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1 Introduction
In this paper, we consider the following two-dimensional isentropic compressible Navier—
Stokes equations in the Eulerian coordinates:

pr +div(pu) =0,
(pu)s + div(pu @ u) — uAu— (u + A)Vdivu + VP(p) =0,

1)

where ¢ > 0 is the time, x € £2 = [0,1] x [0,1] is a spatial coordinate. p = p(x,£), u =
(ulr MZ)(x) t) and

P=Rp”, R>0,y>1

are unknown functions denoting fluid density, velocity and pressure, respectively. Without
loss of generality, it is assumed that R = 1. The constant coefficients © and A satisfy the
physical restrictions:

u>0, nw+Ar>0.

There is much literature concerning the well-posedness theory of classical and weak so-
lutions for isentropic compressible Navier—Stokes equations. For the three-dimensional
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case, Nash [1] and Itaya [2] established the local existence and uniqueness of classical so-
lutions in the absence of vacuum in 1962 and 1977, respectively. In 1995, Hoff [3, 4] proved
the global existence of weak solutions when the initial density would be close to a constant
in L? and L™ norm, and the initial velocity be small in L> norm and bounded in L** norm
(n is the space dimension). In 1998, Lions [5] obtained the global existence of weak solu-
tions when the adiabatic exponent y is suitably large, the main restriction on initial data
is that the initial total energy is finite, similar results can be found in [6] given by Feireisl.
A few years later, Hoff [7-9] obtained a new type of global weak solutions with small en-
ergy, which have more regularity information than the works in [5, 6]. On the other hand,
when vacuum is allowed, Cho and Kim [10, 11] proved the existence of unique local strong
solutions in bounded and unbounded domains in 2003. In 2012, Huang, Li and Xin [12]
established the global classical solutions with small energy but possibly large oscillations.
In the same year, Duan [13] generalized the result in [7] and proved the global classical
solutions to the half-space problem with the boundary condition proposed by Navier pro-
vided the initial energy is small. In 2016, Yu and Zhang [14] studied the nonhomogeneous
equations with density-dependent viscosity in a smooth bounded domain and the vac-
uum is allowed. The global well-posedness of strong solutions is established for the case
when the bound of the density is suitably small, or when the total mass is small with large
oscillations. Later, in 2017, under the same condition in [12], Yu and Zhao [15] studied
the global existence in a cuboid domain, some new ideas being applied to establishing a
time-uniform upper bound for the density. Recently, Si, Zhang and Zhao [16] established
the global existence of classical solutions with a small initial density but possibly a large
energy in the case of py € L, y € (1,6) and pg € L', y > 1, respectively, which extends the
results in [12].

Compared with the three-dimensional case, there are few results in the two-dimensional
space. The pioneering work can be traced back to [17] in 1995, as Vaigant and Kazhikhov
first proposed the initial-boundary value problem with the special viscosity coefficients,
that is, shear viscosity u being a positive constant and bulk viscosity

Mp)=pf, B>3. 2)

They proved the existence of global strong solution with no restrictions on the size of
initial data. In 2012, Luo [18] studied the Cauchy problem and proved local existence and
uniqueness of classical solutions with initial density containing vacuum when viscosity
coefficients u and A are constant. For the case of a viscosity depending on the density,
we refer to a later work by Li and Liang [19]. In 2013, under the condition (2), Jiu, Wang
and Xin [20, 21] proved the global classical solutions on the torus and in the whole space,
respectively, where the initial data may contain vacuum in an open set. In the same year,
Ducomet and Necasova [22] studied the initial-boundary value problem with a vorticity-
type boundary condition and prove that the results of [17] hold in any smooth bounded
domain. In 2014, Zhang, Deng and Zhao [23] established the global classical solutions
to the Cauchy problem with smooth initial data under the assumption that the viscosity
coefficient u is large enough. In 2016, Huang and Li [24] relaxed the power index 8 in (2)
tobe 8 > % and studied the large-time behavior of the solutions, also see a recent work [25]
for Cauchy problem. In the same year, Fang and Guo [26] established the global existence
and large-time asymptotic behavior of the strong solution to the Cauchy problem in the
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case of B € [0,1] provided that the initial data are of small total energy. In 2018, Ding,
Huang and Liu [27] obtained the global classical solutions to the Cauchy problem with
B € [0,1] under the condition of small initial density, which extends the earlier work [26]
with small initial energy.

From the well-known results mentioned in the above paragraph, we can see that in the
two-dimensional space, the existing work mainly discussed the global existence of system
(1) under the condition of density-dependent viscosity, 8 > % with general initial data,
B € [0,1] with small initial energy or small initial density. However, whether the unique
local classical solution can exist globally for constant viscosity with small initial mass on
a bounded domain is still unknown at present. Inspired by the analysis of [12] and [15],
in this paper, we consider Dirichlet problem of (1) with the following initial-boundary

conditions:
(pr u)(x, t) |t:0 = (,0()(96), M()(x)), (3)
u(x,t)ag = 0. (4)

We hope to establish the global existence of strong solutions for (1), (3)—(4) with con-
stant viscosity on the square domain.

Before stating the main results, we explain the notations and conventions used through-
out this paper.

Notations:

« The standard Lebesgue and Sobolev spaces are defined as follows:

I = LV(Q), wsr = Ws'r(.Q), H* = WS'Z,
W' ={fe W|f =00n a2},  Hj=W3>

. f = fi + u - Vf denotes the material derivative of f.

o [fdx= [ fdxand [} [fdxdt=[] [, fdxdt.
« The symbol V! with an integer [ > 0 stands for the usual spatial derivatives of any
order [. We define

Vi = {8%fllal =k i=1,2), f=(fi.f)

+ Dositive generic constants are denoted by C, which may change in different places.
Now, our main results in this paper can be stated as follows.

