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1 Introduction
The theory of inequalities is known to play an important role in almost all areas of pure
and applied sciences. Richard Bellman stated succinctly, at the Second International Con-
ference on Mathematical Inequalities, Oberwolfach, Germany, July 30—August 5, 1978,
that “there are three reasons for the study of inequalities: practical, theoretical, and aes-
thetic” In the last few decades the theory of inequalities has attracted the attention of great
number of researchers.

We use I to denote an interval in the real line R = (—00, +00), and L[A1, A2], where A < A5,
the set of integrable functions on [A1, A;].

Definition 1 A function h:7 C R — R is said to be convex if
b(xr1 + (1 —x)Az) <xb(r1) + (1 -x)b(A2) (1)

for all A1,A, € I and x € [0, 1].
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The interesting mean type inequality, known as the Hermite—Hadamard inequality for

convex functions, is given by the following theorem.

Theorem 1 Let h):1 C R — R be a convex function, and let k1, y € I with L1 < Ay. Then

A1+ Ao 1 A2 H(x1) + b(ro)
h( 5 )SAZ_M[M ) < == = 2)

Inequality (2) is also acknowledged as the trapezium inequality.

The trapezium inequality has an extraordinary interest due to its wide applications in the
field of mathematical analysis. Authors of recent decades have studied (2) in the premises
of newly invented definitions due to the motivation of convex functions. The interested
readers can see the references [2-7, 9, 12-15, 18, 19, 21, 22, 24-28, 30-32, 34—37].

Definition 2 ([13]) A function b : [0, +c0) —> R is said to be s-convex (s € (0, 1]) in the

second sense if
b(ar, + (1 —a)ky) <a’h(h) + (1 -a)’h(hs) (3)
for all A1,Ay > 0and a € [0, 1].

The s-convex functions in the second sense are presented in [13]. Also, researchers
started to study conformable fractional integrals; see [1, 8, 12, 18, 19, 30, 32]. Khalil et
al. [17] defined the fractional integral only of order 0 < « < 1, whereas Abdeljawad [1]
generalized the definition of left and right conformable fractional integrals to any order
a >0.In 2017, Khan et al. implemented this definition by providing a class of Hermite-type

inequalities.

Definition 3 Letf: [A1,+00) — R, & € (n,n + 1], set ¢ = & —n. Then the left conformable
fractional integral starting at A; is defined by

(Ig“f)(x) = 1 /"(x_ 0)"(0 — 1) f(0)do, x> .

n! A

Analogously, iff : (—00,12] — R, § € (n,n+1],and ¢ = § —n, then the right conformable
fractional integral at X, is defined by

A2 1 * -1
(1) = [ OG-0 F OV, x<ha.

Note thatifé =n+1,then =& -n=n+1-n=1,wheren=0,1,2,....
Set et al. [30] obtained a new generalized class of Hermite—Hadamard-type inequalities

for s-convex functions by applying conformable fractional integrals.

Theorem 2 ([30]) Let f: [A1,12] — R be a function with 0 < A; < *y,s € (0,1], and f €
L)1, X2). Iff is an s-convex function on [11, Ay], then we have the following inequalities for
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conformable fractional integrals:

F'-n) 2+
r(sn)f( 2 )

1 2
< 505 aE LE )02 + (21ef) ()]
I:C(n+s+ LE-n+l(n+1,€ —n+s):| [F(A1) +f(A)]

n! 28

<

withé € (n,n+1],n=0,1,2,..., where I" is the Euler gamma function.

Sarikaya et al. [28] defined a function @ : (0, +00) —> [0, +00) satisfying the following

conditions:
Lo
/ L do < +00, )
o 0
1 2(6) 1 _0o
< < Ql f —< =< 2: 5
A= 06) 0 276 g
@(92) < % ¢(81) fOr 91 < 02’ (6)
02 o7
o0,) @0 P (6 1_¢
‘ (22) B (21) <¢l6, _91|¥ for — < -1 <2, @)
63 01 03 2

where 2,8, ¢ > 0 are independent of 6,,0; > 0. If 05(92)«95 is increasing for some £ > 0

and % is decreasing for some ¢ > 0, then @ satisfies (4)—(7); see [29]. Therefore the

left—sided and right—sided generalized integral operators are defined as follows:

* @(x—0)

;LI[q)f(x):/): -y £(0)do, x> X, (8)
" 3
iy lef (x) = / @é@_ xx)f(e)de, %< Ag. )

The most significant element of generalized integrals is that they produce Riemann-—
Liouville fractional integrals, k—Riemann-Liouville fractional integrals, Katugampola
fractional integrals, and so on; see [10, 11, 16, 20, 23, 28, 29, 31, 33].

