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Abstract
In this paper, we use the Hirota bilinear method for investigating the third-order
evolution equation to determining the soliton-type solutions. TheM lump solutions
along with different types of graphs including contour, density, and three- and
two-dimensional plots have been made. Moreover, the interaction between 1-lump
and two stripe solutions and the interaction between 2-lump and one stripe solutions
with finding more general rational exact soliton wave solutions of the third-order
evaluation equation are obtained. We give the theorem along with the proof for the
considered problem. The existence criteria of these solitons in the unidirectional
propagation of long waves over shallow water are also demonstrated. Various
arbitrary constants obtained in the solutions help us to discuss the graphical behavior
of solutions and also grants flexibility in formulating solutions that can be linked with
a large variety of physical phenomena. We further show that the assigned method is
general, efficient, straightforward, and powerful and can be exerted to establish exact
solutions of diverse kinds of fractional equations originated in mathematical physics
and engineering. We have depicted the figures of the evaluated solutions to interpret
the physical phenomena.
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1 Introduction
Some nonlinear waves in dynamical systems are of substantial importance and receive
much attention, most particularly in the field of wave propagation in nonlinear systems
[1]. They are expressed by nonlinear partial differential equations (NLPDEs) [2]. Applica-
tion of nonlinear waves cuts across many fields, which include mixture of gas bubble in
liquid [3], waves in elastic tubes [4], systems incorporating damping and dispersion [5],
KP lump in ferrimagnets [6], chemical physics, and geochemistry [7]. However, the quest
for exact explicit solutions of these equations remains a hot topic. Moreover, looking for
localized solutions and, more specifically, solitary wave solutions, many methods of solv-
ing nonlinear wave developed by researchers over the years, including [8–16], lump-type

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02669-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02669-y&domain=pdf
http://orcid.org/0000-0001-7201-6667
mailto:j_manafianheris@tabrizu.ac.ir


Ilhan et al. Advances in Difference Equations        (2020) 2020:207 Page 2 of 20

solutions [17–32], interaction soliton–soliton, soliton–kink, and kink–kink [33, 34], in-
teractions between solitary wave solutions and lump solutions [35, 36], as well as periodic
wave solutions [37–40] remain a very interesting subject for researchers. Several mathe-
matical methods are used in the search for these solutions. For example, the exp-function
method [41, 42], the homotopy perturbation technique [43], inverse scattering method
[44], and so on.

The Hirota bilinear method for finding the lump soliton solutions and interaction of
a lump solution with some of one-line, two-line, and three-line and even kink-breather-
soliton solutions of evolution equations was initially introduced by Ma [45] by assum-
ing the solution to be a series of functions including lump (combination of two positive
functions as polynomial), lump-kink (combination of two positive functions as polyno-
mial and exponential functions), called the interaction between a lump and one-line soli-
ton, lump-soliton (combination of two positive functions as polynomial and hyperbolic
cos functions), called the interaction between lump and two-line solitons, kinky breather-
soliton (combination of two exponential functions and trigonometric cos function), and
finally the stripe soliton function only with exponential solution function. The method
received considerable attention and underwent through many improvements. It is impor-
tant to note that the later improvements were given different names by different authors.
For getting the lump solutions and their interactions, the authors have conjugated suf-
ficient time to search the exact rational soliton solutions, for example, the Kadomtsev–
Petviashvili (KP) equation [23], the B-Kadomtsev–Petviashvili equation [42], the reduced
p-gKP and p-gbKP equations [25], the (2 + 1)-dimensional KdV equation [26], the (2 + 1)-
dimensional generalized fifth-order KdV equation [33], the (2 + 1)-dimensional Burger
equation [34], the nonlinear evolution equations [22], the generalized (3 + 1)-dimensional
Shallow water-like equation [35], the (2 + 1)-dimensional Sawada–Kotera equation [30],
and the (2 + 1)-dimensional bSK equation [31, 32]. Various types of work for finding the
periodic solitary wave solutions of the (2 + 1)-dimensional extended Jimbo–Miwa equa-
tions [37], interaction between lump and other kinds of solitary, periodic and kink solitons
for the (2 + 1)-dimensional breaking soliton equation [27], lump and interaction between
different types of those on the variable-coefficient Kadomtsev–Petviashvili equation [28],
and periodic type and periodic cross-kink wave solutions [29] are achieved through the
Hirota bilinear operator.

Nowadays NLPDEs have been created significant opportunity for the researchers to ex-
plain the tangible incidents. Therefore mathematicians and scientists work tirelessly to
bring out different kinds of soliton solutions. As a result, in the past few years, several ef-
fective, rising, and realistic methods have been initiated and dilated to extract closed-form
solutions to the NLPDEs, such as the generalized higher-order variable-coefficient Hirota
equation [46], a higher-order nonlinear Schrödinger system [47], a (3 + 1)-dimensional B-
type KP equation [48], the (3 + 1)-dimensional Zakharov–Kuznetsov–Burgers equation
[49], the coherently coupled nonlinear Schrödinger equations [50], the coupled variable-
coefficient fourth-order nonlinear Schrödinger equations [51], the (2 + 1)-dimensional
Konopelchenko–Dubrovsky equations [52], a generalized KP equation [53], a (2 + 1)-
dimensional Davey–Stewartson system [54], and the (2 + 1)-dimensional generalized
variable-coefficient KP-Burgers-type equation [55]. Various types of studies on solving
NLPDEs were investigated by capable authors, for example, the space-time fractional
nonlinear Schrödinger equation [56], the complex cubic-quintic Ginzburg–Landau equa-
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tion [57], symmetric nonlinear Schrödinger equations with the second- and fourth-order
diffractions [58], the (2+1)-dimensional Korteweg–de Vries equation [59], and the (1+1)-
dimensional coupled integrable dispersionless equations [60].

