)
we have h(z0)m = 1 and

N
(

r,
1

hn+mL(z, h) – 1

)
≤ N

(
r,

1
hm – 1

)
≤ mT(r, h) + S(r, h). (11)

Substituting (11) into (10), we get a contradiction to n ≥ m + d + 3, so hn+mL(z, h) ≡ 1,
that is, hn+m = 1

L(z,h) . From Lemma 2.1 we have

(n + m)T(r, h) = T
(
r, L(z, h)

) ≤ dT(r, h) + S(r, h),

which also contradicts to n ≥ m + d + 3, so h(z) ≡ c1, where c1 is a nonzero constant, that
is, f (z) ≡ c1g(z), and L(z, h) = cd

1 . From (5) we can get cm
1 = cn+d

1 = 1. Thus the theorem is
proved. �

Proof of Theorem 1.2 Let F(z) = f (z)nf (qz +c) and G(z) = g(z)ng(qz +c). From the condition
in Theorem 1.2 we know that F (k) and G(k) share 1 and ∞ CM, so

F (k) – 1
G(k) – 1

= C,

where C is a nonzero constant, that is,

F (k) = CG(k) – C + 1. (12)
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Integrating both sides of (12), we have

F = CG +
1 – C

k!
zk + p1(z), (13)

where p1(z) is a polynomial of degree at most k –1. Denote 1–C
k! zk +p1(z) by p(z). If p(z) �≡ 0,

then by the second main theorem of Nevanlinna theory, Lemma 2.1, and (13) we obtain

T(r, F) ≤ N(r, F) + N
(

r,
1
F

)
+ N

(
r,

1
F – p

)
+ S(r, f )

≤ N(r, f ) + N1(r) + N
(

r,
1
f

)
+ N0(r) + N

(
r,

1
G

)
+ S(r, f )

≤ 2T(r, f ) + 2T(r, g) + N1(r) + N0(r) + S(r, f ) + S(r, g), (14)

where N0(r) denotes the counting function ignoring multiplicities of the common zeros
of F(z) and f (qz + c), and N1(r) denotes the counting function ignoring multiplicities of
the common poles of F(z) and f (qz + c). On the other hand,

nm(r, f ) = m
(
r, f n) ≤ m(r, F) + m

(
r,

1
f (qz + c)

)
+ O(1). (15)

nN(r, f ) = N
(
r, f n) = N

(
F(z)

f (qz + c)

)

≤ N(r, F) + N
(

r,
1

f (qz + c)

)
– N1(r) – N0(r). (16)

From (15), (16), and Lemma 2.1 we have

(n – 1)T(r, f ) ≤ T(r, F) – N1(r) – N0(r) + O(1). (17)

Substituting (14) into (17), we obtain

(n – 3)T(r, f ) ≤ 2T(r, g) + S(r, f ) + S(r, g). (18)

Using the same method, we also get

(n – 3)T(r, g) ≤ 2T(r, f ) + S(r, f ) + S(r, g). (19)

Combining (18) with (19), we have

(n – 5)
(
T(r, g) + T(r, f )

) ≤ S(r, f ) + S(r, g),

which contradicts to n ≥ 6, and thus p(z) ≡ 0. Since the degree of p1(z) is at most k – 1, we
have C = 1 and p1(z) ≡ 0. From (13) we get

f nf (qz + c) = gng(qz + c).



Li and Liu Advances in Difference Equations        (2020) 2020:212 Page 8 of 11

Assume that h(z) = f (z)
g(z) . Then h(qz +c)h(z)n = 1, that is, h(z)n = 1

h(qz+c) , and from Lemma 2.1
we have

nT(r, h) = T
(
r, h(qz + c)

) ≤ T(r, h) + S(r, h),

which also contradicts to n ≥ 6, so h(z) is a nonzero constant, say c2. So f (z) ≡ c2g(z), and
cn+1