Now we are in position to introduce the following definitions of left and right general-
ized conformable fractional integral operators of any order & > 0, where @ : [0, +00) —

[0, +00) satisfies conditions (4)—(7).

Definition 4 Let ¢ € (m,n+ 1] and ¢ =& — n, where n=0,1,2,3,.... The left generalized

conformable fractional integral operator starting at A; of order £ > 0 is defined by

6 -1)7If(0)dl, x> A1 (10)

S Tof ) - /x P (x—0)

A X =
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Analogously, the right generalized conformable fractional integral operator of order & > 0
is defined by

2 @(f - x)

sTofe) = [ Z 20000 ) do, 3 (1)

Remark 1 Taking ¢ =1 in Definition 4, we obtain the generalized fractional integral op-
erators given from (8) and (9). Also, choosing @ (t) = ‘nn—+,1 in Definition 4, we get Defini-

tion 3.

Motivated by the literature cited, our paper is organized as follows: In Sect. 2, using the
new operators, we establish the so-called left and right generalized conformable fractional
integral operators, new Hermite—Hadamard inequalities for s-convex functions and prod-
ucts of two s-convex functions in the second sense. In Sect. 3, we obtain two interesting
identities for differentiable function involving generalized conformable fractional integral
operator. By applying these identities we give Hermite—Hadamard and midpoint-type in-
tegral inequalities for s-convex functions. Various particular cases will be identified, and
some known results will be recaptured from our general results. In Sect. 4, we give a brief

conclusion.

2 Hermite-Hadamard inequalities
Throughout this study, let & € (n,n+ 1] and ¢ =& —n, where n=0,1,2,3,.... Also, for all
0 € [0,1], we define

25(0) = /09 M(l —x) ldx<+00, A1<Ay, (12)

Eé,l(x,é) =fog M(l—uﬁ’l du < +00, x> A, (13)

Z‘é,z(x,e) = /6 M(l —u) tdu<+o0, %<y, (14)
and

vy = /:2 qi(cx_—_;‘ll)(xz —x) tdx = /Ajz %(x—kl){_l dx. (15)

Let represent Hermite—Hadamard inequalities for s-convex functions in the second sense

via general conformable fractional integral operators as follows.

Theorem 3 Let f : [A1,A3] —> R be a positive function with 0 < Ay < Ay such that f €
L[X1, 22). If f is s-convex in the second sense on A1, Aq], then for any & >0 and s € (0,1],
we have the following inequalities for generalized conformable fractional integral opera-
tors:

f()” ;“) < ﬁ[;\; Tof(h) +3; Taf (h1)] < [W}Af, (16)
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where

1 2 @x—h) -
Y I L
A(D - ()\’2 _ )"l)slllqi ‘/)Ll x— )\.1 ()\-2 x) [(x )\.1) + ()\.2 x) ]dx’ (17)

and W, is defined by (15).

Proof Letx,y € [A1,X3]. Since f is s-convex in the second sense on [A, A;], we have

x+y\ _f&)+f()
()=t

Taking x = OA; + (1 —0)Ay and y = (1 — O)A; + O Xy, we get

2Sf(Al ; kz) <f(On + (1= 0)ag) + (1 - 0)A +02s). (18)

Multiplying both sides of inequality (18) by w (1 -6)*"! and integrating the result-

ing inequality with respect to 6 over [0, 1], we obtain

1
25.1‘(Al ;M) / (p(eu;_m)(l —0)*"'do
0

L D00~ 1))
|,

; 1 -0 f(Or + (1 -0)ry) d

1
+/ POC2 =2 () _gyetr((1 - oy, +.00) b

o %
So, we have

)\.1 +)\.2
2

2W,f ( ) < [ Taf (A2) +15 Taf (A1), (19)

which means that the left side of (16) is proved. To prove the right side of (16), since f is
s-convex in the second sense on [A, A;], we have the inequalities