Theorem 1.1 For given numbers p >0, M > 0 and q > 2, suppose that the initial data
(00, uo) satisfy

0 <infpy < pg < sup pg < P, Vuoll2 < v'M,
po € H?, uo € HA N H3,

and the following compatibility conditions:

1
—Aug — (1 + A)V div ug + P(po) = pg &, (6)

Page 3 of 27
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for some g € L2. Then, there exists a positive constant &y depending on p, M, |1, A, and some
other known constants but independent of T, such that, if

lloollzr < &0, (7)

the initial-boundary value problem (1), (3)—(4) admits a unique global classical solution
(0, u) in 2 x (0, +00) satisfying, for any 0 < T < +00,

0<pxt)<2p, x€£,t>0,
and

0<peC(0,T;H?), p, eL>(0,T];HY),
ue C([0, T HE N H?) N L*(0, T; H*), (8)
u; € L°(0, T;Hy NH?), . /pu; € L®(0, T;L?).

Remark 1.1 Cho and Kim [10, 11] proved the existence and uniqueness of local strong
solution to (1), (3)—(4) with initial vacuum in the three-dimensional space, where £2 can
be bounded domain or the whole space. If £2 is a bounded domain in R? and the initial data
(00, Uo) are smooth enough, and u satisfies the boundary condition (4), it is not difficult to
verify that the proofs in [10, 11] are still valid for local existence of classical solutions in
two-dimensional space.

Remark 1.2 In Theorem 1.1, we give the global existence of classical solution to the initial-
boundary value problem (1), (3)—(4) provided the initial mass ||po||;1 is small. In fact,
if we take the same vorticity-type boundary condition (Navier-slip boundary condition)
in [15] instead of Dirichlet boundary condition, by applying the same method in three-
dimensional space, similar results in Theorem 1.1 can also be proved. Thus, our results
extended the one due to Yu and Zhao [15], where the global well-posedness of classi-
cal solutions with small initial energy was proved. Moreover, under the condition (7),
we can prove the global existence of classical solution to the Cauchy problem in three-
dimensional space by using effective viscous flux method, which extend the results of [12]
for small initial energy and [16] for small initial density.

We now make some comments on the global existence of classical solution to the isen-
tropic compressible Navier—Stokes equations. Compared with the three-dimensional case,
it causes some essential difficulties. Similar to the procedure of [12, 15, 16], a key ingre-
dient in our proof is to obtain a uniform priori upper bound for the density function.
However, due to the invalidity of the Sobelov embedding inequality ||u||;6 < C||Vu| 2,
and there is no boundary information of effective viscous flux F £ (2 + A) div # — P in the
two-dimensional bounded domain, time-weighted estimates are needed the ensure the
better integrability of the velocity, which is quite differs from three-dimensional Cauchy
problem. In this paper, we use the Poincaré inequality and the following decomposition of
the velocity u = v + w to overcome this difficulty, where v solves the elliptic system:

UAv+(u+A)Vdive=VP, in£2, ©)

Vlpe = 0.
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Then, from the momentum, Egs. (1) and (9), we can see that w satisfies

Aw+ (u+AM)Vdivw = pir, in $2,
2 (n+2) o (10)
wlpe =0.

Hence, | Vul|1r, p > 2, is controlled by the standard L?-estimate of elliptic system (9) and
(10).
On the one hand, under the condition of (7), we have the following key observation:

T 1
sup (Ilﬁulliz + IIPIIZ) +/ ,ullvbtlliz ds <my, (11)
T 0

0<t<

which is derived from (1); and (1);. Then, by applying the method in [15], we get the uni-
form bound for || V| ;2 and time-dependent bound for || VU”Hm,Q;LZ)» by which, together
with Zlotnik inequality, we have the uniform upper bound of density. It is worth men-
tioning that, these boundness can be obtained by the smallness of the initial mass || po||;1
instead of the smallness of the upper bound of the density in [16] and the initial energy
in [12, 15], respectively. At last, higher-order regularity estimates for (p, #) can be proved
by standard methods after some modifications, see [12] for example. Finally, after all the
required a priori estimates obtained, by using the continuity argument, we can extend the
local classical solution to a global one.

The rest of the paper is organized as follows: In Sect. 2, we list some elementary inequal-
ities which will be used in later analysis. Section 3 is devoted to deriving the necessary a
priori estimates on classical solution which extend the local solution to a global one.

2 Preliminaries
In this section, we recall some well-known inequalities, which will be used frequently
throughout this paper. First, we give the Sobolev—Poincaré lemma [28].

Lemma 2.1 There exists a positive constant C depending only on §2 such that every func-
tion f € H'($2) satisfies for 2 < p < oo,

_ 1 _ 2 1-2 1 2 1-2
If =l < CoRNf =FILINAIL Il < COAIFILLIAN,,. (12)
where
Feig [ s
= — x.
12| Jo

Next, we give some regularity results for the following Lamé system with the Dirichlet
boundary condition (see [29]):

LUEuAU+(n+M)VdivU =F, xe$2,
u=0, x€df.

(13)

Suppose U € H; is a weak solution to the Lamé system, we could denote U = L7'F due to
the uniqueness of solution.
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Lemma 2.2 Let r € (1,+00), then there exists some generic constant C > 0 depending only
on i, A, r and $2 such that
(1) IfFelL’, then
1Ulw2r2) < CIF|r ). (14)
(2) IfFe W (ie, F = divf with f = (f;})ax2, fij € L"), then
I Ullwrg) < Cllfllzr(2)- (15)
(3) Moreover, for the endpoint case, if f;; € L* N L™, then VU € BMO(S2) and

IUlsmowe) < C(If 22 + If lz(2))s (16)

where BMO(S2) stands for the John—Nirenberg space of mean oscillation whose norm
is defined by

Iflemo = I 12 + [Flemoe),

with

[Flemo2) = sup
x€2,re(0,d) Qr(x) Q2r(x

)V ) —fa,w|dys

and

1
Qr(x) Qr(x

Jaw = )f (»)dy.

In the following, we give two critical Sobolev inequalities of logarithmic type, which are
originally due to Brezis—Gallouet [30] and Brezis—Wainger [31].

Lemma 2.3 Let 2 € R? be a bounded Lipschitz domain and f € W1 with q > 2, then we
have

If Iy < C(1 + [ lemoce) In(e + [If lwia)) (17)
with a constant C depending only on q.

