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Abstract
In this paper, we consider the initial-boundary value problem of two-dimensional
isentropic compressible Navier–Stokes equations with vacuum on the square
domain. Based on the time-weighted uniform estimates, we prove that the classical
solution exists globally in time if the initial mass ‖ρ0‖L1 of the fluid is small. Here, we
do not require the initial energy or the upper bound of the initial density to be small.
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1 Introduction
In this paper, we consider the following two-dimensional isentropic compressible Navier–
Stokes equations in the Eulerian coordinates:

⎧
⎨

⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) – μ�u – (μ + λ)∇ div u + ∇P(ρ) = 0,
(1)

where t ≥ 0 is the time, x ∈ Ω = [0, 1] × [0, 1] is a spatial coordinate. ρ = ρ(x, t), u =
(u1, u2)(x, t) and

P = Rργ , R > 0,γ > 1

are unknown functions denoting fluid density, velocity and pressure, respectively. Without
loss of generality, it is assumed that R = 1. The constant coefficients μ and λ satisfy the
physical restrictions:

μ > 0, μ + λ ≥ 0.

There is much literature concerning the well-posedness theory of classical and weak so-
lutions for isentropic compressible Navier–Stokes equations. For the three-dimensional

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02675-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02675-0&domain=pdf
http://orcid.org/0000-0002-0092-4698
mailto:shangzhaoyang@sjtu.edu.cn


Li et al. Advances in Difference Equations        (2020) 2020:214 Page 2 of 27

case, Nash [1] and Itaya [2] established the local existence and uniqueness of classical so-
lutions in the absence of vacuum in 1962 and 1977, respectively. In 1995, Hoff [3, 4] proved
the global existence of weak solutions when the initial density would be close to a constant
in L2 and L∞ norm, and the initial velocity be small in L2 norm and bounded in L2n norm
(n is the space dimension). In 1998, Lions [5] obtained the global existence of weak solu-
tions when the adiabatic exponent γ is suitably large, the main restriction on initial data
is that the initial total energy is finite, similar results can be found in [6] given by Feireisl.
A few years later, Hoff [7–9] obtained a new type of global weak solutions with small en-
ergy, which have more regularity information than the works in [5, 6]. On the other hand,
when vacuum is allowed, Cho and Kim [10, 11] proved the existence of unique local strong
solutions in bounded and unbounded domains in 2003. In 2012, Huang, Li and Xin [12]
established the global classical solutions with small energy but possibly large oscillations.
In the same year, Duan [13] generalized the result in [7] and proved the global classical
solutions to the half-space problem with the boundary condition proposed by Navier pro-
vided the initial energy is small. In 2016, Yu and Zhang [14] studied the nonhomogeneous
equations with density-dependent viscosity in a smooth bounded domain and the vac-
uum is allowed. The global well-posedness of strong solutions is established for the case
when the bound of the density is suitably small, or when the total mass is small with large
oscillations. Later, in 2017, under the same condition in [12], Yu and Zhao [15] studied
the global existence in a cuboid domain, some new ideas being applied to establishing a
time-uniform upper bound for the density. Recently, Si, Zhang and Zhao [16] established
the global existence of classical solutions with a small initial density but possibly a large
energy in the case of ρ0 ∈ Lγ , γ ∈ (1, 6) and ρ0 ∈ L1, γ > 1, respectively, which extends the
results in [12].

Compared with the three-dimensional case, there are few results in the two-dimensional
space. The pioneering work can be traced back to [17] in 1995, as Vaigant and Kazhikhov
first proposed the initial-boundary value problem with the special viscosity coefficients,
that is, shear viscosity μ being a positive constant and bulk viscosity

λ(ρ) = ρβ , β > 3. (2)

They proved the existence of global strong solution with no restrictions on the size of
initial data. In 2012, Luo [18] studied the Cauchy problem and proved local existence and
uniqueness of classical solutions with initial density containing vacuum when viscosity
coefficients μ and λ are constant. For the case of a viscosity depending on the density,
we refer to a later work by Li and Liang [19]. In 2013, under the condition (2), Jiu, Wang
and Xin [20, 21] proved the global classical solutions on the torus and in the whole space,
respectively, where the initial data may contain vacuum in an open set. In the same year,
Ducomet and Necasova [22] studied the initial-boundary value problem with a vorticity-
type boundary condition and prove that the results of [17] hold in any smooth bounded
domain. In 2014, Zhang, Deng and Zhao [23] established the global classical solutions
to the Cauchy problem with smooth initial data under the assumption that the viscosity
coefficient μ is large enough. In 2016, Huang and Li [24] relaxed the power index β in (2)
to be β > 4

3 and studied the large-time behavior of the solutions, also see a recent work [25]
for Cauchy problem. In the same year, Fang and Guo [26] established the global existence
and large-time asymptotic behavior of the strong solution to the Cauchy problem in the
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case of β ∈ [0, 1] provided that the initial data are of small total energy. In 2018, Ding,
Huang and Liu [27] obtained the global classical solutions to the Cauchy problem with
β ∈ [0, 1] under the condition of small initial density, which extends the earlier work [26]
with small initial energy.

From the well-known results mentioned in the above paragraph, we can see that in the
two-dimensional space, the existing work mainly discussed the global existence of system
(1) under the condition of density-dependent viscosity, β > 4

3 with general initial data,
β ∈ [0, 1] with small initial energy or small initial density. However, whether the unique
local classical solution can exist globally for constant viscosity with small initial mass on
a bounded domain is still unknown at present. Inspired by the analysis of [12] and [15],
in this paper, we consider Dirichlet problem of (1) with the following initial-boundary
conditions:

(ρ, u)(x, t)|t=0 =
(
ρ0(x), u0(x)

)
, (3)

u(x, t)|∂Ω = 0. (4)

We hope to establish the global existence of strong solutions for (1), (3)–(4) with con-
stant viscosity on the square domain.