F(Or1 + (1 =0)22) <O (M) + (1= 60)°f(Aa) (20)

and

F(A =002 +022) < (1= 0)F (M) + 0 (o). (21)

Adding (20) and (21), we get

F(Or + (1 =0)Aa) +f((1 =01 +6042) < [0°+ (1 - 0)°][f (A1) +f(Xa)]. (22)

Multiplying both sides of inequality (22) by w (1 -6)*~! and integrating the result-

ing inequality with respect to ¢ over [0, 1], we obtain

/1 D(O(hy — A1)
0

2 (10 (Or + (1= 0)ry) db
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(1-0) " ((1 - 0)r1 +612) db

Lo (0(hy —11))
+/0 2OR2 1)

1 —
<[f(n) +f(A2)]/ Mu —0)1[6° + (1 - 0] db.
0
So, we have
[t Taf (A2) 415 Tof ()] < [f (1) +f ()]s A, (23)

which means that the right side of (16) is proved. The proof of Theorem 3 is completed. O

Corollary 1 Taking s = 1 in Theorem 3, we get the following inequalities for convex func-

tions via generalized conformable fractional integral operators:
1 S(a) +f(n2)

7(7572) = gyl Toftia) v Tasa) S0 .

Corollary 2 Taking ®(0) = % in Theorem 3, we get Theorem 2.

Remark 2 Taking &€ = s = 1 in Corollary 2, we get the well-known Hermite—Hadamard
inequality (2).

Let us represent now Hermite—Hadamard inequalities for the product of two s-convex

functions in the second sense via general conformable fractional integral operators.

Theorem 4 Let f,g : [A1,22] — R be two positive functions with 0 < Ay < Ay and f €
L{xy,A2). If f and g are s-convex in the second sense on [A1,Az], then for any & > 0 and
s € (0,1], we have the following inequalities for generalized conformable fractional integral

operators:

f (xl ;M) g<xl ; ?»2) B 45;; [ Tof 02)g(2) +1; Taf ()g(01)]

< [ Tof G)glhn) +1; TafG)g0)]
sy
< %[2M(x1,,\2)(~);f + N(A1, k) AR, (25)
where
M1, 22) = f(h1)g(h1) +f (A2)g(A2), (26)
N1, 22) = f(A1)g(R2) +f (A2)g (A1), (27)
S, 1 2 @ (x—Ap) _ s s

@df ) (Ao — )»1)2slI/qé; /Al X — )»11 (a2 _x){ l(x ~Aaf ke —a) s, (28)

and lllqi and A%;’{ are defined by (15) and (17).



Kashuri et al. Advances in Difference Equations (2020) 2020:217

Proof Letx,y € [A1,A2]. Since f and g are s-convex in the second sense on [A1, A;], we have

f(x+y)§f(x)+f(y), g<x+y>§g(x)+g(v)'
2 2s 2 2s

Taking x = 6A; + (1 —0)A; and y = (1 — O)A; + O Xy, we get
)»1 + Ao
2f <f(0r1+ (1 =0)r2) +f((1 - 0)A1 +61,) (29)
and
A+ A
2%(%) <g(001 + (1-0)23) + g((1 - O)ay +64s). (30)
Multiplying both sides of inequalities (29) and (30), we obtain

Sf()q +)L2)g()»1 ;)»2)

<f(Or1 + (1 =0)12)g(0r1 + (1 - 0)As)

+f((1=0)A1 +6012)g((1 - O)A1 +61s)
+f(0h1 + (1= 0)A2)g((1 - 0)A; +6012)
+f((1=0)A1 +042)g (021 + (1 - 0)12). (31)

Multiplying both sides of inequality (31) by A (1 -6)*"! and integrating the result-
ing inequality with respect to 6 over [0, 1], we have

sf()\l +)\,2)g<)\,1 +K2> /‘1 @(9()\2—)»1))(1_9){_1 do
0

2 0

Lo (O(hy —11))
<

J (1 -0 f(0r + (1= 0)r2)g(OA1 + (1 = 0)12) db

1
+/ W(l — )Y (1 =02 +02)g((1 = O)As +615) dO
0

Lo (0(hy —11))
g

5 (1 =0 f(0r + (1= 0)A2)g((1 - O)A1 +OL2) db

1
+ / W(l —0) Y (1 =02 +6022)g(021 + (1 - 0)2s) dO
0

So, we get

48%,((“ + A2) (M ;”) <[4 Taf (g (1) 5 Taf()g002)]

