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Abstract
Fractional difference equations have become important due to their qualitative
properties and applications in discrete modeling. Stability analysis of solutions is one
of the most widely used qualitative properties with tremendous applications. In this
paper, we investigate the existence and stability results for a class of non-linear
Caputo nabla fractional difference equations. To obtain the existence and stability
results, we use Schauder’s fixed point theorem, the Banach contraction principle and
Krasnoselskii’s fixed point theorem. The analysis of the theoretical results depends on
the structure of nabla discrete Mittag-Leffler functions. An example is provided to
illustrate the theoretical results.
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1 Introduction
The advancement in the theory of the fractional calculus is more than three centuries
old evolving along with the classical integer order calculus. Due to the superior merits of
memory and hereditary properties, fractional calculus is getting more attention among
researchers [1, 2]. Nowadays, fractional derivatives have been extensively used to model
mechanical and electrical properties of assorted real materials. Furthermore, fractional
derivatives have also been broadly used into different types of physical, chemical and bi-
ological phenomena [3–5]. Discrete fractional calculus has generated interest in recent
years (see [6] and the references therein). For the trend of fractional calculus with differ-
ent types of discrete exponential and Mittag-Leffler kernels we attract the attention of the
reader to the recent manuscripts [7, 8] on kernels. This trend took place after the publi-
cation of continuous counterparts [9, 10]. Specially, fractional difference equations have
become a popular topic recently. Using different approaches existence, uniqueness and
then analysis of attractivity, stability and asymptotic stability of the solutions of fractional
difference equations are most important topics in this direction [11–15].

Fixed point theorems are widely used for existence and uniqueness purposes. Further-
more, they are used to investigate the attractivity of solutions as well as stability and the

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02674-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02674-1&domain=pdf
http://orcid.org/0000-0002-8889-3768
mailto:tabdeljawad@psu.edu.sa


Butt et al. Advances in Difference Equations        (2020) 2020:209 Page 2 of 11

asymptotic stability. In 2017, Abdeljawad et al. [16] used the Krasnoselskii fixed point
theorem for a Caputo q-difference equation to investigate the existence of a solution. In
2018, Zhang and Zhou investigated existence and attractivity of solutions of Riemann–
Liouville-like fractional difference equations using the Picard iteration method and then
they used Schauder’s fixed point theorem for the required results [17]. Furthermore, they
also proved results using weighted space. In 2018, Ardjouni et al. [18] used the Krasnosel-
skii fixed point theorem for a stability analysis of a nabla fractional difference equation. In
2018, Arjumand worked on existence and stability analysis of a non-linear Caputo frac-
tional differential equation using the Krasnoselskii fixed point theorem by considering
the solution of a fractional differential equation [19]. Besides, for help on stability refer to
[20–25] and the references therein. Motivated by all the above-mentioned papers, here we
consider the following fractional difference equation with initial condition:

c∇ν
0 x(t) = λx(t) + F

(
t, x(t)

)
, x(0) = x0, t ∈N0. (1)

Here c∇ν
0 represents the Caputo nabla fractional difference operator with 0 < ν ≤ 1 and a

continuous function F is defined as F : N0 × R → R with F (t, 0) = 0. Here we use the
approach as mentioned in [19] by considering the solution of Eq. (1) in terms of the nabla
discrete Mittag-Leffler function and then using its properties, we discuss the existence of
solutions and then attractivity, stability and finally asymptotic stability of solutions of the
above-mentioned problem. To the best of our knowledge, this approach to studying the
stability using the fixed point theorem has never been followed by any researcher.

We arranged our current paper as follows: Sect. 2 contains some basic definitions, no-
tations, lemmas and graphic analysis for the nabla discrete Mittag-Leffler functions. Sec-
tion 3 intends to investigate the existence and stability results. Finally an example is pro-
vided with concluding remarks.

2 Preliminaries and essential tools
In this section, we present some basic nabla notations, definitions [6, 26, 27] and lemmas
that are helpful in proving our main results. The graphs of the nabla discrete Mittag-Leffler
functions will be shown and the behavior at infinity will be investigated as well.