Before stating the main results, we explain the notations and conventions used through-
out this paper.

Notations:
• The standard Lebesgue and Sobolev spaces are defined as follows:

⎧
⎨

⎩

Lr = Lr(Ω), W s,r = W s,r(Ω), Hs = W s,2,

W s,r
0 = {f ∈ W s,r|f = 0 on ∂Ω}, Hs

0 = W s,2
0 .

• ḟ = ft + u · ∇f denotes the material derivative of f .
•

∫
f dx =

∫

Ω
f dx and

∫ T
0

∫
f dx dt =

∫ T
0

∫

Ω
f dx dt.

• The symbol ∇ l with an integer l ≥ 0 stands for the usual spatial derivatives of any
order l. We define

∇kf =
{
∂α

x fi||α| = k, i = 1, 2
}

, f = (f1, f2).

• Positive generic constants are denoted by C, which may change in different places.
Now, our main results in this paper can be stated as follows.

Theorem 1.1 For given numbers ρ̄ > 0, M > 0 and q > 2, suppose that the initial data
(ρ0, u0) satisfy

⎧
⎨

⎩

0 ≤ infρ0 ≤ ρ0 ≤ supρ0 ≤ ρ̄, ‖∇u0‖L2 ≤ √
M,

ρ0 ∈ H3, u0 ∈ H1
0 ∩ H3,

(5)

and the following compatibility conditions:

–μ�u0 – (μ + λ)∇ div u0 + P(ρ0) = ρ
1
2

0 g, (6)
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for some g ∈ L2. Then, there exists a positive constant ε0 depending on ρ̄ , M, μ, λ, and some
other known constants but independent of T , such that, if

‖ρ0‖L1 ≤ ε0, (7)

the initial-boundary value problem (1), (3)–(4) admits a unique global classical solution
(ρ, u) in Ω × (0, +∞) satisfying, for any 0 < T < +∞,

0 ≤ ρ(x, t) ≤ 2ρ̄, x ∈ Ω , t ≥ 0,

and
⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ ρ ∈ C([0, T]; H3), ρt ∈ L∞([0, T]; H1),

u ∈ C([0, T]; H1
0 ∩ H3) ∩ L2(0, T ; H4),

ut ∈ L∞(0, T ; H1
0 ∩ H2), √

ρut ∈ L∞(0, T ; L2).

(8)

Remark 1.1 Cho and Kim [10, 11] proved the existence and uniqueness of local strong
solution to (1), (3)–(4) with initial vacuum in the three-dimensional space, where Ω can
be bounded domain or the whole space. If Ω is a bounded domain inR

2 and the initial data
(ρ0, u0) are smooth enough, and u satisfies the boundary condition (4), it is not difficult to
verify that the proofs in [10, 11] are still valid for local existence of classical solutions in
two-dimensional space.

Remark 1.2 In Theorem 1.1, we give the global existence of classical solution to the initial-
boundary value problem (1), (3)–(4) provided the initial mass ‖ρ0‖L1 is small. In fact,
if we take the same vorticity-type boundary condition (Navier-slip boundary condition)
in [15] instead of Dirichlet boundary condition, by applying the same method in three-
dimensional space, similar results in Theorem 1.1 can also be proved. Thus, our results
extended the one due to Yu and Zhao [15], where the global well-posedness of classi-
cal solutions with small initial energy was proved. Moreover, under the condition (7),
we can prove the global existence of classical solution to the Cauchy problem in three-
dimensional space by using effective viscous flux method, which extend the results of [12]
for small initial energy and [16] for small initial density.

We now make some comments on the global existence of classical solution to the isen-
tropic compressible Navier–Stokes equations. Compared with the three-dimensional case,
it causes some essential difficulties. Similar to the procedure of [12, 15, 16], a key ingre-
dient in our proof is to obtain a uniform priori upper bound for the density function.
However, due to the invalidity of the Sobelov embedding inequality ‖u‖L6 ≤ C‖∇u‖L2 ,
and there is no boundary information of effective viscous flux F � (2μ + λ) div u – P in the
two-dimensional bounded domain, time-weighted estimates are needed the ensure the
better integrability of the velocity, which is quite differs from three-dimensional Cauchy
problem. In this paper, we use the Poincaré inequality and the following decomposition of
the velocity u = v + w to overcome this difficulty, where v solves the elliptic system:

⎧
⎨

⎩

μ�v + (μ + λ)∇ div v = ∇P, in Ω ,

v|∂Ω = 0.
(9)
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Then, from the momentum, Eqs. (1) and (9), we can see that w satisfies

⎧
⎨

⎩

μ�w + (μ + λ)∇ div w = ρu̇, in Ω ,

w|∂Ω = 0.
(10)

Hence, ‖∇u‖Lp , p ≥ 2, is controlled by the standard Lp-estimate of elliptic system (9) and
(10).

On the one hand, under the condition of (7), we have the following key observation:

sup
0≤t≤T

(‖√ρu‖2
L2 + ‖ρ‖γ

γ

)
+

∫ T

0
μ‖∇u‖2

L2 ds ≤ m
1
4
0 , (11)

which is derived from (1)1 and (1)2. Then, by applying the method in [15], we get the uni-
form bound for ‖∇u‖L2 and time-dependent bound for ‖∇̇u‖L2(t1,t2;L2), by which, together
with Zlotnik inequality, we have the uniform upper bound of density. It is worth men-
tioning that, these boundness can be obtained by the smallness of the initial mass ‖ρ0‖L1

instead of the smallness of the upper bound of the density in [16] and the initial energy
in [12, 15], respectively. At last, higher-order regularity estimates for (ρ, u) can be proved
by standard methods after some modifications, see [12] for example. Finally, after all the
required a priori estimates obtained, by using the continuity argument, we can extend the
local classical solution to a global one.