+ [ Taf (ha)g(ha) +15 Taf (h1)g(h1)], (32)

which means that the left side of (25) is proved. To prove the right side of (25), since f and
g are s-convex in the second sense on [A1,A;], we have the inequalities

£(0r1 +(1=0)a) <O (A1) + (1= 0)*f (1), (33)

Page 7 of 20
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F(A =01 +022) < (1-0)f(01) +0°F(Na), (34)

g(Oh1 + (1-0)As) <0°g(A1) + (1 - 0)°g(Ra) (35)
and

(M =01 +62;) < (1-0)°g(h1) +6°g(Ra). (36)

Applying inequalities (33) to (36), we have

FOr + (1 =0)A2)g(0h1 + (1= 0)A2) +f((1 = 0)Ay +042)g((1—O)A1 +642)
+f(0A1 + (1 =0)A2)g((1 = )1 +Os) +£ (1 = 0)A1 +O22)g(041 + (1 - 0)A2)
<f(Or1 + (1 =0)A2)g(Or1 + (1 = 0)As) + £ ((1 = O)Ay +OA2)g((1 = 0)Ay +OAz)
+[07 () + 1-0)F02)] - [ - 0)'g() +0°g(22)]
+[(1=0)F (1) +0°F(12)] - [0°g(11) + (1 - 0)°g(3)]
=f (01 + (1= 0)A2)g(Or1 + (1 = 0)ha) +£((1 = 01 + O22)g((1 - 0)Aq +62s)
+26°(1 = 0)° M(A1, 1) + [0 + (1 = 0)* N (A1, 42). (37)

Multiplying both sides of inequality (37) by W (1 -6)*~! and integrating the result-

ing inequality with respect to 6 over [0, 1], we obtain

/1 w(l = 0) T (OA1 + (1= 0)Aa)g (021 + (1 - 0)Ay) d
0

1
+/ W(l — )Y (1 =02 +02)g((1 = O)As +62s) dO
0

1
R / PO 22D gy (0 + (1~ 02)e(1 - 0021 +22)
0

1
+ / W(l — )Y (1 =02 +022)g(021 + (1 0)2s) dO
0

1
< / W(l = 0) (020 + (1=0)A2)g (621 + (1 - 0)2,) d6
0

1
+/ W(l — )Y (1 =02 +02)g((1 = O)As +625) dO
0

1
rama) [ 2EEZ2D 0 gt -y as
0
1
+N()L1,)L2)/ w(l _ 9)(—1 [925 +(1- 9)25] do.
0
So, we get

[ Taf (A2)g(h2) +1; Taf (M)g(M1)] + [ Taf (A2)g(h1) +1; Taf (11)g(12)]

< [ Tof (2)g(h2) +3; Taf (a)gh)] + 2M(A1, 12)O5° + N(Ay, )Wy AR, (38)

Page 8 of 20
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which means that the right side of (25) is proved. The proof of Theorem 4 is com-
pleted. d

Corollary 3 Taking s = 1 in Theorem 4, we get the following inequalities for products of
two convex functions via generalized conformable fractional integral operators:

f(“ : “)g(“ : “) L[ Taf (2)gln) +5; Taf Ga)g(h)]

2 2 - 4wy
1
< —;[A{ Tof (A2)g(r1) +15 Taf (M)g(1a)]
4y
1
< 1 [2M04,12)05 + NG, 22) AT, (39)
where
1 *2
o4 = 75/ @ (x—r1)(Ay —x)° dx
(Ag = M)2¥y Iy
and
1 "2 @ (x— A
Ai;g = / (e =2 (hy —x)*7! [(x 21+ O —x)2] dx.
M=)y Ju 2=

Corollary 4 Taking f = g in Theorem 4, we get

f2<kl ;}Q) - 45111,5) ['\f Tof*(ha) +iy Tq:fz()»l)]

< [ Taf 0a)f(32) 415 Taf ) ()]
4y

< %[21)@1@2)@;{ + QU A0 AZ], (40)
where
P(hi, k) =2 (M) +f2(h2),  Q(hi,ha) = 2f (A1)f (Ra).