2 = 1. Thus the theorem is proved. �

Proof of Theorem 1.3 Since f (z) and g(z) are transcendental zero-order meromorphic
functions and f (z)nL(z, f )s and g(z)nL(z, g)s share 1 and ∞ CM, we have

f (z)nL(z, f )s – 1
g(z)nL(z, g)s – 1

= E, (20)

where E is a nonzero constant. Then (20) can be rewritten as

Eg(z)nL(z, g)s = f (z)nL(z, f )s – 1 + E. (21)

Let F(z) = f (z)nL(z, f )s and G(z) = g(z)nL(z, g)s. We affirm that E = 1. On the contrary, as-
sume that E �= 1. Using the second main theorem of Nevanlinna theory and Lemma 2.1 for
(21), we get

T(r, F) ≤ N(r, F) + N
(

r,
1
F

)
+ N

(
r,

1
F – 1 + E

)
+ S(r, f )

≤ N(r, f ) + N1(r) + N
(

r,
1
f

)
+ N0(r) + N

(
r,

1
G

)
+ S(r, f )

≤ 2T(r, f ) + N
(

r,
1
g

)
+ N

(
r,

1
L(z, g)

)
+ N1(r) + N0(r) + S(r, f )

≤ 2T(r, f ) + (d + 1)T(r, g) + N1(r) + N0(r) + S(r, f ) + S(r, g), (22)

where N0(r) denotes the counting function ignoring multiplicities of the common zeros
of F(z) and L(z, f ), and N1(r) denotes the counting function ignoring multiplicities of the
common poles of F(z) and L(z, f ).

Since F(z) = f (z)nL(z, f )s, we have

nm(r, f ) = m
(
r, f n) ≤ m(r, F) + sm

(
r,

1
L(z, f )

)
+ O(1),

nN(r, f ) = N
(
r, f n) = N

(
r, F(z)

[
1

L(z, f )

]s)

≤ N(r, F) + sN
(

r,
1

L(z, f )

)
– N1(r) – N0(r).

So

nT(r, f ) ≤ T(r, F) + sT
(

r,
1

L(z, f )

)
– N1(r) – N0(r) + O(1)

≤ T(r, F) + dsT(r, f ) – N1(r) – N0(r) + S(r, f ).
(23)
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Substituting (22) into (23), we obtain

(n – ds – 2)T(r, f ) ≤ (d + 1)T(r, g) + S(r, f ) + S(r, g). (24)

Using the same method, we can get

(n – ds – 2)T(r, g) ≤ (d + 1)T(r, f ) + S(r, f ) + S(r, g). (25)

Combining (24) with (25), it follows

(n – d – ds – 3)
(
T(r, g) + T(r, f )

) ≤ S(r, f ) + S(r, g),

which contradicts to n ≥ (d + 1)s + 4, and thus E = 1. From (21) we get

f (z)nL(z, f )s = g(z)nL(z, g)s.

Let h(z) = f (z)
g(z) . So L(z,f )

L(z,g) = L(z, h). Then

h(z)n[L(z, h)
]s = 1. (26)

So nT(r, h) = sT(r, L(z, h)) ≤ sdT(r, h) + S(r, h). Since n ≥ (d + 1)s + 4, h(z) must be a con-
stant, say c3, that is, f (z) ≡ c3g(z). Then from (26) it follows that cn+sd

3 = 1. �

Proof of Theorem 1.4 Letting L(z, f ) = f (qz + c) – f (z) and L(z, g) = g(qz + c) – g(z), s = 1 in
Theorem 1.3, we obtain that if n ≥ 7, then

f (z)n(f (qz + c) – f (z)
)

= g(z)n(g(qz + c) – g(z)
)
.