The rest of the paper is organized as follows: In Sect. 2, we list some elementary inequal-
ities which will be used in later analysis. Section 3 is devoted to deriving the necessary a
priori estimates on classical solution which extend the local solution to a global one.

2 Preliminaries
In this section, we recall some well-known inequalities, which will be used frequently
throughout this paper. First, we give the Sobolev–Poincaré lemma [28].

Lemma 2.1 There exists a positive constant C depending only on Ω such that every func-
tion f ∈ H1(Ω) satisfies for 2 < p < ∞,

‖f – f̄ ‖Lp ≤ Cp
1
2 ‖f – f̄ ‖

2
p
L2‖∇f ‖1– 2

p
L2 , ‖f ‖Lp ≤ Cp

1
2 ‖f ‖

2
p
L2‖f ‖1– 2

p
H1 , (12)

where

f̄ =
1

|Ω|
∫

Ω

f dx.

Next, we give some regularity results for the following Lamé system with the Dirichlet
boundary condition (see [29]):

⎧
⎨

⎩

LU � μ�U + (μ + λ)∇ div U = F , x ∈ Ω ,

U = 0, x ∈ ∂Ω .
(13)

Suppose U ∈ H1
0 is a weak solution to the Lamé system, we could denote U = L–1F due to

the uniqueness of solution.
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Lemma 2.2 Let r ∈ (1, +∞), then there exists some generic constant C > 0 depending only
on μ, λ, r and Ω such that

(1) If F ∈ Lr , then

‖U‖W 2,r (Ω) ≤ C‖F‖Lr (Ω). (14)

(2) If F ∈ W –1,r (i.e., F = div f with f = (fi,j)2×2, fi,j ∈ Lr), then

‖U‖W 1,r (Ω) ≤ C‖f ‖Lr (Ω). (15)

(3) Moreover, for the endpoint case, if fi,j ∈ L2 ∩ L∞, then ∇U ∈ BMO(Ω) and

‖U‖BMO(Ω) ≤ C
(‖f ‖L2(Ω) + ‖f ‖L∞(Ω)

)
, (16)

where BMO(Ω) stands for the John–Nirenberg space of mean oscillation whose norm
is defined by

‖f ‖BMO � ‖f ‖L2 + [f ]BMO(Ω),

with

[f ]BMO(Ω) � sup
x∈Ω ,r∈(0,d)

1
Ωr(x)

∫

Ωr (x)

∣
∣f (y) – fΩr (x)

∣
∣dy,

and

fΩr (x) =
1

Ωr(x)

∫

Ωr(x)
f (y)dy.

In the following, we give two critical Sobolev inequalities of logarithmic type, which are
originally due to Brezis–Gallouet [30] and Brezis–Wainger [31].

Lemma 2.3 Let Ω ∈ R
2 be a bounded Lipschitz domain and f ∈ W 1,q with q > 2, then we

have

‖f ‖L∞(Ω) ≤ C
(
1 + ‖f ‖BMO(Ω) ln

(
e + ‖f ‖W 1,q

))
(17)

with a constant C depending only on q.

Lemma 2.4 Let Ω ∈R
2 be a smooth domain and f ∈ L2(s, t; H1

0 ) ∩ L2(s, t; W 1,q), with some
q > 2 and 0 ≤ s < t ≤ ∞. Then we have

‖f ‖2
L2(s,t;L∞) ≤ C

(
1 + ‖f ‖2

L2(s,t;H1) ln
(
e + ‖f ‖L2(s,t;W 1,q)

))
(18)

with a constant C depending only on q.

Finally, we give the following lemma arises from Zlotnik [32], which will be used to prove
the uniform upper bound for the density.
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Lemma 2.5 Let y ∈ W 1,1(0, T) satisfy the ODE system:

y′(t) = g(y) + b′(t) on [0, T], y(0) = y0,

where b ∈ W 1,1(0, T), g ∈ C(R) and g(+∞) = –∞. Assume that there are two constants
N0 ≥ 0 and N1 ≥ 0 such that, for all 0 ≤ t1 ≤ t2 ≤ T ,

b(t2) – b(t1) ≤ N0 + N1(t2 – t1). (19)

Then

y(t) ≤ max
{

y0, ξ�
}

+ N0 < +∞ on [0, T],

where ξ� ∈R is a constant such that g(ξ ) ≤ –N1 for ξ ≥ ξ�.

3 Global classical solution
In this section, we establish some necessary a priori estimates for the classical solutions of
initial-boundary value problem (1), (3)–(4). We assume that, for any T > 0, let (ρ, u) be a
classical solution of (1), (3)–(4) in the solution space (8) with the initial data satisfying (5)
and (6). In Sects. 3.1 and 3.2, we will show the lower-order and the higher-order estimates
of the solutions, which guarantee the local classical solution can be extended to a global
one.

3.1 Lower-order estimates of the solutions
First, we give the following proposition to prove the uniform upper bounds of ‖∇u‖L2

and ρ .