Lemma 2.4 Let 2 € R? be a smooth domain and f € L*(s, t; Hy) N L?(s, t; W'1), with some
q>2and0<s<t<oo. Then we have

W 172100y < COUH I 12 gy In(e + I 25 000))) (18)
with a constant C depending only on q.

Finally, we give the following lemma arises from Zlotnik [32], which will be used to prove
the uniform upper bound for the density.

Page 6 of 27
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Lemma 2.5 Lety € WVY(0, T) satisfy the ODE system:

Y (&) =gy) +b'(t) on[0,T],5(0) = yo,

where b € WY1(0,T), g € C(R) and g(+o0) = —00. Assume that there are two constants
Ny > 0 and N1 > 0 such that, forall 0 <t <t, <T,

b(ty) - b(t1) < No + Ni(t2 - ta). (19)
Then

y(t) < max{yo,é*} +Np<+oo on[0,T],
where £* € R is a constant such that g(§) < —N for & > &*.

3 Global classical solution

In this section, we establish some necessary a priori estimates for the classical solutions of
initial-boundary value problem (1), (3)—(4). We assume that, for any T > 0, let (p, u#) be a
classical solution of (1), (3)—(4) in the solution space (8) with the initial data satisfying (5)
and (6). In Sects. 3.1 and 3.2, we will show the lower-order and the higher-order estimates
of the solutions, which guarantee the local classical solution can be extended to a global

one.

3.1 Lower-order estimates of the solutions
First, we give the following proposition to prove the uniform upper bounds of ||Vu/;2
and p.

Proposition 3.1 Assume that the initial data satisfy (5)—(6), and the local classical solu-

tion satisfies

1
sup [|Vul?, <2K, sup (ol|Vul?,) <2mf§, 0<p=<2p+1, (20)
0<t<o(T) 0<t<T

where (x,t) € 2 x [0, T], o(t) = min{1, t}. Then there exists
&y =min{ey, €5, 63, 63, 65,65

depending on p, M, i, A, and some other known constants but independent of T such that

, 3 sy 3 1 3
sup  [[Vull;, < oK, sup (U||VM||L2) <-my, 0=<p=<-p+1, (21)

0<t<o(T) 2 0<t<T 2 2
provided that my < &, is suitable small.

In order to prove Proposition 3.1, we give the following mass conservation identity and
the uniform bound of ||Vu|l;2( 1,12), which are the foundation of our proof in this paper.
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Lemma 3.2 Let (p,u) be a classical solution of (1), (3)—(4) on §2 x (0, T], then we have

sup 1ol = oollzt = o, (22)
0<t<

T 1
sup (I/Bul, + lIplL) + /unwnizdsSmg, (23)
0<t<T 0

provided there exists a positive constant g1 such that my < e;.

Proof Integrating (1); over £2, (22) can be easily obtained. In order to prove (23), multi-
plying (1); by p¥~!, it yields

1 d

—ldt oV dx = fu-prdx. (24)

On the other hand, multiplying (1), by u, integrating the result over £2, and using (1);, we
have

T p|u|2dx+,u/|Vu|2dx+(u+k)/|divu|2dx:—fVP~udx. (25)

Adding (25) and (24) together, and integrating the resulting equality over time interval

(0,£), we get

T
sup (—II\/—MIIL2+ IIpllLy) / wlIVuly, ds
0

0<t<T

—

1 Y
< Sllpoll2lluolfs + —— - llo0llzy

N

= 4>|>—

1
<C 7||Vuo||L2m0 +Cp" my < mg,

provided there exists a positive constant &; such that mg < ;. This completes the proof
of Lemma 3.2. O

Next, in Lemma 3.3, we give the uniform upper bound of | Vu||;2.

Lemma 3.3 Let (p,u) be a classical solution of (1), (3)—(4) on §2 x (0, T], if the assumption
of Proposition 3.1 holds, then

) o(T) - 3
sup [Vl + / Il ds < 2K, (26)
0<t<o(T) 0
i+1 3 1
2 g
sup (ol Vul%) + / oill/Bitls ds < S m3, 27)
i~1<t<i+l i-1 2

provided there exist constant €% and &} such that my < min{ey, &5, &5}, where o;(t) = o (t +
1-0),1<i<[T]-1,te(i-1,i+1].

Proof From (1), we get

o+ VP=puAu+(u+1)Vdivu. (28)
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Multiplying (28) by niz, n = n(t) > 0 is a piecewise smooth function, integrating the result-
ing equation over §2, it yields

1d
EE(fun|Vu|2dx+/(u+k)n|divu|2dx>+/np|i¢|2dx

d
:E/nPdivudx_/n/Pdivudx—/n(Pt+div(Pu))divudx
1
+/nPVu:Vqux—M/nVu:(VuVu)dx+ E“/”divuwulzdx

1 1
+§u/n/|Vu|2dx+ E(M+A)fn/|divu|2dx

1
—(u+k)/n(Vu:VuT)divudx+ E(u+k)/n|divu|3dx

9
nPdivudx + Z[ (29)

i=1

dt
Now, we estimate [;, i = 1,2,3,...,9, one by one:

L < |0 |IPI2 Va2 < [0/ [IPI2 + 0 [IIVull?,

< 0'[p* " mo + |n'[IVul2s, (30)

L + 13 < Cn|| Vull?,, (31)

where we have used the identity P; + div(Pu) = (1 - y)p” divu.
The terms Iy, Is, Iy can be estimated as

Li+Is+ Iy + 1y < Cnl| Vull3s < Cn(IVVIIZs + IVw3s)
< Cn(IIPI3s + IVwIZ, | V2wl )

< Cn(p” " mo + (IVul?s + 1VVI2) | V2w )

< Cn(5% o + (VI + 1P11%) | V2w )

(2>
(P
<Cn(p*~ 1m0+(|W||L2 + 0% mo) | /pil|2)
Cn(mo + mg) + nllfulle+CnIIVMlle (32)
It remains to estimate /s and 7, we get
Is+ I < Cln' || Vull},. (33)