Definition 1 For x : Na+1 →R and ν > 0, the nabla fractional sum is defined as

∇–ν
a x(t) =

1
Γ (ν)

t∑

τ=a+1

(
t – ρ(τ )

)ν–1x(τ ), t ∈Na,

where ρ(τ ) = τ – 1. Meanwhile, ∇–0
a is taken as the identity operator.

Definition 2 For x : Na →R, ν ∈R
+ and choose a natural number n such that n – 1 < ν <

n, then the νth order nabla fractional difference is defined as

∇ν
a x(t) =

1
Γ (–ν)

t∑

τ=a+1

(
t – ρ(τ )

)–ν–1x(τ ), t ∈Na+1,

where ∇0
a is taken as the identity operator.
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Definition 3 For x : Na–n+1 → R and ν > 0. The νth order Caputo nabla fractional differ-
ence of x is given by

c∇ν
a x(t) = ∇–(n–ν)

a
[∇nx(t)

]
, t ∈Na+1, n = �ν�.

Here c∇0
a is taken as the identity operator.

Definition 4 ([28]) Any subset of sequences in l∞0 is called uniformly Cauchy (or equi
Cauchy) if for every ε > 0, we have an integer N such that, for any sequence x = {x(n)} and
i, j > N , we must have |x(i) – x(j)| < ε.

Theorem 1 ([28], Discrete Arzela–Ascoli’s theorem) Any subset of l∞0 which is bounded
and uniformly Cauchy is called relatively compact.

Theorem 2 ([17], Schauder’s fixed point theorem) Let N be a non-empty, closed and
convex subset of a Banach space S. Further assume a continuous mapping T : N → N

such that T N is a relatively compact subset of S. Then T admits a unique fixed point in
N . That is, T x = x for x ∈ N .

Theorem 3 (Banach contraction principle) Let N be a non-empty complete metric space
with a contraction mapping T : N → N . Then T has at least one fixed point in N .
That is, there exists x ∈ N such that T x = x.

Now we state Krasnoselskii’s fixed point theorem.

Theorem 4 ([29], Krasnoselskii fixed point theorem) Let N be a non-empty, closed and
convex subset of a Banach space (S,‖ · ‖). Suppose that T1 and T2 maps N into S such
that

(i) T1x + T2y ∈ N for all x, y ∈ N ,
(ii) T1 is continuous and T1N is contained in a compact set of S,

(iii) T2 is a contraction.
Then T admits a fixed point in N such that T1x + T2x = x.

Lemma 1 ([27]) Let 0 < ν ≤ 1, a ∈ R and consider the nabla Caputo nonhomogeneous
fractional difference equation

c∇ν
a z(t) = λz(t) + F (t), z(a) = a0, t ∈Na, (2)

then its solution is given by

z(t) = a0Eν(λ, t – a) +
t∑

τ=a+1

Eν,ν
(
λ, t – ρ(τ )

)
F (τ ). (3)

Remark 1 Following the above lemma, the solution of problem (1) is given by

x(t) = x0Eν(λ, t) +
t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)
. (4)
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Definition 5 ([27]) For λ ∈ R, |λ| < 1 and ν,β , t ∈ C with 
(ν) > 0, the nabla discrete
Mittag-Leffler functions are defined as follows:

Eν,β (λ, t) =
∞∑

m=0

λm tmν+β–1

Γ (mν + β)
.

For β = 1, the one parameter nabla discrete Mittag-Leffler function can be written as

Eν(λ, t) =
∞∑

m=0

λm tmν

Γ (mν + 1)
.

Remark 2 (The graphs and behavior of nabla discrete Mittag-Leffler functions at ∞) Mo-
tivated by Remark 1 in [30] and for the sake of benefiting in the proof of our main re-
sults, the numerical evidence, as illustrated in Fig. 1 and Fig. 2, shows that, for t ∈ R

+,
0 < ν ≤ 1, the one and two parameter nabla discrete Mittag-Leffler functions are decreas-
ing functions of t and are bounded above by 1. That is, Eν(λ, t) ≤ 1 and Eν,ν(λ, t) ≤ 1,
where –1 < λ < 0 and –ν < λ < 0. Moreover, it is to be noted that limt→∞ Eν(λ, t) = 0 and
limt→∞ Eν,ν(λ, t) = 0.

