
Su et al. Advances in Difference Equations        (2020) 2020:213 
https://doi.org/10.1186/s13662-020-02673-2

R E S E A R C H Open Access

On the solutions of a max-type system of
difference equations of higher order
Guangwang Su1, Caihong Han1*, Taixiang Sun1 and Lue Li1

*Correspondence:
h198204c@163.com
1College of Information and
Statistics, Guangxi Univresity of
Finance and Economics, Nanning,
China

Abstract
In this paper, we study the following max-type system of difference equations of
higher order:

{
xn =max{A, yn–txn–s

},
yn =max{B, xn–tyn–s

}, n ∈ {0, 1, 2, . . .},

where A,B ∈ (0, +∞), t, s ∈ {1, 2, . . .} with gcd(s, t) = 1, the initial values
x–d , y–d , x–d+1, y–d+1, . . . , x–1, y–1 ∈ (0, +∞) and d =max{t, s}.
MSC: 39A10; 39A11
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1 Introduction
Concrete nonlinear difference equations and systems have attracted some recent attention
(see, e.g., [1–39]). One of the classes of such equations/systems are max-type difference
equations/systems. For some results of solutions of many max-type difference equations
and systems, such as eventual periodicity, the boundedness character and attractivity, see,
e.g. [1–5, 7–9, 11–16, 18–25, 28–30, 32–36, 38, 39] and the references therein. Our pur-
pose in this paper is to study the eventual periodicity of the following max-type system of
difference equation of higher order:

⎧⎨
⎩xn = max{A, yn–t

xn–s
},

yn = max{B, xn–t
yn–s

},
n ∈ N0 ≡ {0, 1, . . .}, (1.1)

where A, B ∈ R+ ≡ (0, +∞), t, s ∈ N ≡{1, 2, . . .} with gcd(s, t) = 1, the initial values x–d, y–d,
x–d+1, y–d+1, . . . , x–1, y–1 ∈ R+ and d = max{t, s}.

When t = 1 and s = 2, (1.1) reduces to the max-type system of difference equations

⎧⎨
⎩xn = max{A, yn–1

xn–2
},

yn = max{B, xn–1
yn–2

},
n ∈ N0. (1.2)
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Fotiades and Papaschinopoulos in [5] showed that every positive solution of (1.2) is even-
tually periodic.

In 2012, Stević [23] obtained in an elegant way the general solution to the following
max-type system of difference equations:

⎧⎨
⎩xn+1 = max{ A

xn
, yn

xn
},

yn+1 = max{ A
yn

, xn
yn

},
n ∈ N0, (1.3)

for the case x0, y0 ≥ A > 0 and y0/x0 ≥ max{A, 1/A}.
In [35], Sun and Xi studied the following max-type system of difference equations:

⎧⎨
⎩xn = max{ 1

xn–m
, min{1, A

yn–r
}},

yn = max{ 1
yn–m

, min{1, B
xn–t

}},
n ∈ N0, (1.4)

where A, B ∈ R+, m, r, t ∈ N and the initial values x–d, y–d, x–d+1, y–d+1, . . . , x–1, y–1 ∈ R+ with
d = max{m, r, t} and showed that every positive solution of (1.4) is eventually periodic with
period 2m.

When m = r = t = 1 and A = B, (1.4) reduces to the max-type system of difference equa-
tions

⎧⎨
⎩xn = max{ 1

xn–1
, min{1, A

yn–1
}},

yn = max{ 1
yn–1

, min{1, A
xn–1

}},
n ∈ N0. (1.5)

Yazlik et al. [39] in 2015 obtained in an elegant way the general solution of (1.5).
In 2012, Stević [24] studied the following max-type system of difference equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y(1)
n = max1≤i≤m1{f1i(y(1)

n–k(1)
i,1

, y(2)
n–k(1)

i,2
, . . . , y(l)

n–k(1)
i,l

, n), y(1)
n–s},

y(2)
n = max1≤i≤m2{f2i(y(1)

n–k(2)
i,1

, y(2)
n–k(2)

i,2
, . . . , y(l)

n–k(2)
i,l

, n), y(2)
n–s},

. . . ,

y(l)
n = max1≤i≤ml {fli(y(1)

n–k(l)
i,1

, y(2)
n–k(l)

i,2
, . . . , y(l)

n–k(l)
i,l

, n), y(l)
n–s},

n ∈ N0, (1.6)

where s, l, mj, k(j)
i,t ∈ N (j, t ∈ {1, 2, . . . , l}) and fji : Rl

+ × N0 −→ R+ (j ∈ {1, . . . , l} and i ∈
{1, . . . , mj}), and showed that every positive solution of (1.6) is eventually periodic with
(not necessarily prime) period s if fji satisfy some conditions.