Let h(z) = f (z)
g(z) and H(z) = h(qz + c)h(z)n. The last equation implies that

g(qz + c)
(
H(z) – 1

)
= g(z)

(
h(z)n+1 – 1

)
. (27)

We know that T(r, H) ≤ (n + 1)T(r, h) + S(r, h) from the expression of H(z) and Lemma 2.1.
Thus S(r, H) = S(r, h). Next, we prove that h(z) ≡ c4, where cn+1

4 = 1, when g(z)
g(qz+c) is tran-

scendental with only finitely many zeros. Obviously, h(z) is neither a constant except c4

nor a rational function from (27) since g(z)
g(qz+c) is transcendental. Thus we assume that h(z)

is a transcendental meromorphic function.
First, we affirm that H(z) – 1 has infinitely many zeros. Otherwise, by the second main

theorem of Nevanlinna theory and Lemma 2.1

T
(
r, H(z)

) ≤ N
(
r, H(z)

)
+ N

(
r,

1
H(z)

)
+ N

(
r,

1
H(z) – 1

)
+ S(r, H)

≤ 2T
(
r, h(z)

)
+ 2T

(
r, h(qz + c)

)
+ S(r, h)

≤ 4T
(
r, h(z)

)
+ S(r, h). (28)
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From the Valiron–Mohon’ko theorem, Lemma 2.1, and (28) we obtain

nT(r, h) = T
(
r, h(z)n) ≤ T

(
r, H(z)

)
+ T

(
r,

1
h(qz + c)

)
+ S(r, h)

≤ 5T
(
r, h(z)

)
+ S(r, h),

which contradicts to n ≥ 7. Thus H(z) – 1 has infinitely many zeros.
Then we prove that H(z) ≡ 1 and h(z) ≡ c4 is a nonzero constant, that is, cn+1

4 = 1. If
H(z) �≡ 1, then since H(z) – 1 has infinitely many zeros, we can choose a point z0 satis-
fying H(z0) = 1, and z0 is not the zero of g(z)

g(qz+c) . From (27) we have h(qz0 + c) = h(z0). By
Lemma 2.1

N
(

r,
1

H(z) – 1

)
≤ N

(
r,

1
h(qz + c) – h(z)

)
≤ 2T

(
r, h(z)

)
+ S(r, h). (29)

Using the second main theorem of Nevanlinna theory, Lemma 2.1, and (29), we obtain

T
(
r, H(z)

) ≤ N
(
r, H(z)

)
+ N

(
r,

1
H(z)

)
+ N

(
r,

1
H(z) – 1

)
+ S(r, h)

≤ N(r, h) + N1(r) + N
(

r,
1
h

)
+ N0(r) + N

(
r,

1
H(z) – 1

)
+ S(r, h)

≤ 4T(r, h) + N1(r) + N0(r) + S(r, h), (30)

where N0(r) denotes the counting function ignoring multiplicities of the common zeros
of H(z) and h(qz + c), and N1(r) denotes the counting function ignoring multiplicities of
the common poles of H(z) and h(qz + c).

On the other hand, from H(z) = h(qz + c)h(z)n we have

nm(r, h) = m
(
r, hn) ≤ m

(
r, H(z)

)
+ m

(
r,

1
h(qz + c)

)
+ O(1), (31)

nN(r, h) = N
(
r, hn) ≤ N

(
r, H(z)

)
+ N

(
r,

1
h(qz + c)

)
– N1(r) – N0(r). (32)

From (31), (32), and Lemma 2.1 we have

nT(r, h) ≤ T
(
r, H(z)

)
+ T

(
r,

1
h(qz + c)

)
– N1(r) – N0(r) + O(1)

≤ T
(
r, H(z)

)
+ T(r, h) – N1(r) – N0(r) + S(r, h). (33)

Substituting (30) into (33), we obtain

nT(r, h) ≤ 5T(r, h) + S(r, h),

which contradicts to n ≥ 7, so H(z) = h(qz + c)h(z)n ≡ 1, that is, h(z)n = 1
h(qz+c) . From

Lemma 2.1 we have

nT(r, h) = T
(
r, h(qz + c)

) ≤ T(r, h) + S(r, h),
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which also contradicts to n ≥ 7, so h(z) is a nonzero constant, say c4, and from (27) we get
cn+1

4 = 1. Thus the theorem is proved. �
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