Figure 1 Eν (λ, t) for λ = –0.5, ν = 0.6, 0.8, 1

Figure 2 Eν ,ν (λ, t) for λ = –0.5, ν = 0.6, 0.8, 1
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Definition 6 ([19]) x = ϕ(t) being a solution of Eq. (1) is called:
(i) stable, if for every ε > 0 and t0 ≥ 0, there exists a δ > 0 depending on t0 and ε such

that, for |x0 – ϕ(t0)| ≤ δ(t0, ε), we have, for all t ≥ t0, |x(t, x0, t0) – ϕ(t)| < ε;
(ii) attractive, if there exists ζ (t0) > 0 such that ‖x0‖ ≤ ζ implies limt→∞ x(t, x0, t0) = 0;

(iii) asymptotically stable if it is attractive and stable.

3 Main results
In this section, we present existence and stability of the solutions of Eq. (1).

3.1 The existence and uniqueness theorems
Let l∞0 be the set of all real sequences x = {x(t)}∞t=0 from the starting point t = 0. The space
is endowed with the supremum norm ‖x‖ = supt∈N0 |x(t)|. l∞0 is a Banach space.

Theorem 5 Let us consider the solution of Eq. (1) as mentioned in Eq. (4). Assume a con-
tinuous and bounded function F , which obeys

(A1) F : N0 ×R → R satisfies the Lipschitz condition with L > 0 being a Lipschitz con-
stant,

∥
∥F (t, x) – F (t, y)

∥
∥ ≤ L ‖x – y‖, ∀t ∈N

b
0, b > 0.

Then using Schauder’s fixed point theorem, there exists at least one solution of Eq. (1).

Proof Let us consider a non-empty, closed and convex subset K = {x : x ∈ l∞0 ,‖x‖ ≤ Λ};
also assume that ‖F (t, x)‖ ≤ R , ∀(t, x) ∈N

b
0 ×R. Furthermore, consider a mapping T on

K as given by

T x(t) = x0Eν(λ, t) +
t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)
.

First of all we show that T maps K into K :

∣∣T x(t)
∣∣ =

∣∣
∣∣
∣
x0Eν(λ, t) +

t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)
∣∣
∣∣
∣

≤ |x0|
∣
∣Eν(λ, t)

∣
∣ +

∫ t

0

∣
∣Eν,ν

(
λ, t – ρ(τ )

)∣∣
∣
∣F

(
τ , x(τ )

)∣∣∇τ

≤ |x0| + Rb ≤ Λ.

Now we have to show that T is relatively compact, for this purpose consider 0 ≤ t1 ≤ t2 ≤
b so we get

∣∣T x(t2) – T x(t1)
∣∣

≤ ∣∣x0
(
Eν(λ, t2) – Eν(λ, t1)

)∣∣

+

∣
∣∣
∣∣

( t2∑

τ=1

Eν,ν
(
λ, t2 – ρ(τ )

)
–

t1∑

τ=1

Eν,ν
(
λ, t1 – ρ(τ )

)
)

F
(
τ , x(τ )

)
∣
∣∣
∣∣

≤ ∣∣x0
(
Eν(λ, t2) – Eν(λ, t1)

)∣∣
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+

∣∣
∣∣
∣

( t1∑

τ=1

Eν,ν
(
λ, t2 – ρ(τ )

)
–

t1∑

τ=1

Eν,ν
(
λ, t1 – ρ(τ )

)
)

F
(
τ , x(τ )

)
∣∣
∣∣
∣

+

∣
∣∣
∣∣

t2∑

τ=t1+1

Eν,ν
(
λ, t2 – ρ(τ )

)
F

(
τ , x(τ )

)
∣
∣∣
∣∣

≤ ∣
∣x0

(
Eν(λ, t2) – Eν(λ, t1)

)∣∣

+
∫ t1

0

∣
∣(Eν,ν

(
λ, t2 – ρ(τ )

)
– Eν,ν

(
λ, t1 – ρ(τ )

))∣∣
∣
∣F

(
τ , x(τ )

)∣∣∇τ

+
∫ t2

t1

∣∣Eν,ν
(
λ, t2 – ρ(τ )

)∣∣∣∣F
(
τ , x(τ )

)∣∣∇τ

≤ ∣
∣x0

(
Eν(λ, t2) – Eν(λ, t1)

)∣∣

+
∫ t1

0

∣
∣(Eν,ν

(
λ, t2 – ρ(τ )

)
– Eν,ν

(
λ, t1 – ρ(τ )

))∣∣R∇τ

+ R(t2 – t1).