Moreover, Stević et al. [29] in 2014 investigated the following max-type system of dif-
ference equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(1)
n = max1≤i1≤m1{f1i1 (y(1)

n–k(1)
i1,1

, y(2)
n–k(1)

i1,2
, . . . , y(l)

n–k(1)
i1,l

, n), y(σ (1))
n–t1s },

x(2)
n = max1≤i2≤m2{f2i2 (y(1)

n–k(2)
i2,1

, y(2)
n–k(2)

i2,2
, . . . , y(l)

n–k(2)
i2,l

, n), y(σ (2))
n–t2s },

. . . ,

y(l)
n = max1≤il≤ml {flil (y

(1)
n–k(l)

il ,1
, y(2)

n–k(l)
il ,2

, . . . , y(l)
n–k(l)

il ,l
, n), y(σ (l))

n–tls },

n ∈ N0, (1.7)
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where s, l, mj, tj, k(j)
ij ,h ∈ N (j, h ∈ {1, 2, . . . , l}), (σ (1), . . . ,σ (l)) is a permutation of (1, . . . , l) and

fjij : Rl
+ × N0 −→ R+ (j ∈ {1, . . . , l} and ij ∈ {1, . . . , mj}). They showed that every positive

solution of (1.7) is eventually periodic with period sT for some T ∈ N if fjij satisfy some
conditions.

2 Main results and proofs
In this section, we study the eventual periodicity of positive solutions of system (1.1). Let
{(xn, yn)}n≥–d be a solution of (1.1) with the initial values x–d, y–d, x–d+1, y–d+1, . . . , x–1, y–1 ∈
R+.

Lemma 2.1 If xn = A eventually, then yn is a periodic sequence with period 2s eventually.
If yn = B eventually, then xn is a periodic sequence with period 2s eventually.

Proof Assume that xn = A eventually. By (1.1) we see

yn = max

{
B,

A
yn–s

}
eventually, (2.1)

which implies ynyn–s ≥ A eventually and

B ≤ yn = max

{
B,

A
yn–s

}

= max

{
B,

Ayn–2s

yn–syn–2s

}

≤ max{B, yn–2s} ≤ yn–2s eventually. (2.2)

Then, for any 0 ≤ i ≤ 2s – 1 , y2ns+i is eventually nonincreasing.
We claim that, for every 0 ≤ i ≤ 2s – 1, y2ns+i is a constant sequence eventually. Assume

on the contrary that, for some 0 ≤ i ≤ 2s – 1, y2ns+i is not a constant sequence eventually.
Then there exists a sequence of positive integers k1 < k2 < · · · such that, for any n ∈ N, we
have

B < y2skn+1+i =
A

y2skn+1+i–s

< y2skn+i =
A

y2skn+i–s
, (2.3)

which implies y2skn+1+i–s > y2skn+i–s for any n ∈ N. This is a contradiction. Thus yn is a pe-
riodic sequence with period 2s eventually. The second case follows from the previously
proved one by interchanging letters. The proof is complete. �

Lemma 2.2 If A ≥ B ≥ 1/A, then x2(n+1)t+i ≤ x2nt+i for any n ≥ t + s and i ∈ N0. If B ≥ A ≥
1/B, then y2(n+1)t+i ≤ y2nt+i for any n ≥ t + s and i ∈ N0.

Proof Assume that A ≥ B ≥ 1/A. By (1.1) we see that xn ≥ A and yn ≥ B for any n ∈ N0,
and

x2(n+1)t+i = max

{
A,

B
x2(n+1)t+i–s

,
x2nt+i

x2(n+1)t+i–sy2(n+1)t+i–t–s

}
. (2.4)
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Since B/x2(n+1)t+i–s ≤ B/A ≤ 1 ≤ A and x2(n+1)t+i–sy2(n+1)t+i–t–s ≥ AB ≥ 1 for 2(n + 1)t + i ≥
t + s, we obtain

x2(n+1)t+i ≤ max{A, x2nt+i} ≤ x2nt+i. (2.5)

The second case follows from the previously proved one by interchanging letters. The
proof is complete. �

Theorem 2.1 Let AB > 1. If A ≥ B, then xn = A eventually and yn is a periodic sequence
with period 2s eventually. If B > A, then yn = B eventually and xn is a periodic sequence
with period 2s eventually.