Then, inserting (30)—(33) into (29), we have

1 d 2 . 2 1 -2
EE(/W?WM' dx+[(u+k)n|d1vu| dx)+§/np|u| dx

d
< E/nPdivudx+ Cln'|mo + Cn(mo +m3) + C(|n'| + n) V|2,

+Cnll V. (34)

Page 9 of 27
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In order to prove (26), taking n = 1 and integrating (34) over (0,¢t), for 0 <t < o (T), we

o(T)
/M|Vu|2dx+/ /plz)|2dxds
0

< ulVuolgs + 20 + Ml div ol 7o + 1PN 2 [Vl 2 + I1Poll 2 [ Vol 2

get

1 1
+C(mo + m(z)) + Cmy + CKmj
1 1 1 1
< UM + 20+ MM + C(VKmg + ~Mmg + mo + m + m§ + Kmg), (35)

where we have used (23) and (20). Then we have

o 13
sup /M|Vu|2dx+/ /plit|2dxds§K+ EK: 5K, (36)
0

0<t<o(T)
provided there exists a constant &7, mg < €] such that
UM +2(u + MM <K,

C(\/?mo + VM ””‘0 +W10+mo+m0 +Km0)< I(

In order to prove (27), taking n = o; in (34), integrating (34) over (i — 1,¢), we get

t
o,-/u|Vu|2dx+/ /a,'p|zlt|2dxds
i-1
t

1
2 i 4
< 0| Pl 2| Vull 2 +C(m0+m0+m5‘) +C/ Ui”VLtHdeS
i-1

IA

NI= NI~ N

1 t
2 2 i 2
aiMIIVuIILZ+C(m0+m0+mg)+C sup Ol”VI/lHLz/ Vull;, ds
i-1<t<i+l i-1
2 2 i 2
oiul|Vul 7, + Clmo + mg +mg ) + C sup 0| Vull7my
i~1<t<i+l

IA

1 3
ol Vul?s + Cmo + mg + mg +mf). (37)

IA

Then, we have

3 1
sup ai/u|Vu| dx+/ /al,o|u|2dxds 7 mé, (38)

i-1<t<i+1

provided there exists a constant &}, mg < €} such that

S ool

m|w
R

3
C(mo +mg + mo +mg) <
Hence, if we take my < min{ey, 5, €5}, this completes the proof of Lemma 3.3. O

In Lemma 3.4, we will give the bound for f:lz o? ||Vzlt||i2 ds which will be used to prove
the uniform upper bound of p. It should be noted that the constant C on the right-hand
side of (39) and (40) is independent of time.
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Lemma 3.4 Let (p,u) be a classical solution of (1), (3)—(4) on 2 x (0, T, if the assumption
of Proposition 3.1 holds, then

1
sup (o?|l/pitl}2) < Cmg, (39)
0<t<T
ty 1
/ o2 VitlPy ds < Cmolts — 1) + Cm (40)
t1

for any ty,t; € (0, T], provided my < min{e, €], &5}.

Proof Operating i/ (3, + div(u-)) to (1)’2, summing with respect to j, and integrating the
resulting equation over §2, we obtain

d
r nplitlzdx—n//plitlzdx
:—Zn/hj(Bth+diV(u8jP)) dx+2,un/it/(8tAuj+diV(uAuj))dx

+2(u+A)n / i/(a,at div u + div(ud; div u)) dx

=) T (41)
It follows from integration by parts and using Eq. (1); that

Ji=-2n / i (8P, + 8 div(uP) — div(Pdu)) dx

=2y / div it(P; + div(uP)) dx — 21 f(Paju) Vil dx

< Cn/py|divit||divu|2dx+ Cn/,o”WuHVI}tldx

< EL Vil + ColVulf, (42)
b =2un / L’tj[Aitj + ai(div udid — d;u - Vuj) - div(aiuaiui)] dx

= —2unf|Vuj|2dx— 2un / aiit/(div udid — d;u - Vu/) dx

+2un/Vi¢jaiu8iujdx
< —un||Vid |7, + CrllVulljs. (43)

Similarly, we get

Js < —(u+ Ml dividl|7, + Cnl|Vul fa, (44)

Page 11 of 27
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where ||Vu||24 can be estimated as

IVillfs < IVVIs + IVWI T
< IPI%, + 19wl | V2w| 7
< C(p" " mo + (IVullfa + 1VVIE) [ V2w 2)
< C(p" " mo + (IVulZ2 + 1P1132) | V2wl }2)

< C(p" " mo + (IVullo + 5 mo) I/pitl}2). (45)

Substituting the estimates J;, /2, /3 and (45) into (41), we arrive at
d .12 .12
p nplil” dx + un || Vi,

< |77’|/p|it|2dx+ ClVullys + Cn(IIVull7, + 57~ mo) Il /picl 72

+ Cnp* tmy. (46)

In order to prove (39), taking n = Oiz in (46), integrating (46) over (i —1,t) and taking (27)
into consideration, we get

t
2 .12 2 -2
o llV/pill;2 +/ wo; Vil ds
i—1

i—

t t
< / 010 ||/pitll}> ds + C f o (IVulzz + 57~ mo) | /pitll} ds
i-1 i-1

1 t .
<Cm + C( sup ai||Vu||22 + m())/ Ui”\/ﬁl/l”iz ds
15

i—1<t<i+l i1

+ C(mé + 1)

11 59
<C(mg +mg +m§ +m§ +mp)

(47)

which proves (39).