Hence it follows that |T x(t2) – T x(t1)| → 0 as t1 → t2.
Now in order to show the continuity of T , let us consider a sequence xn which converges

to x, then we have

∣∣T xn(t) – T x(t)
∣∣ ≤

∣
∣∣
∣∣

t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)(
F

(
τ , xn(τ )

)
– F

(
τ , x(τ )

))
∣
∣∣
∣∣

≤
∫ t

0

∣∣Eν,ν
(
λ, t – ρ(τ )

)∣∣∣∣F
(
τ , xn(τ )

)
– F

(
τ , x(τ )

)∣∣∇τ

≤ L ‖xn – x‖
∫ t

0
∇τ ≤ L b‖xn – x‖,

we can see easily T xn → T x as xn → x. Hence using Arzela–Ascoli’s theorem, T K ,
being a bounded and uniformly Cauchy subset of l∞0 , is relatively compact.

Hence by Schauder’s fixed point theorem there exists at least one fixed point of T in
K . Furthermore, if all functions x in K tend to 0 as t → ∞ then solutions of Eq. (1) tend
to zero as t → ∞ and hence are called attractive solutions. �

3.2 The stability results
In the light of the fixed point results presented in the above subsection, we present some
stability results in what follows.

Theorem 6 Assume that a bounded, continuous function F satisfies the following condi-
tions,

(A2) ‖F (t, x) – F (t, y)‖ ≤ L (t)‖x – y‖,
(A3)

∫ t
0 L (τ )∇τ → 0 as t → ∞, where M = supt∈N0

∫ t
0 L (τ )∇τ ,

then using the Banach contraction principle, there exists a unique solution of Eq. (1). More-
over, the solution is attractive.
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Proof Define a set E = {x ∈ l∞0 ,‖x‖ ≤ ε and x(t) → 0 as t → ∞}. Furthermore, assume
that

∣
∣F (t, x)

∣
∣ ≤ ∣

∣F (t, x) – F (t, 0)
∣
∣ +

∣
∣F (t, 0)

∣
∣ ≤ L (t)|x – 0| + 0 = L (t)‖x‖.

Now we define a mapping T on E as follows:

T x(t) = x0Eν(λ, t) +
t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)
.

Continuity of T x is followed by x ∈ E . First of all we prove that T maps E into itself:

∣∣T x(t)
∣∣ =

∣
∣∣
∣∣
x0Eν(λ, t) +

t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)
∣
∣∣
∣∣

≤ |x0|
∣∣Eν(λ, t)

∣∣ +
∫ t

0

∣∣Eν,ν
(
λ, t – ρ(τ )

)∣∣∣∣F
(
τ , x(τ )

)∣∣∇τ

≤ |x0| +
∫ t

0
L (τ )

∥
∥x(τ )

∥
∥∇τ

≤ |x0| + ε

∫ t

0
L (τ )∇τ ≤ |x0| + εM ≤ ε.

Hence T maps E into itself. Now we show that T x(t) → 0 as t → ∞. We can see easily
in Figs. 1 and 2 that limt→∞ Eν(λ, t) → 0 and limt→∞ Eν,ν(λ, t – ρ(τ )) → 0. So we have
limt→∞ x0Eν(λ, t) → 0. Also

∣
∣∣
∣

∫ t

0
Eν,ν

(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)∇τ

∣
∣∣
∣ ≤

∫ t

0

∣∣Eν,ν
(
λ, t – ρ(τ )

)∣∣∣∣F
(
τ , x(τ )

)∣∣∇τ

≤
∫ t

0

∣
∣Eν,ν

(
λ, t – ρ(τ )

)∣∣L (τ )
∥
∥x(τ )

∥
∥∇τ

≤ ε

∫ t

0
L (τ )∇τ ≤ εM .

Thus | ∫ t
0 Eν,ν(λ, t – ρ(τ ))F (τ , x(τ ))∇τ | → 0 as t → ∞. Hence T x(t) → 0 as t → ∞. Now

we show that T is a contraction mapping:

∣
∣T x(t) – T y(t)

∣
∣ ≤

∫ t

0

∣
∣Eν,ν

(
λ, t – ρ(τ )

)∣∣
∣
∣F

(
τ , x(τ )

)
– F

(
τ , y(τ )

)∣∣∇τ

≤ ‖x – y‖
∫ t

0
L (τ )∇τ ≤ M ‖x – y‖.

For M < 1, T is contraction. Hence by the contraction mapping principle Eq. (1) has a
unique solution and furthermore, since all functions x in E tend to 0 as t → ∞, a solution
of Eq. (1) tends to zero as t → ∞, and hence is called an attractive solution. �

Theorem 7 Let x be solution of Eq. (1) and x̂ be a solution of Eq. (1) satisfying the ini-
tial condition x̂(0) = x̂0. Moreover, let there for very small ε > 0 exist δ = (1 – M )ε. Then
solutions of Eq. (1) are stable.



Butt et al. Advances in Difference Equations        (2020) 2020:209 Page 8 of 11

Proof Since x is a solution of Eq. (1) and x̂ is also a solution of Eq. (1) satisfying the initial
condition x̂(0) = x̂0, we have

∣∣x(t) – x̂(t)
∣∣ ≤ ∣∣x0Eν(λ, t) – x̂0Eν(λ, t)

∣∣

+

∣∣∣
∣∣

t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)
–

t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , x̂(τ )

)
∣∣∣
∣∣

≤ |x0 – x̂0|
∣
∣Eν(λ, t)

∣
∣ +

∫ t

0

∣
∣Eν,ν

(
λ, t – ρ(τ )

)∣∣
∣
∣F

(
τ , x(τ )

)
– F

(
τ , x̂(τ )

)∣∣∇τ

≤ |x0 – x̂0| +
∫ t

0
L (τ )

∣∣x(τ ) – x̂(τ )
∣∣∇τ ≤ |x0 – x̂0| + ‖x – x̂‖

∫ t

0
L (τ )∇τ

≤ |x0 – x̂0| + ‖x – x̂‖M .

Hence we have

‖x – x̂‖ ≤ 1
1 – M

‖x0 – x̂0‖.

Then, for any ε > 0, let δ = (1 – M )ε so for ‖x0 – x̂0‖ < δ we have ‖x – x̂‖ < ε. Therefore,
the solutions of Eq. (1) are stable. This completes the proof. �

Remark 3 From Theorem (6) and Theorem (7), it is clear that a solution of Eq. (1) is asymp-
totically stable.

Theorem 8 Assume that we have a bounded, continuous function F satisfying assump-
tions (A2) and (A3). Then using Krasnoselskii’s fixed point theorem, Eq. (1) has at least one
solution.

Proof Let us consider a non-empty, closed, convex subset of a Banach space l∞0 defined as
N = {x : x ∈ l∞0 , |x(t)| ≤ m,∀t ∈ N0}. Furthermore, define operators T1 and T2 on N as
follows:

T1x(t) = x0Eν(λ, t),

T2x(t) =
t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)
=

∫ t

0
Eν,ν

(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)∇τ .

As is well known, x being fixed point of the operator T x = T1x + T2x is a solution of Eq.
(1). Following the three steps as mentioned in Theorem 4, we present our proof as follows.

In the first step, we prove that T maps N into N i.e. for any x, y ∈ N , we have to show
that T1x(t) + T2y(t) ∈ N :

∣
∣T1x(t) + T2y(t)

∣
∣ =

∣
∣∣
∣∣
x0Eν(λ, t) +

t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , y(τ )

)
∣
∣∣
∣∣

≤ ∣
∣x0Eν(λ, t)

∣
∣ +

∣
∣∣
∣∣

t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , y(τ )

)
∣
∣∣
∣∣
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≤ |x0| +
∫ t

0

∣∣Eν,ν
(
λ, t – ρ(τ )

)∣∣∣∣F
(
τ , y(τ )

)∣∣∇τ

≤ |x0| +
∫ t

0
L (τ )

∣
∣y(τ )

∣
∣∇τ

≤ |x0| + M m ≤ m.