Proof Assume that A ≥ B. For any 0 ≤ i ≤ 2t – 1 and n ∈ N0, we have

A ≤ x2(n+1)t+i = max

{
A,

x2nt+i

x2(n+1)t–s+iy2(n+1)t–s–t+i

}
. (2.6)

By Lemma 2.2 we may let limn−→∞ x2nt+i = Ai. Note that

lim
n−→∞

x2nt+i

x2(n+1)t–s+iy2(n+1)t–s–t+i
≤ lim

n−→∞
x2nt+i

AB
=

Ai

AB
< Ai (2.7)

and

lim
n−→∞ x2(n+1)t+i = Ai. (2.8)

Thus we have xn = A eventually. By Lemma 2.1, we see that yn is a periodic sequence
with period 2s eventually. The second case follows from the previously proved one by
interchanging letters. The proof is complete. �

In the following, we assume AB = 1. For any i ∈ N0, let

lim
n−→∞ x2nt+i = Ai if A ≥ B (2.9)

and

lim
n−→∞ y2nt+i = Bi if B ≥ A. (2.10)

Then Ai ≥ A and Bi ≥ B.

Lemma 2.3 If A ≥ B = 1/A and Ai > A for some i ∈ N0, then, for any k ∈ N, x2nt+ks+i and
y2nt–t+ks+i are constant sequences eventually. If B ≥ A = 1/B and Bi > B for some i ∈ N0,
then, for any k ∈ N, y2nt+ks+i and x2nt–t+ks+i are constant sequences eventually.
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Proof Assume that A ≥ B and Ai > A for some i ∈ N0. Since Ai > A, it follows from
Lemma 2.2 and (1.1) that

x2nt+i = max

{
A,

x2(n–1)t+i

x2nt–s+iy2nt–t–s+i

}

=
x2(n–1)t+i

x2nt–s+iy2nt–t–s+i
eventually. (2.11)

From this we have

B ≤ lim
n−→∞ y2nt–t–s+i

= lim
n−→∞

x2(n–1)t+i

x2nt+ix2nt–s+i

=
1

A–s+i
≤ 1

A
= B. (2.12)

This implies

lim
n−→∞ x2nt–s+i = A (2.13)

and

lim
n−→∞ y2nt–t–s+i = B (2.14)

and

lim
n−→∞ y2nt–t+i = lim

n−→∞ x2nt+ix2nt–s+i = AiA. (2.15)

Since

x2nt+s+i = max

{
A,

x2(n–1)t+s+i

x2nt+iy2nt–t+i

}
(2.16)

and

lim
n−→∞

x2(n–1)t+s+i

x2nt+iy2nt–t+i
=

As+i

A2
i A

< As+i, (2.17)

we see that x2nt+s+i = A eventually. Note that

lim
n−→∞

x2(n–1)t+s+i

y2nt–t+i
=

A
AAi

< B, (2.18)

from which it follows that

y2nt–t+s+i = max

{
B,

x2(n–1)t+s+i

y2nt–t+i

}

= B eventually, (2.19)
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and

y2nt–t+2s+i = max

{
B,

x2(n–1)t+2s+i

y2nt–t+s+i

}

=
x2(n–1)t+2s+i

B
eventually, (2.20)

and

x2nt+2s+i = max

{
A,

y2nt–t+2s+i

x2nt+s+i

}

= max{A, x2(n–1)t+2s+i}
= x2(n–1)t+2s+i eventually. (2.21)

If x2nt+2s+i > A eventually, then, in a similar fashion, we obtain:
(1) x2nt+3s+i = A eventually and y2nt–t+3s+i = B eventually.
(2) x2nt+4s+i and y2nt–t+4s+i are constant sequences eventually.
If x2nt+2s+i = A eventually, then y2nt–t+2s+i = A/B eventually, and

y2nt–t+3s+i = max

{
B,

x2(n–1)t+3s+i

y2nt–t+2s+i

}

= max

{
B,

x2(n–1)t+3s+iB
A

}

=
x2(n–1)t+3s+iB

A
eventually, (2.22)

and

x2nt+3s+i = max

{
A,

y2nt–t+3s+i

x2nt+2s+i

}

= max

{
A,

x2(n–1)t+3s+iB
A2

}
eventually. (2.23)