Proposition 3.1 Assume that the initial data satisfy (5)–(6), and the local classical solu-
tion satisfies

sup
0≤t≤σ (T)

‖∇u‖2
L2 ≤ 2K , sup

0≤t≤T

(
σ‖∇u‖2

L2
) ≤ 2m

1
8
0 , 0 ≤ ρ ≤ 2ρ̄ + 1, (20)

where (x, t) ∈ Ω × [0, T], σ (t) � min{1, t}. Then there exists

ε2 = min
{
ε1, ε∗

1 , ε∗
2 , ε∗

3 , ε∗
4 , ε∗

5
}

depending on ρ̄ , M, μ, λ, and some other known constants but independent of T such that

sup
0≤t≤σ (T)

‖∇u‖2
L2 ≤ 3

2
K , sup

0≤t≤T

(
σ‖∇u‖2

L2
) ≤ 3

2
m

1
8
0 , 0 ≤ ρ ≤ 3

2
ρ̄ + 1, (21)

provided that m0 ≤ ε2 is suitable small.

In order to prove Proposition 3.1, we give the following mass conservation identity and
the uniform bound of ‖∇u‖L2(0,T ;L2), which are the foundation of our proof in this paper.
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Lemma 3.2 Let (ρ, u) be a classical solution of (1), (3)–(4) on Ω × (0, T], then we have

sup
0≤t≤T

‖ρ‖L1 = ‖ρ0‖L1 = m0, (22)

sup
0≤t≤T

(‖√ρu‖2
L2 + ‖ρ‖γ

γ

)
+

∫ T

0
μ‖∇u‖2

L2 ds ≤ m
1
4
0 , (23)

provided there exists a positive constant ε1 such that m0 ≤ ε1.

Proof Integrating (1)1 over Ω , (22) can be easily obtained. In order to prove (23), multi-
plying (1)1 by ργ –1, it yields

1
γ – 1

d
dt

∫

ργ dx =
∫

u · ∇ργ dx. (24)

On the other hand, multiplying (1)2 by u, integrating the result over Ω , and using (1)1, we
have

1
2

d
dt

∫

ρ|u|2 dx + μ

∫

|∇u|2 dx + (μ + λ)
∫

|div u|2 dx = –
∫

∇P · u dx. (25)

Adding (25) and (24) together, and integrating the resulting equality over time interval
(0, t), we get

sup
0≤t≤T

(
1
2
‖√ρu‖2

L2 +
1

γ – 1
‖ρ‖γ

Lγ

)

+
∫ T

0
μ‖∇u‖2

L2 ds

≤ 1
2
‖ρ0‖L2‖u0‖2

L4 +
1

γ – 1
‖ρ0‖γ

Lγ

≤ Cρ̄
1
2 ‖∇u0‖2

L2 m
1
2
0 + Cρ̄γ –1m0 ≤ m

1
4
0 ,

provided there exists a positive constant ε1 such that m0 ≤ ε1. This completes the proof
of Lemma 3.2. �

Next, in Lemma 3.3, we give the uniform upper bound of ‖∇u‖L2 .

Lemma 3.3 Let (ρ, u) be a classical solution of (1), (3)–(4) on Ω × (0, T], if the assumption
of Proposition 3.1 holds, then

sup
0≤t≤σ (T)

‖∇u‖2
L2 +

∫ σ (T)

0
‖√ρu̇‖2

L2 ds ≤ 3
2

K , (26)

sup
i–1≤t≤i+1

(
σ‖∇u‖2

L2
)

+
∫ i+1

i–1
σi‖√ρu̇‖2

L2 ds ≤ 3
2

m
1
8
0 , (27)

provided there exist constant ε∗
1 and ε∗

2 such that m0 ≤ min{ε1, ε∗
1 , ε∗

2}, where σi(t) � σ (t +
1 – i), 1 ≤ i ≤ [T] – 1, t ∈ (i – 1, i + 1].

Proof From (1)2, we get

ρu̇ + ∇P = μ�u + (μ + λ)∇ div u. (28)
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Multiplying (28) by ηu̇, η = η(t) ≥ 0 is a piecewise smooth function, integrating the result-
ing equation over Ω , it yields

1
2

d
dt

(∫

μη|∇u|2 dx +
∫

(μ + λ)η|div u|2 dx
)

+
∫

ηρ|u̇|2 dx

=
d
dt

∫

ηP div u dx –
∫

η′P div u dx –
∫

η
(
Pt + div(Pu)

)
div u dx

+
∫

ηP∇u : ∇u
 dx – μ

∫

η∇u : (∇u∇u) dx +
1
2
μ

∫

η div u|∇u|2 dx

+
1
2
μ

∫

η′|∇u|2 dx +
1
2

(μ + λ)
∫

η′|div u|2 dx

–(μ + λ)
∫

η
(∇u : ∇u
)

div u dx +
1
2

(μ + λ)
∫

η|div u|3 dx

:=
d
dt

∫

ηP div u dx +
9∑

i=1

Ii. (29)

Now, we estimate Ii, i = 1, 2, 3, . . . , 9, one by one:

I1 ≤ ∣
∣η′∣∣‖P‖L2‖∇u‖L2 ≤ ∣

∣η′∣∣‖P‖2
L2 + |η′∣∣‖∇u‖2

L2

≤ ∣
∣η′∣∣ρ̄2γ –1m0 +

∣
∣η′∣∣‖∇u‖2

L2 , (30)

I2 + I3 ≤ Cη‖∇u‖2
L2 , (31)

where we have used the identity Pt + div(Pu) = (1 – γ )ργ div u.
The terms I4, I5, I9 can be estimated as

I4 + I5 + I8 + I9 ≤ Cη‖∇u‖3
L3 ≤ Cη

(‖∇v‖2
L3 + ‖∇w‖3

L3
)

≤ Cη
(‖P‖3

L3 + ‖∇w‖2
L2

∥
∥∇2w

∥
∥

L2
)

≤ Cη
(
ρ̄3γ –1m0 +

(‖∇u‖2
L2 + ‖∇v‖2

L2
)∥
∥∇2w

∥
∥

L2
)