3 Some other results
To establish the results of this section regarding general conformable fractional integral

operators, we first prove the following two lemmas.

Lemma 3.1 Let f : [A1, 23] — R be a differentiable function on (A1, r2). If f' € L[A1, A2],
then we have the following identity for generalized conformable fractional integrals:

[JM}IJ; Sl Taf 02) 435 Taf )]

1
_ —2?»1){ / [25(1-6) - 25O)]f (621 + (1 - 0)2y) db, (41)
0

where 25 (0) is defined by (12).
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Proof We denote
Ao — A1)t 1
L g (1, 12) = %/ [25(1-0) - 25@)]f (021 + (1-0)1,) db. (42)
0
We write (42) in the form
(A2 =21 oy @
If,gé (A1, A2) = T[lfﬂé (A1,42) _Ifﬂfp (A1, 22)], (43)
where
1
1Y (k) = / 251 =0)f (01 + (1 -0)rs) do (44)
f52g 0
and
1
17, (1, 49) = / 250) (041 + (1 —-0)y) db. (45)
/2 0

Integrating by parts (44) and changing the variable of integration x = OA; + (1 — 0)A,, we
get

(1)
If:z‘ (A1, A2)

]

1
:9;(1_9)M (46)
M-
1 Lo ((1-0)(ha - A1) _
s /0 e (1-a-) YOr+(1-0n)do  (@47)
e SOw) 1 )
Vo G al Gy alef ) (48)
Similarly, using (45), we obtain
f() 1

il (i) = =¥ % 3 Tof (Ma). (49)

+
1.2 (A2 =21 (Ao —A1)f
Substituting (48) and (49) into (43), we obtain the desired equality (41). O
Remark 3 Taking @(0) = % in Lemma 3.1, we get ([30], Lemma 3.1).

Lemma 3.2 Let f : [A1,A2] — R be a differentiable function on (A1, r2). If f' € L[A1, A2],
then we have the following identity for generalized conformable fractional integrals:

SO 5 [o Taf 02) 4o Taf 0]

) [t
O [ g o (e - )

(Ag —x)*

1
_7/ 25, (0,0)f (6x + (1 - 0)1s) do, (50)
2 ), T
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where E;l(x,é’) and E;z(x,e) are defined by (13) and (14), respectively. We denote

I o Eﬁ,,z(x;)“l’M)

fiZg00
- w /01 5 (%, 0)f (0 + (1 - 0)r) do
_ e ;x); /01 5,1 0)f (0x + (1 - 0)r,) db. (51)
Proof See the proof of Lemma 3.1. O

Theorem 5 Let f : [A1,12] — R be a differentiable function on (A1, 12). If f € L[A1,13]
and |f'|1 is s-convex in the second sense with s € (0, 1], then for q > 1 and }7 + %1 =1, wehave
the following inequality for generalized conformable fractional integrals:

I Q;(xl,xzn_ “ L2 I (p \/lf M) '::f Gt (52)

where

1 1-6 _
myw=2 ([ 2 g s

Proof By Lemma 3.1, the s-convexity in the second sense of |[f'|, the Holder inequality,

and properties of the modulus we have

|If,9§> (A1, 12)]|

_Mflszf(l 6) =25 O)[|f' (071 + (1= 0)2) | db

_M</ |25(1-0) - 9§(9)|’7d9> (/ If' (03, + (1 - e)xz)r’de)

— ¢ 1 :
= w{’/ , (p)< /0 [O°)f )|" + (1= 60)°|f (h2)| ] de)
Ao — A1)t (A9 + |F (Ag) |4
_ O 2 ) p/—né(p)\f/tf( DI+ 1/ (1)

s+1

The proof of Theorem 5 is completed. O
We point out some particular cases of Theorem 5.
Corollary 5 Taking @ (0) = % in Theorem 5, we get ([30], Theorem 3.2).