From this we see that if A = B, then

x2nt+3s+i = x2(n–1)t+3s+i eventually, (2.24)

and if A > B, then

x2nt+3s+i = A eventually, (2.25)

since

lim
n−→∞

x2(n–1)t+3s+iB
A2 =

A3s+iB
A2 < A3s+i. (2.26)

Using induction and arguments similar to the ones developed in the above given proof, we
can show that, for any k ∈ N, x2nt+ks+i and y2nt–t+ks+i are constant sequences eventually. The
second case follows from the previously proved one by interchanging letters. The proof is
complete. �
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Lemma 2.4 If A = 1/B > B and for some i ∈ N0, x2nt+i > A eventually and Ai = A, then, for
any k ∈ N, x2nt+ks+i and y2nt–t+ks+i are constant sequences eventually. If B = 1/A > A and for
some i ∈ N0, y2nt+i > B eventually and Bi = B, then, for any k ∈ N, y2nt+ks+i and x2nt–t+ks+i

are constant sequences eventually.

Proof Assume that A = 1/B > B and for some i ∈ N0, x2nt+i > A eventually and Ai = A. By
(1.1) we have

x2nt+i = max

{
A,

y2nt–t+i

x2nt–s+i

}

=
y2nt–t+i

x2nt–s+i
eventually, (2.27)

and

x2nt+s+i = max

{
A,

x2(n–1)t+s+i

x2nt+iy2nt–t+i

}
(2.28)

and

lim
n−→∞

x2(n–1)t+s+i

x2nt+iy2nt–t+i
= lim

n−→∞
x2(n–1)t+s+i

x2
2nt+ix2nt–s+i

≤ As+i

A3 < As+i. (2.29)

Then we see that x2nt+s+i = A eventually. From this and y2nt–t+i ≥ A2 eventually it follows
that

y2nt–t+s+i = max

{
B,

x2(n–1)t+s+i

y2nt–t+i

}

= max

{
B,

A
y2nt–t+i

}

= B eventually, (2.30)

and

y2nt–t+2s+i = max

{
B,

x2(n–1)t+2s+i

y2nt–t+s+i

}

=
x2(n–1)t+2s+i

B
eventually, (2.31)

and

x2nt+2s+i = max

{
A,

y2nt–t+2s+i

x2nt+s+i

}

= max{A, x2(n–1)t+2s+i}
= x2(n–1)t+2s+i eventually. (2.32)

Thus x2nt+2s+i and y2nt–t+2s+i are constant sequences eventually. Using arguments similar to
the ones developed in the proof of Lemma 2.3, we can show that, for any k ∈ N, x2nt+ks+i and
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y2nt–t+ks+i are constant sequences eventually. The second case follows from the previously
proved one by interchanging letters. The proof is complete. �

Theorem 2.2
(1) Assume A = 1/B > B. Then one of the following statements holds.

(i) xn = A eventually and yn is a periodic sequence with period 2s eventually.
(ii) If s is odd, then xn, yn are periodic sequences with period 2t eventually.

(iii) If s is even, then xn is a periodic sequence with period 2t eventually and yn is a
periodic sequence with period 2st eventually.

(2) Assume B = 1/A > A. Then one of the following statements holds.
(i) yn = B eventually and xn is a periodic sequence with period 2s eventually.

(ii) If s is odd, then xn, yn are periodic sequences with period 2t eventually.
(iii) If s is even, then yn is a periodic sequence with period 2t eventually and xn is a

periodic sequence with period 2st eventually.

Proof Assume that A = 1/B > B. If xn = A eventually, then by Lemma 2.1 we see that yn is a
periodic sequence with period 2s eventually. Now we assume that xn �= A eventually. Then
we have Ai > A (or x2nt+i > A eventually and Ai = A) for some 0 ≤ i ≤ 2t – 1.

If s is odd, then gcd(2t, s) = 1. Thus, for every j ∈ {0, 1, 2, . . . , 2t – 1}, there exist some
1 ≤ ij ≤ 2t and integer λj such that ijs = λj2t + j since {rs : 0 ≤ r ≤ 2t –1} = {0, 1, 2, . . . , 2t –1}
(mod 2t). By Lemma 2.3 and Lemma 2.4 we see that, for any k ∈ N, x2nt+ks+i and y2nt–t+ks+i

are constant sequences eventually. Thus, for any 0 ≤ r ≤ 2t – 1, x2nt+r and y2nt+r are con-
stant sequences eventually, which implies that xn, yn are periodic sequences with period
2t eventually.