≤ Cη
(
ρ̄3γ –1m0 +

(‖∇u‖2
L2 + ‖P‖2

L2
)∥
∥∇2w

∥
∥

L2
)

≤ Cη
(
ρ̄3γ –1m0 +

(‖∇u‖2
L2 + ρ̄2γ –1m0

)‖√ρu̇‖L2
)

≤ Cη
(
m0 + m2

0
)

+
1
4
η‖√ρu̇‖2

L2 + Cη‖∇u‖4
L2 . (32)

It remains to estimate I6 and I7, we get

I6 + I7 ≤ C
∣
∣η′∣∣‖∇u‖2

L2 . (33)

Then, inserting (30)–(33) into (29), we have

1
2

d
dt

(∫

μη|∇u|2 dx +
∫

(μ + λ)η|div u|2 dx
)

+
1
2

∫

ηρ|u̇|2 dx

≤ d
dt

∫

ηP div u dx + C
∣
∣η′∣∣m0 + Cη

(
m0 + m2

0
)

+ C
(∣
∣η′∣∣ + η

)‖∇u‖2
L2

+ Cη‖∇u‖4
L2 . (34)
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In order to prove (26), taking η = 1 and integrating (34) over (0, t), for 0 < t ≤ σ (T), we
get

∫

μ|∇u|2 dx +
∫ σ (T)

0

∫

ρ|u̇|2 dx ds

≤ μ‖∇u0‖2
L2 + 2(μ + λ)‖div u0‖2

L2 + ‖P‖L2‖∇u‖L2 + ‖P0‖L2‖∇u0‖L2

+ C
(
m0 + m2

0
)

+ Cm
1
4
0 + CKm

1
4
0

≤ μM + 2(μ + λ)M + C
(√

Km
1
2
0 +

√
Mm

1
2
0 + m0 + m2

0 + m
1
4
0 + Km

1
4
0
)
, (35)

where we have used (23) and (20). Then we have

sup
0≤t≤σ (T)

∫

μ|∇u|2 dx +
∫ σ (T)

0

∫

ρ|u̇|2 dx ds ≤ K +
1
2

K =
3
2

K , (36)

provided there exists a constant ε∗
1 , m0 ≤ ε∗

1 such that

μM + 2(μ + λ)M ≤ K ,

C
(√

Km
1
2
0 +

√
Mm

1
2
0 + m0 + m2

0 + m
1
4
0 + Km

1
4
0
) ≤ 1

2
K .

In order to prove (27), taking η = σi in (34), integrating (34) over (i – 1, t), we get

σi

∫

μ|∇u|2 dx +
∫ t

i–1

∫

σiρ|u̇|2 dx ds

≤ σi‖P‖L2‖∇u‖L2 + C
(
m0 + m2

0 + m
1
4
0
)

+ C
∫ t

i–1
σi‖∇u‖4

L2 ds

≤ 1
2
σiμ‖∇u‖2

L2 + C
(
m0 + m2

0 + m
1
4
0
)

+ C sup
i–1≤t≤i+1

σi‖∇u‖2
L2

∫ t

i–1
‖∇u‖2

L2 ds

≤ 1
2
σiμ‖∇u‖2

L2 + C
(
m0 + m2

0 + m
1
4
0
)

+ C sup
i–1≤t≤i+1

σi‖∇u‖2
L2 m

1
4
0

≤ 1
2
σiμ‖∇u‖2

L2 + C
(
m0 + m2

0 + m
1
4
0 + m

3
8
0
)
. (37)

Then, we have

sup
i–1≤t≤i+1

σi

∫

μ|∇u|2 dx +
∫ i+1

i–1

∫

σiρ|u̇|2 dx ds ≤ 3
2

m
1
8
0 , (38)

provided there exists a constant ε∗
2 , m0 ≤ ε∗

2 such that

C
(
m0 + m2

0 + m
1
4
0 + m

3
8
0
) ≤ 3

2
m

1
8
0 .

Hence, if we take m0 ≤ min{ε1, ε∗
1 , ε∗

2}, this completes the proof of Lemma 3.3. �

In Lemma 3.4, we will give the bound for
∫ t2

t1
σ 2‖∇u̇‖2

L2 ds which will be used to prove
the uniform upper bound of ρ . It should be noted that the constant C on the right-hand
side of (39) and (40) is independent of time.
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Lemma 3.4 Let (ρ, u) be a classical solution of (1), (3)–(4) on Ω × (0, T], if the assumption
of Proposition 3.1 holds, then

sup
0≤t≤T

(
σ 2‖√ρu̇‖2

L2
) ≤ Cm

1
8
0 , (39)

∫ t2

t1

σ 2‖∇u̇‖2
L2 ds ≤ Cm0(t2 – t1) + Cm

1
8
0 , (40)

for any t1, t2 ∈ (0, T], provided m0 ≤ min{ε1, ε∗
1 , ε∗

2}.