Take the third-order evolution equation of the form

PTOE(Ψ ) := Ψt + Ψx +
α

2
(3Ψ Ψx + aΨy) +

ε

6
(1 – 3τ )Ψxxx –

ε

4
(1 + 2τ )Ψxyy = 0, (1.1)

where α, ε are small parameters, τ is the Bond number, and o Ψ is the surface elevation
in the x-direction, which is a model for the unidirectional propagation of long waves over
shallow water, obtained via asymptotic expansion around simple wave motion of the Eu-
ler equations up to first-order in the small-wave amplitude [61, 62]. Assume the Hirota
derivatives based on the functions ρ(x) and �(x) given as

3∏

i=1

Dπi
λi

ρ.� =
3∏

i=1

(
∂

∂λi
–

∂

∂μi

)oi

ρ(λ)�(μ)
∣∣∣∣
μ=λ

, (1.2)

where the vectors λ = (λ1,λ2,λ3), μ = (μ1,μ2,μ3), and o1, o2, o3 are arbitrary nonnegative
integers. It is known that this third-order evolution equation possesses a Hirota bilinear
form

BTOE(ρ) :=
(

DxDt + D2
x +

a
2
αDyDx +

ε

6
(1 – 3τ )D4

x –
ε

4
(1 + 2τ )D2

xD2
y

)
ρ.ρ

= 2
[
ρρxt – ρxρt + ρρxx – ρ2

x +
1
2

aα(ρρxy – ρxρy)

+
ε

6
(1 – 3τ )

(
ρρxxxx – 4ρxρxxx + 3ρ2

xx
)

–
ε

4
(1 + 2τ )

(
ρρxxyy – 2ρxρxyy + ρxxρyy – 2ρyρxxy + 2ρ2

xy
)]

. (1.3)

We utilize the following relation between the functions φ(x, y, t) and Ψ (x, y, t):

Ψ (x, y, t) = R
(
lnρ(x, y, t)

)
x, (1.4)

where R = 1
18

ε(6τ (k3
1 +k1k2

2 )+3k1k2
2 –2k3

1 –6aαk2–(k3–k1))
αk2

1
. Based on the Bell polynomial theories of

soliton equations, we get to the relation

PTOE(Ψ ) =
[
BTOE(ρ)

ρ

]

x
. (1.5)

Theorem 1.1 Ψ = R(lnρ)x is a solution to Eq. (1.1) if and only if ρ satisfies the equation

(
DxDt + D2

x +
a
2
αDyDx +

ε

6
(1 – 3τ )D4

x –
ε

4
(1 + 2τ )D2

xD2
y

)
ρ.ρ

= 2
[
ρρxt – ρxρt + ρρxx – ρ2

x +
1
2

aα(ρρxy – ρxρy)

+
ε

6
(1 – 3τ )

(
ρρxxxx – 4ρxρxxx + 3ρ2

xx
)

–
ε

4
(1 + 2τ )

(
ρρxxyy – 2ρxρxyy + ρxxρyy – 2ρyρxxy + 2ρ2

xy
)]

. (1.6)
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Proof Denoting Γ = ∂x(lnρ), from expression (1.4) we get

Ψ = RΓ ⇐⇒ ρ = exp

(
1
R

∫
Ψ dx

)
. (1.7)

Then, by considering ρ = exp(∂–1
x Γ ) > 0, the derivatives ρx, ρy, ρt , ρxx, ρyy, ρxy, ρxt , ρxxy,

ρxyy, ρxxx, ρxxyy, and ρxxxx can be written as

ρx = Γ exp
(
∂–1

x Γ
)
, (1.8)

ρy = ∂–1
x Γy exp

(
∂–1

x Γ
)
, (1.9)

ρt = ∂–1
x Γt exp

(
∂–1

x Γ
)
, (1.10)

ρxx =
(
Γ 2 + Γx

)
exp

(
∂–1

x Γ
)
, (1.11)

ρyy =
((

∂–1
x Γy

)2 + ∂–1
x Γyy

)
exp

(
∂–1

x Γ
)
, (1.12)

ρxy =
(
Γ ∂–1

x Γy + θy
)

exp
(
∂–1

x Γ
)
, (1.13)

ρxt =
(
Γ ∂–1

x Γt + Γt
)

exp
(
∂–1

x Γ
)
, (1.14)

ρxxx =
(
Γ 3 + 3Γ Γx + Γxx

)
exp

(
∂–1

x Γ
)
, (1.15)

ρxxy =
[(

Γ 2 + Γx
)
∂–1

x Γy + 2Γ Γy + Γxy
]

exp
(
∂–1

x Γ
)
, (1.16)

ρxyy =
[
Γ

(
∂–1

x Γy
)2 + Γ ∂–1

x Γyy + 2Γy∂
–1
x Γy + Γyy

]
exp

(
∂–1

x Γ
)
, (1.17)

ρxxxx =
[
Γ 4 + 6Γ 2Γx + 4Γ Γxx + 3(Γx)2 + Γxxx

]
exp

(
∂–1

x Γ
)
, (1.18)

ρxxyy =
[(

Γ 2 + Γx
)((

∂–1
x Γy

)2 + ∂–1
x Γyy

)
+ 4Γ Γy∂

–1
x Γy

+ 2Γxy∂
–1
x Γy + 2Γ Γyy + 2(Γy)2 + Γxyy

]
exp

(
∂–1

x Γ
)
. (1.19)