In the following, we assume that s is even with s = 2s′. Then gcd(t, s′) = 1 and t is odd.
Thus, for every j ∈ {0, 1, 2, . . . , t – 1}, there exist some 1 ≤ ij ≤ t and integer λj such that
ijs′ = λjt + j and ijs = λj2t + 2j.

If x2nt+i �= A eventually for some i ∈ {0, 2, . . .} and x2nt+l �= A eventually for some l ∈
{1, 3, . . .}, then by Lemma 2.3 and Lemma 2.4 we see that, for any k ∈ N, x2nt+ks+i, y2nt–t+ks+i,
x2nt+ks+l and y2nt–t+ks+l are constant sequences eventually. Thus, for any 0 ≤ r ≤ 2t – 1,
x2nt+r and y2nt+r are constant sequences eventually, which implies that xn, yn are periodic
sequences with period 2t eventually.

If x2nt+i �= A eventually for some i ∈ {0, 2, . . .} and x2nt+l = A eventually for any l ∈ {1, 3, . . .},
then by Lemma 2.3 and Lemma 2.4 we see that, for any k ∈ N, x2nt+ks+i and y2nt–t+ks+i are
constant sequences eventually. This implies that, for every r ∈ {0, 1, 2, . . . , 2t – 1}, x2nt+r

is constant sequence eventually and for every l ∈ {1, 3, . . .}, y2nst+l is constant sequence
eventually. By (1.1) we see that there exists N ∈ N such that, for any n ≥ N and r ∈ {0, 2, . . .},

y2nt+r = max

{
B,

A
y2nt+r–s

}
. (2.33)

Then we have y2nt+ry2nt+r–s ≥ A. Thus, for any n ≥ N and l ∈ {1, 3, . . .} and k ∈ N,

B ≤ y2nt+t+2ks+l = max

{
B,

x2nt+2ks+l

y2nt+t+2ks+l–s

}

= max

{
B,

Ay2nt+t+2ks+l–2s

y2nt+t+2ks+l–sy2nt+t+2ks+l–2s

}
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≤ max{B, y2nt+t+2ks–2s+l}
= y2nt+t+2ks–2s+l eventually. (2.34)

Then, for every n ≥ N and l ∈ {1, 3, . . .}, we have

B ≤ · · · ≤ y2nt+t+2ks+l ≤ y2nt+t+2ks–2s+l ≤ y2nt+t+2s+l ≤ y2nt+t+l. (2.35)

We claim that, for every n ≥ N and l ∈ {1, 3, . . .}, {y2nt+t+2ks+l}k∈N is a constant se-
quence eventually. Assume on the contrary that, for some n ≥ N and some l ∈ {1, 3, . . .},
{y2nt+t+2ks+l}k∈N is not a constant sequence eventually. Then there exists a sequence of pos-
itive integers k1 < k2 < · · · such that, for any r ∈ N, we have

B < y2nt+t+2krs+l =
A

y2nt+t+2krs+l–s

< y2nt+t+2kr–1s+l =
A

y2nt+t+2kr–1s+l–s
, (2.36)

which implies y2nt+t+2krs+l–s > y2nt+t+2kr–1s+l–s for any r ∈ N. This is a contradiction. Take
ps > N . Then y2nst+t+l = y2pst+t+2(nt–pt)s+l is a constant sequence eventually for any l ∈
{1, 3, . . .}. From the above we see that yn is a periodic sequence with period 2st eventu-
ally.

In a similar fashion, we can show that if x2nt+i = A eventually for any i ∈ {0, 2, . . .} and
x2nt+l �= A eventually for some l ∈ {1, 3, . . .}, then also statement (1(iii)) holds.

The second case follows from the previously proved one by interchanging letters. The
proof is complete. �

Now we assume that A = B = 1. Then, for any 0 ≤ i ≤ 2t – 1 and n ∈ N0, we have 1 ≤
x2(n+1)t+i ≤ x2nt+i eventually and 1 ≤ y2(n+1)t+i ≤ y2nt+i eventually.