Proof Operating ηu̇j(∂t + div(u·)) to (1)j
2, summing with respect to j, and integrating the

resulting equation over Ω , we obtain

d
dt

∫

ηρ|u̇|2 dx – η′
∫

ρ|u̇|2 dx

= –2η

∫

u̇j(∂jPt + div(u∂jP)
)

dx + 2μη

∫

u̇j(∂t�uj + div
(
u�uj))dx

+ 2(μ + λ)η
∫

u̇j(∂j∂t div u + div(u∂j div u)
)

dx

:=
3∑

i=1

Ji. (41)

It follows from integration by parts and using Eq. (1)1 that

J1 = –2η

∫

u̇j(∂jPt + ∂j div(uP) – div(P∂ju)
)

dx

= 2η

∫

div u̇
(
Pt + div(uP)

)
dx – 2η

∫

(P∂ju) · ∇u̇j dx

≤ Cη

∫

ργ |div u̇||div u|2 dx + Cη

∫

ργ |∇u||∇u̇|dx

≤ μη

4
‖∇u̇‖L2 + Cη‖∇u‖2

L2 , (42)

J2 = 2μη

∫

u̇j[�u̇j + ∂i
(
div u∂iuj – ∂iu · ∇uj) – div

(
∂iu∂iuj)]dx

= –2μη

∫
∣
∣∇u̇j∣∣2 dx – 2μη

∫

∂iu̇j(div u∂iuj – ∂iu · ∇uj)dx

+ 2μη

∫

∇u̇j∂iu∂iuj dx

≤ –μη
∥
∥∇u̇j∥∥2

L2 + Cη‖∇u‖4
L4 . (43)

Similarly, we get

J3 ≤ –(μ + λ)η‖div u̇‖2
L2 + Cη‖∇u‖4

L4 , (44)
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where ‖∇u‖4
L4 can be estimated as

‖∇u‖4
L4 ≤ ‖∇v‖4

L4 + ‖∇w‖4
L4

≤ ‖P‖4
L4 + ‖∇w‖2

L2

∥
∥∇2w

∥
∥2

L2

≤ C
(
ρ̄4γ –1m0 +

(‖∇u‖2
L2 + ‖∇v‖2

L2
)∥
∥∇2w

∥
∥2

L2
)

≤ C
(
ρ̄4γ –1m0 +

(‖∇u‖2
L2 + ‖P‖2

L2
)∥
∥∇2w

∥
∥2

L2
)

≤ C
(
ρ̄4γ –1m0 +

(‖∇u‖2
L2 + ρ̄2γ –1m0

)‖√ρu̇‖2
L2

)
. (45)

Substituting the estimates J1, J2, J3 and (45) into (41), we arrive at

d
dt

∫

ηρ|u̇|2 dx + μη‖∇u̇‖2
L2

≤ ∣
∣η′∣∣

∫

ρ|u̇|2 dx + Cη‖∇u‖2
L2 + Cη

(‖∇u‖2
L2 + ρ̄2γ –1m0

)‖√ρu̇‖2
L2

+ Cηρ̄4γ –1m0. (46)

In order to prove (39), taking η = σ 2
i in (46), integrating (46) over (i – 1, t) and taking (27)

into consideration, we get

σ 2
i ‖√ρu̇‖2

L2 +
∫ t

i–1
μσ 2

i ‖∇u̇‖2
L2 ds

≤
∫ t

i–1
σiσ

′
i ‖

√
ρu̇‖2

L2 ds + C
∫ t

i–1
σ 2

i
(‖∇u‖2

L2 + ρ̄2γ –1m0
)‖√ρu̇‖2

L2 ds

+ C
(
m

1
4
0 + m0

)

≤ Cm
1
8
0 + C

(
sup

i–1≤t≤i+1
σi‖∇u‖2

L2 + m0

)∫ t

i–1
σi‖√ρu̇‖2

L2 ds

+ C
(
m

1
4
0 + m0

)

≤ C
(
m

1
8
0 + m

1
4
0 + m

5
8
0 + m

9
8
0 + m0

)

≤ Cm
1
8
0 , (47)

which proves (39).
Furthermore, from (47), we can see that, if we take η = σ 2, then integrating (46) over

(t1, t2) ∈ [0, T], we have

σ 2∥∥√
ρu̇(t2)

∥
∥2

L2 +
∫ t2

t1

μσ 2‖∇u̇‖2
L2 ds

≤ σ 2∥∥√
ρu̇(t1)

∥
∥2

L2 +
∫ t2

t1

σσ ′‖√ρu̇‖2
L2 ds

+ C
∫ t2

t1

σ 2(‖∇u‖2
L2 + ρ̄2γ –1m0

)‖√ρu̇‖2
L2 ds

+ Cm
1
4
0 + Cm0(t2 – t1)



Li et al. Advances in Difference Equations        (2020) 2020:214 Page 13 of 27

≤ C
(
m

1
8
0 + m

1
4
0
)

+ C
(

1 + sup
0≤t≤T

σ‖∇u‖2
L2 + m0

)∫ t2

t1

σ‖√ρu̇‖2
L2 ds

+ Cm0(t2 – t1)

≤ Cm
1
8
0 + C

(
1 + m

1
8
0 + m0

)
∫ t2

t1

σ‖√ρu̇‖2
L2 ds + Cm0(t2 – t1), (48)

where we have used (23), (20) and (39).
In order to estimate the second term on the right-hand side of the above inequality,

taking η = σ in (29), integrating (29) over (t1, t2) ∈ [0, T], we get

σ

∫

μ|∇u|2 dx +
∫ t2

t1

∫

σρ|u̇|2 dx ds

≤ μσ
∥
∥∇u(t1)

∥
∥2

L2 + 2(μ + λ)σ
∥
∥div u(t1)

∥
∥2

L2 + σ‖P‖L2‖∇u‖L2

+ C
(
m0 + m2

0
)
(t2 – t1) + Cm

1
4
0 + C

∫ t

i–1
σi‖∇u‖4

L2 ds

≤ 1
2
σμ‖∇u‖2

L2 + C
(
m0 + m2

0
)
(t2 – t1) + C

(
m

1
4
0 + m

1
8
0
)

+ C sup
i–1≤t≤i+1

σi‖∇u‖2
L2

∫ t

i–1
‖∇u‖2

L2 ds

≤ 1
2
σμ‖∇u‖2

L2 + C
(
m0 + m2

0
)
(t2 – t1) + C

(
m

1
4
0 + m

1
8
0
)

+ C sup
i–1≤t≤i+1

σi‖∇u‖2
L2 m

1
4
0

≤ 1
2
σμ‖∇u‖2

L2 + C
(
m0 + m2

0
)
(t2 – t1) + C

(
m

1
4
0 + m

1
8
0 + m

3
8
0
)
, (49)

from which one deduces

σ

∫

μ|∇u|2 dx +
∫ t2

t1

∫

σρ|u̇|2 dx ds ≤ Cm0(t2 – t1) + Cm
1
8
0 . (50)

Then, inserting (50) into (48), (40) can be obtained. This completes the proof of
Lemma 3.4. �

Inspired by the methods in Refs. [12, 15], in the following lemma, we use the Zlotnik
inequality to prove the uniform upper bound of the density ρ .