Corollary 6 Taking s =1 in Theorem 5, we have the following inequality for convex func-
tion via generalized conformable fractional integral operators:

|1, 25 (xl,xz)I_ M) V5 (p) \/ ) |M[f(k2)|q (53)

Page 11 of 20



Kashuri et al. Advances in Difference Equations (2020) 2020:217 Page 12 of 20

Corollary 7 Taking |f'| < K in Theorem 5, we obtain

— ¢
15 02| <20 2l 54)

Theorem 6 Let f : [A1, 2] — R be a differentiable function on (A1, 12). If f € L[A1, X3]
and |f'|? is s-convex in the second sense with s € (0, 1], then for q > 1, we have the following

inequality for generalized conformable fractional integrals:

|Ify-Q§; ()"1:)"2)‘
(g =21)¢ (rp q1-1 5L sC\| g T st .
= m{[L‘M] ! \K/(LQZ +L¢,3)lf (A1)|q + (s -Lyy, —L¢,5)Lf (Kz)iq
1-1
' [pr'd ' d(lp‘é _szj B sz’s) V/()‘l)r] + (Lf;s + szf,lo) [f’()»z)|q}» (55)
where
1 A2 @ 9 —A A
Ly, = [/ ( 1)()»2—9)5 d6+/ 45()0_9)(9_)\1){—1619}
TGl 0ok g
1 ) dj 9 -\
LZ){Z = 7/ M(AZ _9)§+sd6,’
P God Jug 6on
¢ 1 *2 .
- - D0y — A — 0)° o,
@3 ()"2_)\1)§+s /M ( 2 9)(9 1) ( 9 9) 46
¢ 1 A2 .
st = DO —=11) Ao —60)"(0 =X\ Sde,
P47 (= Ap)E _/M O =22 =0) 71O - 1)
1 2 Phy -6
Lz'fs - 7/ M(e _ )»1){” do,
T Gamh) g A -6
1 A1t+ho ¢(9 )\ )
2 _
PR o NP
’ (ha = 21)¢ iy 0
+/ ®(2=0)0 =22 d@}
A
Athy
s, 1

s — D (hy—0)O —11) L0y —0)°doO,
7= a0 I, (A2 —6)( 1)) (Ao —6)

Apt+ho
1 7 PO -2
Lyg=———r / g(lz -0)*do,
T (A= A8 60—
" 1 T (- 0)
Lyo= / ————(0 - 11)°** db,
T (= A)fs Sy Ay —0
At+hro

8¢ 1

=— @O - A1) (hy—0)71(O - 11)° db,
P10 = (3, Ap)E . ( 1) =0)"7( 1)

and W} is defined by (15).
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Proof By Lemma 3.1, the s-convexity in the second sense of |f’|, the well-known power
mean inequality, and properties of the modulus we have

|Iff2§> (A1, 12)|

= Mflmé(l—@)—ﬂéw)“f/(@h+(1—9)A2){d0
2 0
1-1
_MU |25(1-0) - 25 9)|d0) !
x (follﬂé(l—e)—fzé(e)|Lf’(9A1 + (1—9)A2)|qd6>q
(hg = 11)¢ 2 1-1
5%{(/0 [9;(1_9)—9;(9)]019)

X (/oz[gé(l_9)_Q;(Q)][eslf/()“l)r]+(1—9)slf/(kz)|q]d9>q

1 1-1
+ (/1 [250) - 25(1-0)] d@)

2

<

(/ [2250) - 251 -)][6°|f ()] + (1 - e)S[f(A2)|q]d9)q}

2

Ay = 1p)f

_1
= e [ ] W L0 ¢ (9 - L L) 0
_1
+ [prﬁ]l ! {7('1’; _Lfifi - szf,s) If()|” + (Lfl'fg + Lz){,w) If'(r2)|"}.

The proof of Theorem 6 is completed. O
We point out some particular cases of Theorem 6.
Corollary 8 Taking ®(0) = — L and q =1 in Theorem 6, we get ([30], Theorem 3.1).

Corollary 9 Takings =1 in Theorem 6, we get the following inequality for convex function
via generalized conformable fractional integral operators:

|1 0 (h1,22)]

(Ao — A1)¢ _1
< O W+ L) )+ (0~ L= B
_1
+[L5] q\q/ (W — L7 — Lo o) [ 0|+ (Lo + Ly 10) [ 2)] "}, (56)
where
Ly, = G —2f Juaga 02y (Ao —0)"""db,

1 *2 -
L= oot f (1 —0)(0 — 1) (0~ 0) B,

Page 13 of 20
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1 A2
¢ _ -1
L= Gt fo @0 =202 =06 )b,
2
1 2 P(ry—0)
¢ v
La>,5=_7{+1/*+x —, g G-m)Tds,
()\2 )»1) _12_2 )\,2 9