Lemma 2.5 Let A = B = 1 and s ≥ t. Then the following statements hold.
(1) If Ai = 1, then Bt+i = 1. If Bi = 1, then At+i = 1.
(2) If xN = 1 for some N ∈ N and A2nt+N+ks = 1 for any k, n ∈ N, then

x2nt+N+ks = y2nt+t+ks+N = 1 for any k, n ∈ N. If yN = 1 for some N ∈ N and B2nt+N+ks = 1
for any k, n ∈ N, then y2nt+N+ks = x2nt+t+ks+N = 1 for any k, n ∈ N.

(3) If s is even and gcd(s, t) = 1, then 1 ∈ {xn : n ∈ {0, 2, . . .}} ∪ {yt+n : n ∈ {0, 2, . . .}} and
1 ∈ {xn : n ∈ {1, 3, . . .}} ∪ {yt+n : n ∈ {1, 3, . . .}}.

(4) 1 ∈ {xn : n ∈ N} ∪ {yn : n ∈ N}.

Proof (1) Assume that Ai = 1. Assume on the contrary that Bt+i > 1. It follows from (1.1)
that

y2nt+t+i =
x2nt+i

y2nt+t–s+i
. (2.37)

This implies

1 ≤ lim
n−→∞ y2nt+t–s+i =

1
Bt+i

< 1. (2.38)



Su et al. Advances in Difference Equations        (2020) 2020:213 Page 10 of 13

This is a contradiction. The second case follows from the previously proved one by inter-
changing letters.

(2) If xN = 1 for some N ∈ N, then x2nt+N = 1 for any n ∈ N. It follows from (1.1) that

y2nt+t+N = max

{
1,

x2nt+N

y2nt+t–s+N

}

= max

{
1,

1
y2nt+t–s+N

}
= 1 (2.39)

and

y2nt+t+s+N = max

{
1,

x2nt+s+N

y2nt+t+N

}

= x2nt+s+N (2.40)

and

x2(n+1)t+N+s = max

{
1,

y2nt+t+s+N

x2(n+1)t+N

}

= max{1, y2nt+t+s+N }
= y2nt+t+s+N

= x2nt+N+s. (2.41)

Thus x2nt+N+s = y2nt+t+s+N = 1 for any n ∈ N. In a similar fashion, we can show that
x2nt+N+ks = y2nt+t+ks+N = 1 for any k, n ∈ N. The second case follows from the previously
proved one by interchanging letters.

(3) If s is even and gcd(s, t) = 1, then t is odd. Assume on the contrary that 1 /∈ {xn : n ∈
{0, 2, . . .}} ∪ {yt+n : n ∈ {0, 2, . . .}}. Then it follows from (1.1) that, for any n ∈ N,

y2nt+t = max

{
1,

x2nt

y2nt+t–s

}

=
x2nt

y2nt+t–s
> 1 (2.42)

and

x2nt+2t–s = max

{
1,

y2nt+t–s

x2nt+2t–2s

}

=
y2nt+t–s

x2nt+2t–2s
> 1. (2.43)

Thus

x2nt > x2nt–2(s–t)

> x2nt–4(s–t)

· · ·
> x2t(n–t+s). (2.44)

This is a contradiction.
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(4) Case (4) is treated similarly to case (3). The proof is complete. �

Theorem 2.3 Let A = B = 1 and s ≥ t. Then one of the following statements holds.
(1) xn = 1 eventually and yn is a periodic sequence with period 2s eventually.
(2) yn = 1 eventually and xn is a periodic sequence with period 2s eventually.
(3) xn, yn are periodic sequences with period 2t eventually.

Proof If xn = 1 (or yn = 1) eventually, then by Lemma 2.1 we see that yn (or xn) is a periodic
sequence with period 2s eventually. Now we assume that xn �= 1 eventually. Then we have
Ai > 1 for some 0 ≤ i ≤ 2t – 1 or limn−→∞ xn = 1.

If s is odd, then gcd(2t, s) = 1. Thus, for every j ∈ {0, 1, 2, . . . , 2t – 1}, there exist some
1 ≤ ij ≤ 2t and integer λj such that ijs = λj2t + j. By Lemma 2.3 and Lemma 2.5 we see that,
for any k ∈ N, x2nt+ks+i and y2nt–t+ks+i are constant sequences eventually, or for some N ∈ N,
x2nt+N+ks = y2nt+t+ks+N = 1 for any k, n ∈ N, or for some N ∈ N, y2nt+N+ks = x2nt+t+ks+N = 1
for any k, n ∈ N. Thus, for any 0 ≤ r ≤ 2t – 1, x2nt+r and y2nt+r are constant sequences
eventually, which implies that xn, yn are periodic sequences with period 2t eventually.