Furthermore, from (47), we can see that, if we take 1 = o2, then integrating (46) over
(t1,8) € [0, T], we have

5]
o /pit2) |2 + / no? | Vi3, ds

t

2
<o?|vpitt)|}s + [ ool pilsds

151
ty
+C / o (IVul}, + p* " mo) | /pil 7, ds
15

1
+ Cmy + Cmg(tz — t1)

Page 12 of 27
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1 1 )
<C(m§ +mg) + C(l + sup o[ Vul?, + mo>/ o lly/pill?, ds

0<t<T t1

+ Cmo(ty — t1)

I—

1 2
<Cm§ +C(1+mg + mo)/ o ||\//51:‘||iz ds + Cmy(ty — t1), (48)

5]

where we have used (23), (20) and (39).
In order to estimate the second term on the right-hand side of the above inequality,
taking n = o in (29), integrating (29) over (¢1,£,) € [0, T], we get

2
O'//L|VM|2dx+f /op|it|2dxds
t

<uo ||Vu(t1)||i2 +2(u + Ao |[div u(tl)”iz +o || Pll 2| Vull 2
t

+ C(mo + m)(t, — t1) + Cmé + C/ ol Vull}, ds

i-1

1 1 1
< EO’/,LHVMH%Z +C(mo +m3)(t2 -t)+C(mg +mf)

t
+C sup ol Vul / IVl ds
i-1

i-1<t<i+1

S ool

)

1 1
< EauHVulliz + C(mo + mg)(tz —t)+ C(mé +m

—

+C sup oy Vull}mg
i-1<t<i+1

1

1 3
< —oulVull?, + C(mo + my) (& — t1) + C(mg +m§ +mf), (49)

N =

from which one deduces
t 1
o f w|Vul|*dx + f /o,o|it|2dxds < Cmp(ty — t1) + Cm. (50)
t

Then, inserting (50) into (48), (40) can be obtained. This completes the proof of
Lemma 3.4. O

Inspired by the methods in Refs. [12, 15], in the following lemma, we use the Zlotnik
inequality to prove the uniform upper bound of the density p.

Lemma 3.5 Under the condition of Proposition 3.1, we have

N W

p=5p+1 (51)
provided there exist constants €3, €; and X such that my < min{e,, e}, €3, €3, €}, €5}

Proof For any given (x,t) € §£2 x [0, T], denoting X(s;x, ) the solution to the initial value
problem

%X(s;x, t) = u(X(s;x,t),s), 0<s<t,
X(t;x, t) = x.
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It is easy to verify that
isp(X(s; X, t),s) + p(X(s; X, t),s) div u(X(s; X, t),s) =0,
due to (1);. This gives
Y'(s) = g(s) + '(s), (52)

where

P’ (X(s%,8),5)

Y(s) = p(X(s3%,0), ), g(s)=- s

b(s)=- /S p(X(s;,1),5) <25(j)k +divw(X(s; %, t),s)) ds,
0

and C(¢) = 2u + A)divy — P.
Next, we use Lemma 2.5 to prove the uniform upper bound of the density. We have

b(ty) - b(ty) = ||,0 div s ds

pC(t)
2+ A

t1

=K + Ky, (53)

In the following, we estimate the terms on the right-hand side of Eq. (53) one by one. In
order to estimate C(t), from Eq. (9), we have

V(@up+21)divy—P) — uV x (V x v) =0. (54)

We have (V x (V x v)) = (95(91v? — 9,v1), =31 (3;v* — 9,v')) and the boundary condition (4)

implies

v=0,0%=0, x,=0,1,

(55)
V=q'=0, x=0,1.

Then, we have (V x (V x v)) -n=0a.e.on 32 and div(V x (V x v)) =0.
Multiplying (54) by V((2u + 1) div v — P) and integrating the resulting equation over $2,
we arrive at
IV (@u +2)divv-P)]|, =0,
which implies that there exists C(£) such that
Ct)=@2u+xr)divv-P. (56)

Using (9), we have || Vv||;2 < C||P||;2. Integrating (56), we get

_2p-1 L
C(®) < C(IIVVliz2 + IPll2) < ClIPll2 < Cp K myg . (57)
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Then, we have

2
K= /
t1

provided there exists a constant &3, m < e} such that

y+1 1

2
C(t Cp 2 2 1
PO oGP mme L
20+ A o 20+ A 421 + )

(tr — 1), (58)

2y+1

Cp 2

1
2
my <

In order to estimate K,, we consider the following three cases:
(1) 0= <t <o(T).
t _ o(T) 1 2
K, = / o div il ds < C / IVl 19wl ds
t 0
12
=C (IVallz2 + 1PNl 2) * I Vil }, s

ds

IA
a
C\q O\g O\“q
G C 3
Q
N
—_
Q
DIl
<
=
=
+
Q
DIl
S
=
~
N—
S
—_
2
<
=
e
[
N—
S

1

o, 3/ po(D) 3
/ o4 ds) </ 0||Vit||iz ds>
0 0

1 1 (T(T) 3
<C(mi® +p"7 m)? (/ o || Vil ds) , (59)
0

where we have used Lemma 3.3. It remains to estimate the term on the right-hand
side of inequality (59). To do this, we taking n = ¢ in (46) and integrating the
resulting inequality over (0,0 (T)), we have

o(T)
/np|i¢|2dx+/ po | Vil ds
0
o(T) a(T)
§C+/ |o’|fp|it|2dxds+C/ o || Vull;, ds
0 0

o(T)
* C_/ o (IVullja ds + 5>~ mo) || /pill;2 ds + Co p*" " mg
0

<C(1+K+ mé) + C(mé + 02 mo)K + Co p* 'my

<C. (60)

From (59) and (60), we can see that

1 2y-1
Ky < C(mg® +,5VTWI

(=3 T
il

=

0 (61)

oo | =

)

provided there exists a constant ¢ such that m < €.
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2 oM <t<p, <T.