SRS
1 -2
4 -
o7~ (2 = 1) Sy, D(hy = 0)(6 — 11)* " (ra — 0) db,

At+Ao

. 1 / 72 B0 Ay)
L¢,8 = YS! _
(A2 = A1) M 0 -2

Athro

()"2 - 0):+1 d@,

P(ry—0)

1 2
L g=— 0 — 1)t db,
P2 (hg = Ay)EH -/Al Ay —0 ( 1)

and
At+hro
¢ 1

- - _ _ ¢-1 _
10= G, Zai ), DO —11)(Aay—0)7O — A1) db.

Corollary 10 Taking |f'| < K in Theorem 6, we obtain

|IfQ§> (A1, 22)]

_ ¢
< KO [0 P + 1) + (4 ~ L 1)

T 2ds+1

1
+ [Lfb,s]l ! {’/(q/qi - Lfif7 - szf,s) + (szfs + Lfif,lo) ) (57)

Theorem 7 Let f : [A1,12] — R be a differentiable function on (A, 12). If f € L{A1, 23]
and |f'|1 is s-convex in the second sense with s € (0,1], then for q > 1 and }7 + % =1, we have

the following inequality for generalized conformable fractional integrals:

’[fvfé,pfé,z(x;kl’ Aa)|

— c - /
Ewmqw

.\ (A2 —x) /7 ) [f"(x)|9 + lf/()»z)|q’

1> 58
2 ®.2 s+1 (58)

where

1

1
Eg1(xp) = / [Z5.(x0)] do, G ,(x,p) = / [Z5.,x0)] do.
0 0

Proof By Lemma 3.2, the s-convexity in the second sense of |[f'|, the Holder inequality,

and properties of the modulus we have

|If,2§b,1,2§>,2(x;)‘1’)‘2)|

1
< wf 2o 0| (0x + (1 -0)r1)| do
0
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Ay —2)*
+

1
f g, 0)|f (0x+ (1 -0)1z)|do

. Zm) (/ (25,0 de) </ If (6x+(1 - 9)x1)|qd9)

—x)¢ (! s @
+(’\22") (/0 [zgyz(x,e)]”de) (/O [f’(0x+(1—0)/\2)|qd9>

(x—Ap)¢ a

1 q
<z o[ @l a-orlr o))
0

- 1 i
+ ()\42 2.?6) p :éQ( ’p)(/(; [eslf/(x)|q+(1_9)slf/()\‘2)iq] d@)

7 g (xp)qw

el s+1
(A2 —x)* [ ¢ o I @)7 + U”(M)W
+ — a¢,2(x _—
s+1

The proof of Theorem 7 is completed. O

=)

We point out some particular cases of Theorem 7.

Corollary 11 Taking x = % in Theorem 7, we get the following midpoint inequality via

generalized conformable fractional integral operators:

- (Aa —21)*
T 281 s+ 1

(25

V 26 (p)

)

q
+ [f/()»z)|q}: (59)

1 (4 @(M(lz—h ) P
¢ - 2 2 g g6l
Esp /0 (/0 » (1-1un) du) de.

Corollary 12 Taking s = 1 in Theorem 7, we have the following inequality for convex func-

tion via generalized conformable fractional integral operators:

’ 5555, (211, 22)
(= 21)" /- '@+ |[f' (M)
E 2 1 P dé,l(‘x’p) K/ %

. (A2-%)" /¢ 6 p) [F' ()17 + [f/(kz)lq'

5 A_J¢2 X, P 5 (60)

Page 15 of 20
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Corollary 13 Taking |f'| < K in Theorem 7, we obtain

K 2 s s
Iff,,ggbll,zé‘z(x;/\l, M| < 5(/ 1 [ =21)5 B (0 p) + (oo =) { B ,(x,p)}. (61)

Theorem 8 Let f : [A1,A2] — R be a differentiable function on (A1,A2). If f € L[\1, 23]
and |f'|1 is s-convex in the second sense with s € (0,1], then for q > 1, we have following
inequality for generalized conformable fractional integrals:

UJCYE;PE;,Z(X; iAo

= E I g ] gl @l M@l o)
2 ] Sl @ Ml Gl (62
where

M} (%) = (x_qﬁ’){_l - (x_lkl){ /:cb(e-xl)(x-e)“ do,

M2 = 1)(:1:(1E o e /x PO =200 =) (x0Tt
M) = 1)(x1_ o A x (Dég__ﬁl)(x— 0)°* do,

M} 4 (x) = 0 f’i){l - (Azix): /;ch(,\z-e)(e-xf1 do,

Mis(x) = oD (f’_x){_l a7y (xlz—x)w f AZ(D(Q—x)(@—x)s()\z—e){’ldQ,
MW = 50— | P20, oy,

and lI/qi is defined from (15).