In the following, we assume that s is even with s = 2s′, then gcd(t, s′) = 1 and t is odd.
Thus, for every j ∈ {0, 1, 2, . . . , t – 1}, there exist some 1 ≤ ij ≤ t and integer λj such that
ijs = λj2t + 2j.

If Ai > 1 for some i ∈ {0, 2, . . .}, then by Lemma 2.3 we see that, for any k ∈ N, x2nt+ks+i

and y2nt–t+ks+i are constant sequences eventually. If Ai = 1 for any i ∈ {0, 2, . . .}, then by
Lemma 2.5 we have Bt+i = 1 for any i ∈ {0, 2, . . .} and x2nt+i+ks = y2nt–t+ks+i = 1 for any k ∈ N
eventually. In a similar fashion, also we can show that, for any i ∈ {1, 3, . . .}, x2nt+ks+i and
y2nt–t+ks+i are constant sequences eventually for any k ∈ N, or x2nt+i+ks = y2nt–t+ks+i = 1 for
any k ∈ N eventually for any i ∈ {1, 3, . . .} and k ∈ N. Thus, for any 0 ≤ r ≤ 2t – 1, x2nt+r and
y2nt+r are constant sequences eventually. This implies that xn, yn are periodic sequences
with period 2t eventually.

Using the previously proved one by interchanging letters, also we can show that if yn �=
1 eventually, then xn, yn are periodic sequences with period 2t eventually. The proof is
complete. �

In Example 3.1 of [37], we showed that the equation

xn =
xn–t

xn–s
(t > s) (2.45)

has a positive solution zn (n ≥ –t) with 1 < zn+1 < zn for any n ≥ –t and limn−→∞ zn = 1.
From Example 3.1 of [37], we obtain the following theorem.

Theorem 2.4 Let A ≤ 1 and B ≤ 1 and s < t. Assume zn (n ≥ –t) is a positive solution of
(2.45) with 1 < zn+1 < zn for any n ≥ –t and limn−→∞ zn = 1. Then equation (1.1) have a
solution (xn, yn) with 1 < xn+1 = yn+1 = zn+1 < xn = yn = zn for any n ≥ –t and limn−→∞ xn =
limn−→∞ yn = 1.
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26. Stević, S.: Product-type system of difference equations of second-order solvable in closed form. Electron. J. Qual.

Theory Differ. Equ. 2014, 56 (2014)
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31. Stević, S., Iričanin, B.D.: On a max-type difference inequality and its applications. Discrete Dyn. Nat. Soc. 2010, Article

ID 975740 (2010)
32. Sun, T., He, Q., Wu, X., Xi, H.: Global behavior of the max-type difference equation xn =max{1/xn–m ,An/xn–r}. Appl.

Math. Comput. 248, 687–692 (2014)



Su et al. Advances in Difference Equations        (2020) 2020:213 Page 13 of 13

33. Sun, T., Liu, J., He, Q., Liu, X.: Eventually periodic solutions of a max-type difference equation. Sci. World J. 2014, Article
ID 219437 (2014)

34. Sun, T., Qin, B., Xi, H., Han, C.: Global behavior of the max-type difference equation xn+1 = max{1/xn ,An/xn–1}. Abstr.
Appl. Anal. 2009, Article ID 152964 (2009)

35. Sun, T., Xi, H.: On the solutions of a system of difference equations with maximum. Appl. Math. Comput. 290, 292–297
(2016)

36. Sun, T., Xi, H., Han, C., Qin, B.: Dynamics of the max-type difference equation xn =max{1/xn–m ,An/xn–r}. J. Appl. Math.
Comput. 38, 173–180 (2012)

37. Sun, T., Xi, H., Quan, W.: Existence of monotone solutions of a difference equation. Discrete Dyn. Nat. Soc. 2008, Article
ID 917560 (2008)

38. Xiao, Q., Shi, Q.: Eventually periodic solutions of a max-type equation. Math. Comput. Model. 57, 992–996 (2013)
39. Yazlik, Y., Tollu, D.T., Taskara, N.: On the solutions of a max-type difference equation system. Math. Methods Appl. Sci.

38, 4388–4410 (2015)


	On the solutions of a max-type system of difference equations of higher order
	Abstract
	MSC
	Keywords

	Introduction
	Main results and proofs
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