1 )
K < 4(t2—t1)+4(2u+k)/ ||pdiVW||2oo ds
42 + A) f L
5}
< (th—1t]) + 402U + A div w|| % ds
= ) AP [ idiv;
2 [ 1vwih vwl
fm(fz—hHCp /n VW LIV W1 ds
5 (7 2 4
<—(t-t1)+Cp Vul;2 + ||P 3V 3, ds
< Sy G / (Il + 1Pl2) 19l
1
<—(tr—t
—4(2M+x)(2 )
=2 2 2 2 % f .02 %
+Cp ( [ (||W||L2+||P||L2)ds) ( / ||Vu||L2ds)
5] t
1
<——— (-t
_4(2M+A)(2 D

2
1 1 b 3
+Cp2(mg + p™ 'mo(t, — 1)) (f V]2, dS)
131

2

1 ty 3
(t2— 1)) + CP*m? <f Vi, ds)

t

< —_
T 4Q2u+A)

2
_ws L if 2 . 3
+Cp 3 mé(tz—t1)3(/ ||VM||%2dS)

5}

1 ) 1 1
<——  (tH-H)+C Vil|?, ds + Cmt + Cm3 (& — t
_4(2/L+k)(2 1) /tl IVitll;, ds + Cmy + Cmg (t2 - £1)

[=JNST

< m(rz-zrl)+c(mo+m§)(,:2—,:1)+c(m§ +mi), 62)

where in the last inequality we have used (40). Then, we get

K, < 1 (ta—t) 1 (63)
—_ pa— + — 5
T A U

provided there exists a constant &%, m < &7, such that

1

1
C(m0+mg) < mr

B)0<ti<o(T)<t,<T.

Combining case (1) and case (2), we can easily obtain
a(T) 5]
I(zzf Il o divw|| oo ds+/ lp divw| oo ds
t a(T)

1._
< m(tz —t)+ Eﬂ% (64)
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Taking (53), (58), (61), (63) and (64) into consideration, we have

|b(t2) - b(11)| <

1
b t) + ~p, 65
TR AT (65)

provided there exist constants &3, ¢; and ¢ as mentioned above such that
. * ok ok %k %
mo < min{e,, ¢}, 63,65, €5, €5 ).

Then we can choose Ny, N as follows:

N_l_ N = 1
0—2,0: 1_2M+)&'

Choosing £* = p + 1, we can see that

€y+l 1

<- =-N;, f > £¥,
2W+A T 2u+ A ! org =4

g)=-

Using Lemma 2.5, we obtain

1. 3
sup [pllze <max{po,&*} + No <max{p,p+1}+No<p+1+-p==p+1
te[0,T] 2 2

This completes the proof of Lemma 3.5. g

Combining Lemmas 3.2-3.5, if we take my < min{ey, &}, 3,63, ¢4, €%}, then Proposi-
tion 3.1 is proved. At the end of this subsection, we give the following second-order a
priori estimates, where the constants C on the right-hand side of (66) and (67) may de-

pend on time T'.

Lemma 3.6 Let (p,u) be a strong solution of (1), (3)—(4) on §2 x (0, T, under the condition

of Theorem 1.1, we have

T
sup ||/pill7, +/ IVil|7, ds < C(T), (66)
0<t<T 0
SupT(HV:O”U’ +llull2) < C(T). (67)
0<t<

Proof Taking n = 1 in (46), integrating (46) over (0,0 (T)], we get

o(T)
sup || /piel?, + / Wl Vidl|?, ds
T) 0

0<t<o(

1 a(T)
<C(1+mg +mo)+C /0 (IVulPs + mo) | /Bidl%s ds < C, (68)

which combines (39) and (40), and we obtain

T
sup [/l + / Vil dt < C(T). (69)
0

0<t<T

Page 17 of 27
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Next, applying the operator V to (1);, and multiplying the resulting equation by
p|VplP2Vp, p > 2, we obtain

d
E/Wp#’dx:(l —p)/|V,o|pdivudx—p/|V,0|”_2Vp(Vu~V,o)dx
—p/p|vp|P-2vp.V(divu)dx
gc/|Vp|1’|w|dx+c/|Vp|P-1\v2u|dx

< ClIVul=IVpl, + CIIV,OIIIZE1 [ VZMHU,, (70)
then we have
d 2
E”vp”p <C(IVull=lIVpllr + ||V M||Lp), (71)

where the terms on the right-hand side of the above inequality can be estimated as

Vallzoe < C(IVWliLoe + IV V]| 10
<CIVWwlir + | V?w| , + IVVIILe)
< C(IVidll 2 + IVVlismo In(e + | V?v] ) +1)
< C(IVirllgz + (IPllz> + I1Pll2) In(e + | V2v]| ,) +1)
<C(IVill2 +In(e+ IVpllp) + 1) (72)

and

[V2ul, = UVl + V2w ,0)

< C(IIVPIwe + lpitll 1)

<C(IVpllw + IVl 2). (73)

Inserting (72) and (73) into (71), we have

E(”VP”LP +e)

< C(IIVill2 +e)In(e+ Vol ) IVollr + C(IVidl 2 + ) (I Vpllr +e). (74)
Both sides of (74) divided by ||V ||, + e lead to
d . .
Eln(HVpHUa + e) < C(||Vu||L2 + e) 1n(e+ ||Vp||Lp) + C(||Vu||Lz +e). (75)

Then, by using the Gronwall inequality and (69), we have

sup [|[Vollr < C(T). (76)

0<t<T
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Moreover, from (69), we have
lullye < C(lpallz2 + VPN 2) < C(llpill 2 + IV pllr) < C(T). (77)
This completes the proof of Lemma 3.6. d

3.2 Higher-order estimates of the solutions

For completeness of our proof, we list the higher-order estimates of the solution (p, %)
below, which can be derived in a similar manner to those obtained in [12] after some
modifications.