Plugging (1.8)–(1.19) into (1.3) yields the bilinear form of Eq. (1.3):

2
[
ρρxt – ρxρt + ρρxx – ρ2

x +
1
2

aα(ρρxy – ρxρy) +
ε

6
(1 – 3τ )

(
ρρxxxx – 4ρxρxxx + 3ρ2

xx
)

–
ε

4
(1 + 2τ )

(
ρρxxyy – 2ρxρxyy + ρxxρyy – 2ρyρxxy + 2ρ2

xy
)]

= –
1
6

exp
(
2∂–1

x Γ
)[

12
∫ d2

dy2 Γ dx
(

d
dx

Γ

)
ετ + 24

(
d
dy

Γ

)2

ετ

+ 36
(

d
dx

Γ

)2

ετ + 6
(

d3

dx3 Γ

)
ετ + 6

∫ d2

dy2 Γ dx
(

d
dx

Γ

)
ε

+ 6
(

d3

dxdy2 Γ

)
ετ + 12

(
d
dy

Γ

)2

ε – 6aα
d
dy

Γ – 12
(

d
dx

θ

)2

ε

– 2
(

d3

dx3 Γ

)
ε + 3

(
d3

dxdy2 Γ

)
ε – 12

d
dt

Γ – 12
d

dx
Γ

]

= –
1
6
φ2[12ετΓx∂

–1
x Γyy + 24ετ (Γy)2 + 36ετ (Γx)2 + 6ετΓxxx + 6εΓx∂

–1
x Γyy

+ 6ετΓxyy + 12ε(Γy)2 – 6aαΓy – 12ε(Γx)2 – 2εΓxxx

+ 3εΓxyy – 12Γt – 12Γx
]
, (1.20)
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which can be rewritten as

1
φ2

[
ρρxt – ρxρt + ρρxx – ρ2

x +
1
2

aα(ρρxy – ρxρy) +
ε

6
(1 – 3τ )

(
ρρxxxx – 4ρxρxxx + 3ρ2

xx
)

–
ε

4
(1 + 2τ )

(
ρρxxyy – 2ρxρxyy + ρxxρyy – 2ρyρxxy + 2ρ2

xy
)]

=
(DxDt + D2

x + a
2 αDyDx + ε

6 (1 – 3τ )D4
x – ε

4 (1 + 2τ )D2
xD2

y)ρ.ρ
2ρ2 , (1.21)

where Γ = 1
RΨ = ∂x(lnρ) and ∂–1

x (·) =
∫

(·) dx. Therefore Eq. (1.21) is the third-order
evolution-type equation, and the theorem has been proved. �

We clearly confirm that other published papers do not cover ours, and made work is
really new. Here our purpose is discovering the exact solutions of the third-order evalua-
tion equation under consideration by the Hirota bilinear method for gaining the M lump,
the interaction between 1-lump and two-stripe solutions, and the interaction between 2-
lump and one-stripe solutions, which arise in more classes. We give a discussion about the
third-order evaluation equation and the Hirota bilinear method. We also offer graphical
illustrations of some solutions of the considered model along with the obtained solutions.
After that, we deal with the probe of solutions and finish by conclusion.

2 New M-lump solutions of the third-order evolution equation
According to analysis in [39], based on the Hirota operator, the solution of nonlinear dif-
ferential equation (1.3) can be written as

ρ = ρN =
∑

σ=0,1

exp

( N∑

i<j

σiσjFij +
N∑

i=1

σiηi

)
, (2.1)

where

ηi = ki

(
x + piy –

[
1 +

1
2

aαpi –
1
4
εki

2pi
2(2τ + 1) –

1
6
εki

2(3τ – 1)
]

t
)

+ η
(0)
i , (2.2)

exp Fij =
(ki – kj)(2(ki – kj)(2τpipj + 3ετ + pipj – ε) + (kipi

2 – kjpj
2)(2τ + 1))

(ki + kj)(2(ki + kj)(2τpipj + 3ετ + pipj – ε) + (kipi2 + kjpj2)(2τ + 1))
. (2.3)

The notation σ = 0, 1 shows summation over all conceivable compositions of σ1 = 0, 1,σ2 =
0, 1, . . . ,σN = 0, 1; the summation

∑N
i<j is over all conceivable compositions of N values of

i < j. For example, the first three expressions of (2.1) are as follows:

ρ1 = 1 + eη1 , (2.4)

ρ2 = 1 + eη1 + eη2 + a12eη1+η2 , (2.5)

ρ3 = 1 + eη1 + eη2 + eη3 + a12eη1+η2 + a13eη1+η3 + a23eη2+η3 + a12a13a23eη1+η2+η3 , (2.6)
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where aij = exp(Fij), i < j. To find M lump solutions of Eq. (1.1), by catching exp(η(0)
i ) = –1

in (2.2), ρN will be as follows:

ρN =
∑

σ=0,1

( N∏

i=1

(–1)σi exp(σiζi)
N∏

i<j

exp(σiσjFij)

)
, (2.7)

where

ζi = ki

(
x + piy –

[
1 +

1
2

aαpi –
1
4
εki

2pi
2(2τ + 1) –

1
6
εki

2(3τ – 1)
]

t
)

.