Lemma 3.5 Under the condition of Proposition 3.1, we have

ρ ≤ 3
2
ρ̄ + 1, (51)

provided there exist constants ε∗
3 , ε∗

4 and ε∗
5 such that m0 ≤ min{ε1, ε∗

1 , ε∗
2 , ε∗

3 , ε∗
4 , ε∗

5}.

Proof For any given (x, t) ∈ Ω × [0, T], denoting X(s; x, t) the solution to the initial value
problem

{
d
ds X(s; x, t) = u(X(s; x, t), s), 0 ≤ s < t,
X(t; x, t) = x.
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It is easy to verify that

d
ds

ρ
(
X(s; x, t), s

)
+ ρ

(
X(s; x, t), s

)
div u

(
X(s; x, t), s

)
= 0,

due to (1)1. This gives

Y ′(s) = g(s) + b′(s), (52)

where

Y (s) = ρ
(
X(s; x, t), s

)
, g(s) = –

ργ +1(X(s; x, t), s)
2μ + λ

,

b(s) = –
∫ s

0
ρ
(
X(s; x, t), s

)
(

C(t)
2μ + λ

+ div w
(
X(s; x, t), s

)
)

ds,

and C(t) = (2μ + λ)divv – P.
Next, we use Lemma 2.5 to prove the uniform upper bound of the density. We have

b(t2) – b(t1) =
∫ t2

t1

∥
∥
∥
∥

ρC(t)
2μ + λ

∥
∥
∥
∥∞

ds +
∫ t2

t1

‖ρ div w‖∞ ds

= K1 + K2. (53)

In the following, we estimate the terms on the right-hand side of Eq. (53) one by one. In
order to estimate C(t), from Eq. (9), we have

∇(
(2μ + λ) div v – P

)
– μ∇ × (∇ × v) = 0. (54)

We have (∇ × (∇ × v)) = (∂2(∂1v2 – ∂2v1), –∂1(∂1v2 – ∂2v1)) and the boundary condition (4)
implies

⎧
⎨

⎩

v1 = ∂2v2 = 0, x1 = 0, 1,

v2 = ∂1v1 = 0, x2 = 0, 1.
(55)

Then, we have (∇ × (∇ × v)) · n = 0 a.e. on ∂Ω and div(∇ × (∇ × v)) = 0.
Multiplying (54) by ∇((2μ + λ) div v – P) and integrating the resulting equation over Ω ,

we arrive at

∥
∥∇(

(2μ + λ) div v – P
)∥
∥

L2 = 0,

which implies that there exists C(t) such that

C(t) = (2μ + λ) div v – P. (56)

Using (9), we have ‖∇v‖L2 ≤ C‖P‖L2 . Integrating (56), we get

C(t) ≤ C
(‖∇v‖L2 + ‖P‖L2

) ≤ C‖P‖L2 ≤ Cρ̄
2γ –1

2 m
1
2
0 . (57)
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Then, we have

K1 =
∫ t2

t1

∥
∥
∥
∥

ρC(t)
2μ + λ

∥
∥
∥
∥∞

ds ≤ Cρ̄
2γ +1

2 m
1
2
0

2μ + λ
(t2 – t1) ≤ 1

4(2μ + λ)
(t2 – t1), (58)

provided there exists a constant ε∗
3 , m0 ≤ ε∗

3 such that

Cρ̄
2γ +1

2 m
1
2
0 ≤ 1

4
.

In order to estimate K2, we consider the following three cases:
(1) 0 ≤ t1 ≤ t2 ≤ σ (T).

K2 =
∫ t2

t1

‖ρ div w‖L∞ ds ≤ C
∫ σ (T)

0
‖∇w‖ 1

3
L2‖∇w‖ 2

3
W 1,4 ds

≤ C
∫ σ (T)

0

(‖∇u‖L2 + ‖P‖L2
) 1

3 ‖∇u̇‖ 2
3
L2 ds

≤ C
∫ σ (T)

0
σ – 1

2
(
σ

1
2 ‖∇u‖L2 + σ

1
2 ‖P‖L2

) 1
3
(
σ‖∇u̇‖2

L2
) 1

3 ds

≤ C
∫ σ (T)

0
σ – 1

2
(
m

1
16
0 + σ

1
2 ρ̄

2γ –1
2 m

1
2
0
) 1

3
(
σ‖∇u̇‖2

L2
) 1

3 ds

≤ C
(
m

1
16
0 + ρ̄

2γ –1
2 m

1
2
0
) 1

3

(∫ σ (T)

0
σ – 3

4 ds
) 2

3
(∫ σ (T)

0
σ‖∇u̇‖2

L2 ds
) 1

3

≤ C
(
m

1
16
0 + ρ̄

2γ –1
2 m

1
2
0
) 1

3

(∫ σ (T)

0
σ‖∇u̇‖2

L2 ds
) 1

3
, (59)

where we have used Lemma 3.3. It remains to estimate the term on the right-hand
side of inequality (59). To do this, we taking η = σ in (46) and integrating the
resulting inequality over (0,σ (T)), we have