Hence T N ⊂ N . In the second step, in order to prove that T1 is continuous, let us
consider a sequence xn such that xn → x.

∣
∣T1xn(t) – T1x(t)

∣
∣ =

∣
∣x0Eν(λ, t) – x0Eν(λ, t)

∣
∣ = 0,

so for xn → x, T1xn → T1x. Hence T1 is continuous. Now we show that T1(N ) resides
in a relatively compact set of l∞0 . Taking t1 ≤ t2 ≤ H , we have

∣∣T1x(t2) – T1x(t1)
∣∣ =

∣∣x0Eν(λ, t2) – x0Eν(λ, t1)
∣∣

= |x0|
∣∣Eν(λ, t2) – Eν(λ, t1)

∣∣

as t1 → t2, we get |T1x(t2) – T1x(t1)| → 0. Hence T1(N ) resides in a relatively compact
set of l∞0 .

In the last step, we show that T2 is contraction. Letting x, y ∈ N , we have

∣∣T2x(t) – T2y(t)
∣∣

=

∣
∣∣∣
∣

t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)
–

t∑

τ=1

Eν,ν
(
λ, t – ρ(τ )

)
F

(
τ , y(τ )

)
∣
∣∣∣
∣

=
∣
∣∣
∣

∫ t

0
Eν,ν

(
λ, t – ρ(τ )

)
F

(
τ , x(τ )

)∇τ –
∫ t

0
Eν,ν

(
λ, t – ρ(τ )

)
F

(
τ , y(τ )

)∇τ

∣
∣∣
∣

≤
∫ t

0

∣
∣Eν,ν

(
λ, t – ρ(τ )

)∣∣
∣
∣(F

(
τ , x(τ )

)
– F

(
τ , y(τ )

))∣∣∇τ

≤
∫ t

0
L (τ )

∣∣x(τ ) – y(τ )
∣∣∇τ

≤ ‖x – y‖
∫ t

0
L (τ )∇τ ≤ M ‖x – y‖.

For M < 1, T2 is contraction.
Hence according to Theorem 4, T has a fixed point in N which is a solution of Eq.

(1). �

Remark 4 According to Theorem (8), the solutions of Eq. (1) exist and are in N . Fur-
thermore, if all functions x in N tend to 0 as t → ∞, then the solutions of Eq. (1) are
attractive.

Remark 5 From Theorem 7 and Theorem 8, it is clear that the solution of Eq. (1) is asymp-
totically stable.
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4 Example
Consider the fractional difference equation as follows:

c∇0.6
0 x(t) = –0.5x(t) + t–1.7 sin x(t), x(0) = x0, t ∈N1, (5)

where F (t, x(t)) = t–1.7 sin x(t), t ∈N1.
According to Lemma 1, a solution of the problem under consideration can be written as

x(t) = x0E0.6(–0.5, t) +
t∑

τ=1

E0.6,0.6
(
–0.5, t – ρ(τ )

)
τ–1.7 sin x(τ ). (6)

We can see easily that the function F (t, x(t)) satisfies condition (A1), so by Theorem 5,
there exists at least one solution of problem (5).

Moreover,

∥
∥F (t, x) – F (t, y)

∥
∥ =

∥
∥t–1.7 sin x – t–1.7 sin y

∥
∥

≤ L (t)‖x – y‖,

where L (t) = t–1.7. Calculation shows that M = supt∈N1

∫ t
0 L (τ )∇τ < 1 and

∫ t
0 L (τ )∇τ →

0 as t → ∞. Hence conditions (A2) and (A3) are satisfied. So by Theorems 6 and 8, there
exists at least one solution of problem (5). Moreover, by Theorem 7 the solution is stable.
Furthermore, the solution x of problem (5) tends to 0 as t → ∞. Hence the solution is
asymptotically stable.

5 Conclusion
Stability analysis is one of the most important topics due to its real-life applications in
controlling systems. Fractional differential as well as fractional difference equations are
widely used in real-life models, fixed point theorems are essential tools for stability anal-
ysis. In this paper, we have used Schauder’s fixed point theorem, the Banach contraction
principle and Krasnoselskii’s fixed point theorem to study the existence and stability. The
analysis of the results heavily depends on the nabla discrete Mittag-Leffler functions.
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