Taking the limit as ki → 0 with all the ki of the same asymptotic order, we get:

ρN =
∑

σ=0,1

( N∏

i=1

(–1)σi (1 + σikiξi)
N∏

i<j

(1 + σiσjkikjGij)

)
+ O

(
kN+1). (2.8)

In (2.8), we can see that ρN is factorized by
∏N

i=1 ki. By transformation Ψ = R(lnρ)x we get
a rational solution of Eq. (1.5). The reduced φN is

ρN =
N∏

i=1

ξi +
1
2

N∑

i,j

Gij

N∏

l �=i,j

ξl +
1

2!22

N∑

i,j,s,r

GijGsr

N∏

l �=i,j,s,r

ξl + · · ·

+
1

M!2M

N∑

i,j,...,m,n

GijGkl · · ·Gmn

N∏

p�=i,j,k,l,...,m,n

ξp, (2.9)

where

ξi = x + piy –
(

1 +
1
2

aαpi

)
t.

Analytical behavior of the solution function ρ1 as a 1-soliton is presented with p1 = a + ib
in Fig. 1. From (2.9) we usually get a singular solution. As regards, if we take pM+i = p∗

i (i =
1, 2, . . . , M) for N = 2M, then we obtain a class of nonsingular rational solutions called M
lump solutions, which were established in [17]. Continuing, we bring 1-lump and multiple-
lump solutions of Eq. (1.1) in the following subsections.

Figure 1 Diagram of 1-waves (2.4) using values a = 1.5, b = 1, k1 = 1, α = 0.2, ε = 0.3, τ = 2, η0 = 0, R = 2,
y = –2. (f1) 3D plot, (f2) contour plot, (f3) density plot, and (f4) 2D plot with (red x = –1, blue x = 0, and green
x = 1)
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2.1 1-lump solutions for Equation (1.1)
By considering exp(η(0)

i ) = –1, i = 1, 2, 1-lump solutions of equation (1.1) for discovering
2-soliton solutions can be found in the form

ρ2 = 1 – eζ1 – eζ2 + eζ1+ζ2+F12 , (2.10)

where

ζi = ki

(
x + piy –

[
1 +

1
2

aαpi –
1
4
εki

2pi
2(2τ + 1) –

1
6
εki

2(3τ – 1)
]

t
)

, i = 1, 2,

exp F12

=
(k1 – k2)(2(k1 – k2)(2τp1p2 + 3ετ + p1p2 – ε) + (k1p1

2 – k2p2
2)(2τ + 1))

(k1 + k2)(2(k1 + k2)(2τp1p2 + 3ετ + p1p2 – ε) + (k1p12 + k2p22)(2τ + 1))

= 1 –
2k1k2((p1

2 + 4p1p2 + p2
2)(2τ + 1) + 4(3τ – 1)ε)

(k1 + k2)((k1p12 + 2k1p1p2 + 2k2p1p2 + k2p22)(2τ + 1) + 2ε(k1 + k2)(3τ – 1))
,

(2.11)

and

ρ2 = 1 – eζ1 – eζ2 + eζ1+ζ2

–
2k1k2((p1

2 + 4p1p2 + p2
2)(2τ + 1) + 4(3τ – 1)ε)eζ1+ζ2

(k1 + k2)((k1p12 + 2k1p1p2 + 2k2p1p2 + k2p22)(2τ + 1) + 2ε(k1 + k2)(3τ – 1))
.

(2.12)

By considering the “long wave” limit as ki → 0 for i = 1, 2 with k1
k2

= 2, we conclude

ρ2 = 1 – eζ1 – eζ2 +
(

1
3

(2p1
2 + 2p1p2 – p2

2)(2τ + 1) + 2(3τ – 1)ε
(2p12 + 6p1p2 + p22)(2τ + 1) + 6(3τ – 1)ε

)
eζ1+ζ2 , (2.13)

where

ζj = x + pjy –
(

1 +
1
2

aαpj

)
t, j = 1, 2. (2.14)

Putting p2 = p∗
1 = a – ib into (2.13) and (2.14), we attain a nonsingular solution

ρ2 = 1 – eζ1 – eζ2

+
(

1
3

(6iab + 3a2 + b2)(2τ + 1) + 2(3τ – 1)ε
(2iab + 9a2 + 3b2)(2τ + 1) + 6(3τ – 1)ε

)
eζ1+ζ2 , i =

√
–1, (2.15)

where

ζ1 = x + (a + ib)y –
(

1 +
1
2

aα(a + ib)
)

t,

ζ2 = x + (a – ib)y –
(

1 +
1
2

aα(a – ib)
)

t.
(2.16)
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Plugging (2.17) and (2.18) into Ψ = R(lnρ2)x and putting p1 = a + bi, we obtain

Ψ = –2Γ1R

× ((6iab + 3a2 + b2)(2τ + 1) + 2εΓ1(3τ – 1))Γ1 – 3((2iab + 9a2 + 3b2)(2τ + 1) + 6(3τ – 1)ε)Γ5

Γ6 – ((6iab + 3a2 + b2)(2τ + 1) + 2(3τ – 1)ε)Γ1
2 + 3((2iab + 9a2 + 3b2)(2τ + 1) + 6(3τ – 1)ε)(Γ3 + Γ4)

,
(2.17)

Γ1 = ex+ay–t– 1
2 ta2α , Γ2 = ex+ay–t– 1

2 ta2α ,

Γ3 = ex+iby+ay–t– 1
2 itaαb– 1

2 ta2α , Γ4 = ex–iby+ay–t+ 1
2 itaαb– 1

2 ta2α ,

Γ5 = cos

(
1
2

b(taα – 2y)
)

, Γ6 = –3
(
2iab + 9a2 + 3b2)(2τ + 1) – 18(3τ – 1)ε.