Proof By Lemma 3.2, the s-convexity in the second sense of |f’|?, the well-known power

mean inequality, and properties of the modulus we have

|1f,£§)_1,2§,,2(x;}‘1’ )|

1
< W/ T2 O)|f (0 + (1= 0)21) | dE
0
1
I [ sl x| do
0

— ) 1 1_% 1 %
<O ([ mhaweras) ([ mhaolr o n-om)fa)
Yo — )8 1 1_% 1 %
. zzx) (/o Eé,z(x,e)d9> (/0 232(9"9){/”(9“(1‘9)“)\%)
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—a) Lo é
- Q[M;'l(x)]l_q(/o o 0)[0°f @+ A -0y ()] ] d9>

1

_ ) 1 1 q
+ w [M5, )] < /o 252 0[] @] + (1 - 0)|f ()] "] d@)

Cx=n)°
2
(A2

B e @] M@ ] Ml Gl
) 4 @5 2.6 v

(M, )]0 M| )]+ M@ )]

The proof of Theorem 8 is completed. O

We point out some particular cases of Theorem 8.

)»1+12

Corollary 14 Taking x = in Theorem 8, we get the following midpoint inequality via

generalized conformable fmctwnal integral operators:

AL+ A
+|:M§,’4<1; 2>:|
e e Qe e e R

Corollary 15 Taking s = 1 in Theorem 8, we have the following inequality for convex func-

tions via generalized conformable fractional integral operators:

’ T, (211, 22)

- (x - Ap)f
- 2
(A2

—_x)¢ 1
- P2 [ ] ot 0 @+ M

[, ()] MG, @) |7 + MG @) ()

(64)

where

v 1
2(x—k1)¢*1 2(%—)\.1

M5 ) = o [ @0 =m0 - r)s-0)

1 PO - 1)
M 5(x) = -0)*'do,
»3®) TP / e (x—0)+do
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1 1
MC — P _
05 = S T T 20, -

A2 .
x)“l/x DO —x)O —x) (e —0) 71 db,

and

1 2 PO —x)
e _ _p)e+l
Mg (%) = 20— /x D x (Ay—0)1 do.

Corollary 16 Taking |f'| < K in Theorem 8, we obtain

|€,'Eé’1,2§>,2(x;)\1,)»2)|

K -1
< {2 (MG, 0] M) + M)

1-1 s,
+ O = ) [M 4 (0] 7 I ML (@) + M) 65)
£ &
Remark 4 Applying our Theorems 5, 6, 7, and 8 to suitable functions @(0) = 0, %, #k(g),

D(O) =0(ry —0)! for £ € (0,1),P(0) = gexp(—AQ), where A = lgi for £ € (0,1), and f
such that |[f’|4 is an s-convex function (f(x) = x%, etc.), we can construct some new general-
ized conformable fractional integral inequalities. Also, we can obtain several new general
fractional integral inequalities using special means (arithmetic, geometric, logarithmic,
etc.). Finally, some new bounds for the midpoint and trapezium quadrature formula using
our results can be provided as well. We omit their proofs, and the details are left to the
interested readers.

4 Conclusion

Trapezium-type integral inequalities for functions of divers natures are useful in numeri-
cal computations. Using the generalized conformable fractional integral operators defined
in our paper, the interested reader can obtain in a similar way new results for different
operators, such as k-Riemann-Liouville fractional integral, Katugampola fractional inte-
grals, the conformable fractional integral, (p, g)-quantum calculus, Hadamard fractional
integrals, and so on. These results can be applied in convex analysis, optimization, prob-
ability, and also different areas of pure and applied sciences. The ideas and techniques of
this paper may stimulate further research in the fascinating field of integral inequalities.
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