Lemma 3.7 Let (p,u) be a classical solution of (1), (3)-(4) on 2 x (0, T], under the con-
dition of Theorem 1.1, the following estimates hold:

T
sup /o2, + f IVue |12, ds < C(T), (78)
0<t<T 0
sup (Il + | Plo) 172) < C(D). (79)
<t<

Proof Estimate (78) follows directly from the following simple facts that
f plu|® dx < / plitf* dx + / plu- Vul® dx < C + || /pull 2 ull s | Vulljs

and

T T T
. 2
/ ||Vut||§2ds§/ ||Vu||§2ds+/ |V - Vu)|,,ds
0 0 0

T T
§C+/ 4] 200 ||v2u||jzds+f IVul)%, ds
0 0

<C, (81)

where in the last inequality we have used the Sobolev embedding inequalities and
Lemma 3.6.
Next, we prove (79). P satisfies

P;+u-VP+yPdivu =0, (82)
which together with (1); yields
d
@ (12 + 19PI2.)
< C(|V2u 19012 ]| V20 o + [ Vatllzoe [ V20 2
+ [ V2ull s I VP | V2P o + IVl [ V2P| 1, + | VP02 | 2P )

1 1 1 3
< C([V2ul a1 V2ul 20V Rl V2ol o + 19l [ V20 2
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1 1 1 3
+ |Vl S| V2] 21V PIL [ V2P) s + IV ulle [ 972,
+ [Vl 2 [ V2P )
< C(IVul + |90 + [ V2RI + 1V ulle [ 0]
+ [ Vul | V2P|2,)
< CVPuly + IVl + 1) (V2 + [ V7P 2)
< ClIVidll2 + C(IVirll2 + In(e + Vol ) + 1) (| V2022 + | V2P| %), (83)
where in the last inequality we have used (72) and the following standard L?-estimate for
elliptic system (9) and (10)
[V2ull 2 = C(IV7] 2+ [VPw] 2) = CIVZP L + [V (0i)] 2)

<C(|V?p|l 2 + 1Vitll2).
Then, combining (83), Lemma 3.6 and the Gronwall inequality, we have (79). d

Lemma 3.8 Let (p,u) be a classical solution of (1), (3)-(4) on 2 x (0, T], under the con-
dition of Theorem 1.1, the following estimates hold:

T
sup (||/0t||H1 + ”Pt”Hl) +/ (||,0tt||i2 + ||Ptt||iz)d5 <C(T), (84)
0<t<T 0
T
sup Va2, + f /Pl ds < C(T). (85)
0<t<T 0

Proof First, from (82) and Lemma 3.6, we obtain

IPllz2 < C(lullz VP2 + | Vull2) < C. (86)
Furthermore, differentiating (82) yields

VP, +u-VVP+Vy-VP+yVPdivu + yPVdivu =0, (87)
which together with Lemma 3.6 and Lemma 3.7, one gets

IVPl 2 < C(llullie | V2P| 2 + I Vatll 2 I VPl 2 + | V2 2) < C. (88)
The combination of (86) and (88) implies

sup [Pl <C. (89)

0<t<T

Note that P, satisfies

Py+u;-VP+u-VP,+ yPdivu, + yP,divu =0, (90)
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from which, together with (89) and Lemma 3.7, we have

T T
2
/ ||Ptt||i2d~9§/ C(lluell 2 IV Pl + I Varll 2 I Pell 2 + | Vaae | 2)” s
0 0

<C. (91)

Next, we differentiate (1), with respect to ¢, then multiplying the resulting equation by
uy, one gets after integration by parts

1d
2dt

d({ 1
=E(—E/ptmtlzdx—/ptwVu-utdx+/Ptdivutdx)

1
+E/pttlutlzdx+/(,otu-Vu)t-utdx—/put-unndx

(pL|Vut|2 + (A + p)(div ut)z) dx + / puft dx

—/,ou~Vut~uttdx—/Pttdivutdx
d 5

= —L L;. 92
7 0+; ; (92)

The terms on the right-hand side of Eq. (92) can be estimated as follows:

1
LO:—E/,otlut|2dx—/,otu-Vu-utdx+/Ptdivutdx

< Cllpellgaluwelialleeeli 2 + 1l o o lall oo | Vaall pa el 2 + 1Pl g2 | Viae | 12)

1 3
2 2 2
< CIlell el 211V e 7o+ ol Neall o | Vatell 2 + 1Pl 2|Vt 2)
2 4 2 2 4 2
< 8IVullfs + C(lloela luellza + locla lleelzo + 12l )

<3| Vue|j» + C, (93)

where we have used Lemma 3.6, (84) and the Poincaré inequality. We have

1 1
L= E/Pt:|ut|2dx: ) /(,O:M+,0ut) - Vu|* dx

2
< C(loel o Nuallzoe Netell o | Varell 2 + NI 1 Vatel 2)

< C(L+ 1 Vareliz2) Ve 72, (94)
L= /(ptu-Vu)t U dx
= /(Pttbi -Vu+ puy - Vu + psut - Vut) Uy dx

2
< C(lloallp2llulzoe [ Varll pallusell o + N oell 2 Varll NN 7
+ 1ol g2 ol oo 1V ate | 2 24 | 4)

< C(llpell22 + 1 Vel ?), (95)
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L3+L4=—/put~Vu-uttdx—/,ou~Vut-u”dx

< IWpuell2lluell 4 IVl s + 1/ pueell 2 1]l oo |V ige | 2

< 8l/pusl7s + | Vatel 72, (96)

Ls =~ / Py divugdx < | Py} + | Vit (97)

At last, integrating (92) over time (0, T'), and inserting estimates (93)—(97), we have

T
/(M|Vut|2 + (A + )] divutlz) dx + / /pu?tdxds
0
T
<Co [ Clus 1Vl 1l )
0

from which, together with the Gronwall inequality, one obtains (85) immediately. This
completes the proof of Lemma 3.8. O

Lemma 3.9 Let (p,u) be a classical solution of (1), (3)—(4) on 2 x (0, T], under the con-
dition of Theorem 1.1, the following estimates hold.:

sup (Il + I1Pllgs) < C(T), (99)
0<t<T

T
sup (I Vauell?, + [ Vaell32) +/ (IVuelFn + 1 Vull3s) ds < C(T). (100)
0<t<T 0

Proof 1t follows from Lemma 3.8 that

IV (pi)|| 2 < IV puell2 + oVl 2 + IV o - Vil 2 + oV - V|2
+ou-Viul
<IVollalluls + 1 Vuell 2 + 11V pllpallell o | Vaell o + [ V|7
+ oo | V20|

<C, (101)
which together with Lemma 3.6 gives

sup [l pily < C. (102)
0<t<T

The standard H* estimate for elliptic system (28) yields

IV2u| 0 < C(llpitllg + VP ) < C. (103)