We can see that solution (2.17) decays as |x| → ∞ with amplitude 2R. In Figs. 1–2, solution
(2.17) is plotted for an appropriate choice of diverse values and ρ at space x = –1, 0, 1. From
(2.17) we see that ρ2 is a positive quadratic function compatible with the findings in [19].
By selecting suitable values of the parameters p1 = a + ib and p2 = a – ib the analytical
treatment of 1-lump solution is presented in Fig. 2, including the 3D plot, density plot,
and 2D plot when three spaces arise at spaces x = –1, x = 0, and x = 1. Also, choosing
suitable values of the parameters p1 = a + ib, p2 = c + id, the graphic representation of 1-
lump solution is presented in Fig. 3, including the 3D plot, density plot, and 2D plot when
three spaces arise at spaces x = –1, x = 0, and x = 1. Likewise, selecting suitable values
of the parameters p1 = a + ib and p2 = 2, the analytical treatment of 1-lump solution is
presented in Fig. 4, including the 3D plot, density plot, and 2D plot when three spaces
arise at spaces x = –1, x = 0, and x = 1. Finally, selecting suitable values of the parameters
p1 = 3 and p2 = 2, the graphic representation of 1-lump solution is presented in Fig. 5,

Figure 2 Diagram of 1-lump (2.17) by taking a = 1.5, b = 1, k1 = 1, k2 = 2, α = 1, ε = –1, τ = 2, η10 = η20 = 0,
R = 2, y = –2 at space (red x = –1, blue x = 0, and green x = 1)

Figure 3 Diagram of 1-lump (2.17) by taking a = 1.5, b = 1, c = 2, d = 3, k1 = 1, k2 = 2, α = 1, ε = –1, τ = 2,
η10 = η20 = 0, R = 2, y = –2 at space (red x = –1, blue x = 0, and green x = 1)
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Figure 4 Diagram of 1-lump (2.17) by taking a = 1.5, b = 1, k1 = 1, k2 = 2, α = 1, ε = –1, τ = 2, η10 = η20 = 0,
R = 2, y = –2 at space (red x = –1, blue x = 0, and green x = 1)

Figure 5 Diagram of 1-lump (2.17) by taking k1 = 1, k2 = 2, α = 1, ε = –1, τ = 2, η10 = η20 = 0, R = 2, y = –2 at
space (red x = –1, blue x = 0, and green x = 1)

including the 3D plot, density plot, and 2D plot when three spaces arise at spaces x = –1,
x = 0, and x = 1.

2.2 Multiple-lump solutions for Equation (1.1)
For computing the multiple-lump solutions of equation (1.1) by putting N = 4 and M = 2
in (2.9), we have:

ρ4 = 1 + eζ1 + eζ2 + eζ1+ζ2+F12 + eζ1+ζ3+F13 + eζ2+ζ3+F23 + eζ1+ζ2+ζ3+F12F13F23 , (2.18)

where

ζi = ki

(
x + piy –

[
1 +

1
2

aαpi –
1
4
εki

2pi
2(2τ + 1) –

1
6
εki

2(3τ – 1)
]

t
)

, i = 1, 2, 3,

exp F12

=
(k1 – k2)(2(k1 – k2)(2τp1p2 + 3ετ + p1p2 – ε) + (k1p1

2 – k2p2
2)(2τ + 1))

(k1 + k2)(2(k1 + k2)(2τp1p2 + 3ετ + p1p2 – ε) + (k1p12 + k2p22)(2τ + 1))
,

exp F13

=
(k1 – k3)(2(k1 – k3)(2τp1p3 + 3ετ + p1p3 – ε) + (k1p1

2 – k3p3
2)(2τ + 1))

(k1 + k3)(2(k1 + k3)(2τp1p3 + 3ετ + p1p3 – ε) + (k1p12 + k3p32)(2τ + 1))
,

exp F23

=
(k2 – k3)(2(k2 – k3)(2τp2p3 + 3ετ + p1p3 – ε) + (k2p2

2 – k3p3
2)(2τ + 1))

(k2 + k3)(2(k2 + k3)(2τp2p3 + 3ετ + p1p3 – ε) + (k2p22 + k3p32)(2τ + 1))
,

(2.19)
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ρ4 = 1 + eζ1 + eζ2

+
(k1 – k2)(2(k1 – k2)(2τp1p2 + 3ετ + p1p2 – ε) + (k1p1

2 – k2p2
2)(2τ + 1))

(k1 + k2)(2(k1 + k2)(2τp1p2 + 3ετ + p1p2 – ε) + (k1p12 + k2p22)(2τ + 1))
eζ1+ζ2

+
(k1 – k3)(2(k1 – k3)(2τp1p3 + 3ετ + p1p3 – ε) + (k1p1

2 – k3p3
2)(2τ + 1))

(k1 + k3)(2(k1 + k3)(2τp1p3 + 3ετ + p1p3 – ε) + (k1p12 + k3p32)(2τ + 1))
eζ1+ζ3

+
(k2 – k3)(2(k2 – k3)(2τp2p3 + 3ετ + p1p3 – ε) + (k2p2

2 – k3p3
2)(2τ + 1))

(k2 + k3)(2(k2 + k3)(2τp2p3 + 3ετ + p1p3 – ε) + (k2p22 + k3p32)(2τ + 1))
eζ2+ζ3

+ exp F12 exp F13 exp F23eζ1+ζ2+ζ3 , (2.20)

where

ζj = x + pjy –
(

1 +
1
2

aαpj

)
t, j = 1, 2, 3.

Plugging ρ4 into the transmutation Ψ = R(lnρ4)x and taking p1 = a+bi, p2 = c+di, p3 = e+fi
such that Rpi > 0 (i = 1, 2, 3), we obtain the 3-lump solution of equation (1.1). In Figs. 6–10
the 3-lump solution is plotted for appropriate values of p1 = a + bi, p2 = c + di, p3 = e + fi.
By selecting suitable values of the parameters (p1 = a + ib, p2 = a – ib, p + 3 = c + id) in
Fig. 6, (p1 = a + ib, p2 = c + id, p + 3 = e + if ) in Fig. 7, (p1 = 2, p2 = 3, p + 3 = 4) in Fig. 8,
(p1 = a + ib, p2 = 3, p + 3 = c + id) in Fig. 9, and (p1 = a + ib, p2 = 2, p + 3 = 3) in Fig. 10
the graphical representations of 2-lump (three-soliton) solution are given in Figs. 6–10
containing the 3D plot, density plot, and 2D plot when three spaces arise at spaces x = –1,
x = 0, and x = 1.

Figure 6 Diagram of 3-lump (2.20) by taking a = 1.5, b = 1, c = 2, d = 3, k1 = 1, k2 = 2, k3 = 3, α = 0.1, ε = –1,
τ = 2, η10 = η20 = η30 = 0, R = 2, y = –2 at space (red x = –1, blue x = 0, and green x = 1)

Figure 7 Diagram of 3-lump (2.20) by taking a = 1.5, b = 1, c = 2, d = 3, e = –1, f = 5, k1 = 1, k2 = 2, k3 = 3,
α = 0.1, ε = –1, τ = 2, η10 = η20 = η30 = 0, R = 2, y = –2 at space (red x = –1, blue x = 0, and green x = 1)
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Figure 8 Diagram of 3-lump (2.20) by taking k1 = 1, k2 = 2, k3 = 3, α = 0.1, ε = –1, τ = 2, η10 = η20 = η30 = 0,
R = 2, y = –2 at space (red x = –1, blue x = 0, and green x = 1)

Figure 9 Diagram of 3-lump (2.20) by taking a = 1.5, b = 1, c = 2, d = 3, k1 = 1, k2 = 2, k3 = 3, α = 0.1, ε = –1,
τ = 2, η10 = η20 = η30 = 0, R = 2, y = –2, at space (red x = –1, blue x = 0, and green x = 1)

Figure 10 Diagram of 3-lump (2.20) by taking a = 1.5, b = 1, c = 2, d = 3, k1 = 1, k2 = 2, k3 = 3, α = 0.1, ε = –1,
τ = 2, η10 = η20 = η30 = 0, R = 2, y = –2, at space (red x = –1, blue x = 0, and green x = 1)

3 Interaction between lumps and stripe solitons of equation (1.1)
In the following subsections, we further treat diverse solitons.

3.1 Interaction between 1-lump and 2-stripe soliton of Equation (1.1)
To treat 1-lump and 1-stripe solitons of equation (1.1), we catch f as a blend of the follow-
ing functions:

ρ =

( 4∑

i=1

Ωixi

)2

+

( 8∑

i=5

Ωixi

)2

+ r1 + r2e
∑4

i=1 Ωixi + r3e
∑8

i=5 Ωixi + r4e
∑8

i=1 Ωixi , (3.1)

(x1, x2, x3, x4) = (x, y, t, 1), (x5, x6, x7, x8) = (x, y, t, 1),

Ψ = R
∂

∂x
ln(ρ)

= R
r4(Ω1 + Ω5)e

∑8
i=1 Ωixi + 2Ω1

∑4
i=1 Ωixi + 2Ω5

∑8
i=5 Ωixi + r2Ω1e

∑4
i=1 Ωixi + r3Ω5e

∑8
i=5 Ωixi

ρ
,

(3.2)



Ilhan et al. Advances in Difference Equations        (2020) 2020:207 Page 12 of 20

where (x1, x2, x3) = (x, y, t), and Ωi, i = 1, . . . , 8, r1, r2, r3 are free parameters to be found later.
Plugging (3.1) into Eq. (1.3), collecting the coefficients at the diverse polynomial functions
including the functions e

∑4
i=1 Ωixi , e

∑8
i=5 Ωixi , e

∑8
i=1 Ωixi and their products, and solving the

obtained algebraic system containing 26 equations, we obtain the following solutions:
Set I:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ = – 1
6

6Ω22√
2+2εΩ52–9Ω22

2Ω22√
2–εΩ52–3Ω22 , Ω1 = (1 +

√
2)Ω5, Ω2 = Ω2,

Ω3 = – 1
2 aαΩ2 – (1 +

√
2)Ω5, Ω4 = 0, Ω5 = Ω5,

Ω6 = Ω2(
√

2 – 1), Ω7 = – 1
2 (

√
2 – 1)(aαΩ2 + 2(

√
2 + 1)Ω5), Ω8 = 0,

r1 = r1, r2 = r2, r3 = 0, r4 = r4,

(3.3)

which should satisfy the condition

(2
√

2 – 3)Ω2
2 – εΩ5

2 �= 0.

Plugging (3.3) into (3.2), we achieve te following interactive wave solution of Eq. (1.1):

Ψ1 = R
r4(2 +

√
2)Ω5e

∑7
i=1,i�=4 Ωixi + 2Ω1

∑3
i=1 Ωixi + 2Ω5

∑7
i=5 Ωixi + r2Ω1e

∑3
i=1 Ωixi

ρ
,

(3.4)

ρ =

( 3∑

i=1

Ωixi

)2

+

( 7∑

i=5

Ωixi

)2

+ r1 + r2e
∑3

i=1 Ωixi + r4e
∑7

i=1 Ωixi . (3.5)

Moreover, by selecting suitable values of the parameters the graphic representation of pe-
riodic wave solution is presented in Fig. 11, including the 3D plot, density plot, and 2D
plot when three spaces arise at spaces x = –1, x = 0, and x = 1.