Then, as a consequence of (67) and (103), we have

sup ||Vulp2 <C. (104)
0<t<T
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Moreover, the standard L?-estimate for elliptic system (28) and Lemma 3.8 yield

| V2us] o < w2 + loetsell 2 + e - Va2 + l pe - Vuall2
+llou - Vgl 2 + [V P2
< llpusllzz + lloellalleelips + locll pa el oo [ Vae| o
+ el ol Vaell o + Nl oo [ Vatell g2 + VP 2

<llpusul2 +C, (105)

which together with (85) implies

T
| 1vuiaas<c. (106)
0

On the other hand, applying the standard H>-estimate for the elliptic system (28) again
leads to

IV2u o < Clpitl 2 + I VPl 122)

= C(IV¥pud o + [V*(ou- Vi) | o + | VP ), (107)

where

[V ()] 2 < CIV2 puse] 2 + 19 0 Vtellz2 + [ V22ac] 1)
< (V20| o letellzoe + 1V ol I Vot s + | V| o)
< (V20 2 I Vatellin + 19 ol | Vitellr + | 2] )
< Cl| Ve (108)

and

IV2(pu - Vu)| o, < C(|VPpu- V| 5 + | Vi Vs 5 + |- Vus
+IVpVu-Vul 2 + |Vou- Vul,,)
<C(|V?pu-Vu|,, + |Vu-Vul,+ |u-V3ul,
+1IVoVu - Vul 2 +||Vou-Vul,,)
< C(| V0| llullre Vel + | V] ol Varll
+ ullee | V2u]| 2 + 1V 0l s IVl 76
+ Vol el | V2ul 4)

=C (109)
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In order to estimate the third term on the right-hand side of (107), applying V3 to (82) and

integrating the resulting equation over £2, we obtain

%II VoP[, < C(|VPu- VP o + | Vit - VPP + [ V2 V2P| 1,

+|Viup| )

< C(|Vu] 21V Pllze + 1Vallioo | V2P o + [ V20| | V2P s
+[Viul2)

< C([V2P] o + [VPu 2)

< C([V2P] o + [VHin)] 12)

< C(|VP| 2 + [ V2 (oud)| 2 + [ V(- Vi) 2)

<C(|V°P 2 + [ V2o o llscllio + || Vs | 2 + IV 01l | Vite o
|V V| + |u- Viu| o + | Vi V2u )

< C(| VPP o + Vsl + 1V Ul | Vasel g + || V0] I Vit 14
+ llullzoe | V2ul| 5 + IV ull o | V2u }5)

= C(HVSI)”LZ + IVl + 1), (110)
which, together with the Gronwall inequality (106), implies that

sup [V?P||,, <C. (111)

0<t<T

Taking (106)—(111) into consideration, we have
T
f V)2, ds < C. (112)
0

It is easy to check that similar arguments work for p by using (112). Hence the proof of

Lemma 3.9 is completed. O

Lemma 3.10 Let (p,u) be a classical solution of (1), (3)—(4) on 2 x (0, T], under the
condition of Theorem 1.1, the following estimates hold:

T
sup (9l + |V} + / Vit ds < C(T). (113)
0<t< 0

Proof Differentiating (1), with respect to ¢ twice, one can get
Oy + put - Vg — LAty — (e + A)V div uy

=2div(pu)uy + div(ou)sus — 2(ou); - Viug — (g1s + 20:1;) - Vu

— oty - Vu—VPy. (114)
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Multiplying (114) by u and then integrating the resulting equation over £2, after integra-
tion by parts, we obtain

1d .
3 [ Pt s [ (Ve e 2 divine ) d
= —4/ OUly - Vit dx — /(,ou)t . (V(ut “Uy) +2Vuy - Mz;) dx

- /(pttu +20:uy) - V- Uy dx — / Pl - VU - Uy dx + /Ptt div u, dx

= ZMi. (115)

Next, we estimate each term M;, i=1,2,3,4,5, as follows:

M = —4/ putty - Vi dx < Cllul| e ||«/Eutt||L2 | Vag |l 2

< 8| Vuyl}, + Cll/pttse 7 (116)

It follows from Lemma 3.7, Lemma 3.8, and Lemma 3.9 that

My =~ /(Pu)t : (V(ut “Uy) + 2V - Mtt) dx
= C(||ptu”L4 + ||Put||L4)(||Vut||L2 llzteell o + ||ut||L4||Vutt||L2)

1 1
= C(||Pt||H1 + ||Mt||H1)(||Mtr||L22||Vutt||L22 + [lag || g ||Vutt||L2)

<8l Vuull7, + C, (117)
M3 = _/(pttu +20U) - Ve - Uy dx
< Clpell2llulizoe + Nl oellzalloee |l pa) 11V oa] pa | s | 4

1 1 1 1
< Clpell 2 Netll g + 1l ol Nl 22 IV sl 22 ) IV 2 g e | o 1 Vit

<8lIVuullfs + Cllpull o, (118)
My + Ms = —/,outt -Vu-uydx+ /Pttdivuttdx

= C(Hﬁutt”LZHVM”L‘*||Mtr||L4 + ||Ptt||L2||VMtt||L2)

1 1
= C(||«/K_>Mtz||L2 IVl ||utt||L22 ||V”tt||L22 + [Pyl 2 ||Vutt||L2)
= 5||Vutt||i2 + C(”\//_)Mtt”iz + ||Ptt||i2)~ (119)

Substituting (116)—(119) into (114) and choosing § suitably small, we get

d .
r f pluy|” dax + /(mw2 + (e + W) div e |*) dx

= C(”\//Eutt”iz + ||Ptt||iz + ”Ptt”iz + 1); (120)
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then, integrating the inequality (120) over (0, T), together with (84) and the Gronwall in-
equality, yields

T
sup /p|utt|2dx+/ /|Vutt|2dxds§C(T), (121)
0

0<t<T
then (113) follows from (85) and (105). We have finished the proof of Lemma 3.10. O

Finally, by using the continuity argument, we can extend the local classical solution to a
global one, and thus Theorem 1.1 is proved.
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