Set II:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ = 1
6

2εΩ12–3Ω22

εΩ12+Ω22 , Ω1 = Ω1, Ω2 = Ω2,

Ω3 = – 1
2 aαΩ2 – Ω1, Ω4 = Ω4, Ω5 = Ω5, Ω6 = Ω2Ω5

Ω1
,

Ω7 = – (aαΩ2+2Ω1)Ω5
2Ω1

, Ω8 = Ω8,

r1 = r1, r2 = r2, r3 = r3, r4 = r4,

(3.6)

which should satisfy the condition

εΩ1
2 + Ω2

2 �= 0.

Plugging (3.6) into (3.2), we achieve the following interactive wave solution of Eq. (1.1):

Ψ2 = R
r4(Ω1 + Ω5)e

∑8
i=1 Ωixi + 2Ω1

∑4
i=1 Ωixi + 2Ω5

∑8
i=5 Ωixi + r2Ω1e

∑4
i=1 Ωixi + r3Ω5e

∑8
i=5 Ωixi

ρ
,

(3.7)

ρ =

( 4∑

i=1

Ωixi

)2

+

( 8∑

i=5

Ωixi

)2

+ r1 + r2e
∑4

i=1 Ωixi + r3e
∑8

i=5 Ωixi + r4e
∑8

i=1 Ωixi . (3.8)
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Figure 11 Plots of interaction between 1-lump and 1-stripe solution for (3.6) by taking a = 1, α = 0.1, ε = 0.3,
Ω2 = 1, Ω5 = 1.2, r1 = –3.5, r2 = 1.3, r4 = 1.4, R = 2 (first row t = –1, second row t = 0, and third row t = 1)

Likewise, by selecting suitable values of the parameters the graphic representation of pe-
riodic wave solution is presented in Fig. 12, containing the 3D plot, density plot, and 2D
plot when three spaces arise at spaces x = –1, x = 0, and x = 1.

Set III:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ = – 1
6

3Ω22√
17–8εΩ52+9Ω22

Ω22√
17+4εΩ52+3Ω22 , Ω1 = 1

2

√
–6 + 2

√
17Ω5,

Ω2 = Ω2, Ω3 = – 1
2 aαΩ2 – 1

2

√
–6 + 2

√
17Ω5,

Ω4 = 0, Ω5 = Ω5, Ω6 = 1
8

√
–6 + 2

√
17(

√
17 + 3)Ω2,

Ω7 = – 1
16

√
–6 + 2

√
17(

√
17 + 3)(

√
–6 + 2

√
17Ω5 + aαΩ2),

Ω8 = 0, r1 = r1, r2 = r2,

r3 = (912r1+10412+19
√

17(11r1+124)+19
√

–6+2
√

17(2
√

17+7)(5
√

17+25+4r1))r4
361r2

, r4 = r4,

(3.9)

which should satisfy the condition

(
√

17 + 3)Ω2
2 + 4εΩ5

2 �= 0.
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Figure 12 Plots of interaction between 1-lump and 1-stripe solutions for (3.7) by taking a = 1, α = 0.1, ε = 0.3,
Ω1 = 1.5, Ω2 = 1, Ω4 =Ω5 = 1.2, Ω8 = 1, r1 = 3.5, r2 = 1.3, r3 = 1.2, r4 = 1.4, R = 2 (first row t = –1, second row
t = 0, and third row t = 1)

Plugging (3.9) into (3.2), we achieve the following interactive wave solution of Eq. (1.1):

Ψ3 = R
r4(Ω1 + Ω5)e

∑7
i=1,�=4 Ωixi + 2Ω1

∑3
i=1 Ωixi + 2Ω5

∑7
i=5 Ωixi + r2Ω1e

∑3
i=1 Ωixi + r3Ω5e

∑7
i=5 Ωixi

ρ
,

(3.10)

ρ =

( 3∑

i=1

Ωixi

)2

+

( 7∑

i=5

Ωixi

)2

+ r1 + r2e
∑3

i=1 Ωixi + r3e
∑7

i=5 Ωixi + r4e
∑7

i=1,�=4 Ωixi . (3.11)

Remark 3.1 By selecting suitable values of the parameters, the graphical representations
of interaction solutions are presented in Figs. 11–12. These figures suggest that there are
1-lump and 2-stripe solitons, the energy of the 1-lump is more robust than that of the 2-
stripe soliton; as t → 0, the 1-lump commences to be swallowed by the 2-stripe soliton
gradually, its energy commences to move from one place to another into the 2-stripe soli-
ton progressively, until it is swallowed by the stripe soliton completely. These two types of
solutions move into one soliton and continue to spread.
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3.2 Interaction between 2-lump and 1-stripe solitons of equation (1.1)
To search treatment between 2-lump and 1-stripe solitons of equation (1.1), we catch f as
a blend of the following functions:

ρ =

( 4∑

i=1

Ωixi

)4

+ 2

( 4∑

i=1

Ωixi

)2

+ r + ke
∑8

i=5 Ωixi ,

(x1,5, x2,6, x3,7, x4,8) = (x, y, t, 1),

(3.12)

Ψ = R
∂

∂x
ln(ρ) = R

4Ω1(
∑4

i=1 Ωixi)3 + 4Ω1
∑4

i=1 Ωixi + kΩ5e
∑8

i=5 Ωixi

ρ
, (3.13)

where Ωi, i = 1, . . . , 4, r, k are free elements to be defined later. Plugging (3.12) into Eq. (1.3),
collecting the coefficients at the diverse polynomial functions including e

∑8
i=5 Ωixi and their

products, and solving the obtained algebraic system of 11 equations, we get the following
solutions:

Set I:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ω1 = Ω1, Ω2 = – 2Ω1(3τ–1)√
–(12τ+6)(3τ–1) ,

Ω3 = – 1
6

Ω1
√

–(12τ+6)(3τ–1)aα

2τ+1 – Ω1, Ω4 = Ω4,

Ω5 = Ω5, Ω6 = 1
3

√
–(12τ+6)(3τ–1)Ω5

2τ+1 ,

Ω7 = – 1
6

aα
√

–(12τ+6)(3τ–1)Ω5
2τ+1 – Ω5, Ω8 = Ω8.

(3.14)

To ensure the positivity of ρ , we need the following determinant condition:

(12τ + 6)(3τ – 1) < 0, τ �= –
1
2

.

Plugging (3.14) into (3.13), we get the following interactive wave solution of Eq. (1.1):

Ψ1 = R
4Ω1(

∑4
i=1 Ωixi)3 + 4Ω1

∑4
i=1 Ωixi + kΩ5e

∑8
i=5 Ωixi

ρ
, (3.15)

where

ρ =

( 4∑

i=1

Ωixi

)4

+ 2

( 4∑

i=1

Ωixi

)2

+ r + ke
∑8

i=5 Ωixi .

Set II:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ω1 = 3
10

Ω4
√

–(12τ+6)(3τ–1)Ω6
3τ–1 , Ω2 = 3

5Ω4Ω6,

Ω3 = – 3
10Ω4Ω6(aα +

√
–(12τ+6)(3τ–1)

3τ–1 ), Ω4 = Ω4,

Ω5 = 1
2

√
–(12τ+6)(3τ–1)Ω6

3τ–1 , Ω6 = Ω6,

Ω7 = – 1
2Ω6(aα +

√
–(12τ+6)(3τ–1)

3τ–1 ), Ω8 = Ω8.

(3.16)

To ensure the positivity of ρ , we need the following determinant condition:

(12τ + 6)(3τ – 1) < 0, τ �= 1
3

.
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Figure 13 Plots of interaction between 1-lump and 1-stripe solution for (3.15) by taking a = 1, α = 0.1, ε = 0.3,
τ = – 1

5 , Ω4 = 1, Ω5 = 2, Ω8 = –3.5, r = 2, k = 3, R = 2 (first row t = –20, second row t = 0, and third row t = 20)

Plugging (3.16) into (3.13), we get the following interactive wave solution of Eq. (1.1):

Ψ2 = R
6
5

Ω4
√

–(12τ+6)(3τ–1)Ω6
3τ–1 (

∑4
i=1 Ωixi)3 + 6

5
Ω4

√
–(12τ+6)(3τ–1)Ω6

3τ–1
∑4

i=1 Ωixi + k
2

√
–(12τ+6)(3τ–1)Ω6

3τ–1 e
∑8

i=5 Ωixi

ρ
,

(3.17)

where

ρ =

( 4∑

i=1

Ωixi

)4

+ 2

( 4∑

i=1

Ωixi

)2

+ r + ke
∑8

i=5 Ωixi .

Remark 3.2 By selecting suitable values of the parameters, the graphical representations
of interaction solutions are presented in Figs. 13 and 14. By selecting suitable values of
the parameters, the graphical representation of interaction between 2-lump and 1-stripe
solitons is presented in Figs. 13 and 14. These figures show that there are 2-lump and a
1-stripe solitons; as t → 0, 2-lump commences to be swallowed by 2-stripe soliton grad-
ually, its energy commences to move from one place to another into the 1-stripe soliton
progressively, until it is swallowed by the 1-stripe soliton generally, and these two types of
solutions move into one resonance soliton and continue to spread.
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Figure 14 Plots of interaction between 1-lump and 1-stripe solution for (3.17) by taking a = 1, α = 0.1, ε = 0.3,
τ = – 1

5 , Ω4 = 1, Ω6 = 2, Ω8 = –3.5, r = 2, k = 3, R = 2, (first row t = –20, second row t = 0 and third row t = 20)

4 Conclusions
We employed the Hirota bilinear method, along with some Hirota derivatives and the
Bell polynomial theories of soliton equations, to find abundantly many exact lumps and
interaction lumps with two types of typical local excitations, which occurred between a
lump and a stripe soliton of soliton solutions to third-order evaluation equation. We in-
vestigated M lump solutions and made different types of graphs, including the contour,
density, and three- and two dimensional plots. We also obtained an interaction between
1-lump and two-stripe solutions and an interaction between 2-lump and one-stripe solu-
tions and found more general rational exact soliton wave solutions of the third-order eval-
uation equation. This approach has been successfully applied to obtain some real rational
soliton wave solutions to third-order evaluation equation with constant coefficients. We
proved a theorem for the considered problem. We also obtained existence criteria of these
solitons in the unidirectional propagation of long waves over shallow water. The attained
solutions are in broad-ranging form, and the definite values of the included parameters
of the attained solutions yield the soliton solutions and are helpful in analyzing the wa-
ter waves mechanics, the quantum mechanics, the water waves in gravitational force, the
signal processing waves, the optical fibers, and so on. This paper showed that the Hirota
bilinear method, combined with Hirota derivatives, gives a unified approach to construct-
ing the exact rational lump soliton wave solutions to many nonlinear partial differential
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equations. Our results allowed us to understand the dynamics of nonlinear propagation in
fluid mechanics, plasma, and so on. Moreover, the established results have shown that the
Hirota bilinear method is general, straightforward, and powerful and helped us to examine
traveling wave solutions of NLPDEs.
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