∫

ηρ|u̇|2 dx +
∫ σ (T)

0
μσ‖∇u̇‖2

L2 ds

≤ C +
∫ σ (T)

0

∣
∣σ ′∣∣

∫

ρ|u̇|2 dx ds + C
∫ σ (T)

0
σ‖∇u‖2

L2 ds

+ C
∫ σ (T)

0
σ
(‖∇u‖2

L2 ds + ρ̄2γ –1m0
)‖√ρu̇‖2

L2 ds + Cσ ρ̄4γ –1m0

≤ C
(
1 + K + m

1
4
0
)

+ C
(
m

1
8
0 + ρ̄2γ –1m0

)
K + Cσ ρ̄4γ –1m0

≤ C. (60)

From (59) and (60), we can see that

K2 ≤ C
(
m

1
16
0 + ρ̄

2γ –1
2 m

1
2
0
) 1

3 ≤ 1
8
ρ̄, (61)

provided there exists a constant ε∗
4 such that m0 ≤ ε∗

4 .
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(2) σ (T) ≤ t1 ≤ t2 ≤ T .

K2 ≤ 1
4(2μ + λ)

(t2 – t1) + 4(2μ + λ)
∫ t2

t1

‖ρ div w‖2
L∞ ds

≤ 1
4(2μ + λ)

(t2 – t1) + 4ρ̄2(2μ + λ)
∫ t2

t1

‖div w‖2
L∞ ds

≤ 1
4(2μ + λ)

(t2 – t1) + Cρ̄2
∫ t2

t1

‖∇w‖ 2
3
L2‖∇w‖ 4

3
W 1,4 ds

≤ 1
4(2μ + λ)

(t2 – t1) + Cρ̄2
∫ t2

t1

(‖∇u‖L2 + ‖P‖L2
) 2

3 ‖∇u̇‖ 4
3
L2 ds

≤ 1
4(2μ + λ)

(t2 – t1)

+ Cρ̄2
(∫ t2

t1

(‖∇u‖2
L2 + ‖P‖2

L2
)

ds
) 1

3
(∫ t2

t1

‖∇u̇‖2
L2 ds

) 2
3

≤ 1
4(2μ + λ)

(t2 – t1)

+ Cρ̄2(m
1
4
0 + ρ̄2γ –1m0(t2 – t1)

) 1
3

(∫ t2

t1

‖∇u̇‖2
L2 ds

) 2
3

≤ 1
4(2μ + λ)

(t2 – t1) + Cρ̄2m
1

12
0

(∫ t2

t1

‖∇u̇‖2
L2 ds

) 2
3

+ Cρ̄
2γ +5

3 m
1
3
0 (t2 – t1)

1
3

(∫ t2

t1

‖∇u̇‖2
L2 ds

) 2
3

≤ 1
4(2μ + λ)

(t2 – t1) + C
∫ t2

t1

‖∇u̇‖2
L2 ds + Cm

1
4
0 + Cm

1
3
0 (t2 – t1)

≤ 1
4(2μ + λ)

(t2 – t1) + C
(
m0 + m

1
3
0
)
(t2 – t1) + C

(
m

1
8
0 + m

1
4
0
)
, (62)

where in the last inequality we have used (40). Then, we get

K2 ≤ 1
2(2μ + λ)

(t2 – t1) +
1
8
ρ̄, (63)

provided there exists a constant ε∗
5 , m0 ≤ ε∗

5 , such that

C
(
m0 + m

1
3
0
) ≤ 1

4(2μ + λ)
, C

(
m

1
8
0 + m

1
4
0
) ≤ 1

8
ρ̄.

(3) 0 ≤ t1 ≤ σ (T) ≤ t2 ≤ T .
Combining case (1) and case (2), we can easily obtain

K2 =
∫ σ (T)

t1

‖ρ div w‖L∞ ds +
∫ t2

σ (T)
‖ρ div w‖L∞ ds

≤ 1
2(2μ + λ)

(t2 – t1) +
1
4
ρ̄. (64)
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Taking (53), (58), (61), (63) and (64) into consideration, we have

∣
∣b(t2) – b(t1)

∣
∣ ≤ 1

2μ + λ
(t2 – t1) +

1
2
ρ̄, (65)

provided there exist constants ε∗
3 , ε∗

4 and ε∗
5 as mentioned above such that

m0 ≤ min
{
ε1, ε∗

1 , ε∗
2 , ε∗

3 , ε∗
4 , ε∗

5
}

.

Then we can choose N0, N1 as follows:

N0 =
1
2
ρ̄, N1 =

1
2μ + λ

.

Choosing ξ ∗ = ρ̄ + 1, we can see that

g(ξ ) = –
ξγ +1

2μ + λ
≤ –

1
2μ + λ

= –N1, for ξ ≥ ξ ∗.

Using Lemma 2.5, we obtain

sup
t∈[0,T]

‖ρ‖L∞ ≤ max
{
ρ0, ξ ∗} + N0 ≤ max{ρ̄, ρ̄ + 1} + N0 ≤ ρ̄ + 1 +

1
2
ρ̄ =

3
2
ρ̄ + 1.

This completes the proof of Lemma 3.5. �

Combining Lemmas 3.2–3.5, if we take m0 ≤ min{ε1, ε∗
1 , ε∗

2 , ε∗
3 , ε∗

4 , ε∗
5}, then Proposi-

tion 3.1 is proved. At the end of this subsection, we give the following second-order a
priori estimates, where the constants C on the right-hand side of (66) and (67) may de-
pend on time T .

Lemma 3.6 Let (ρ, u) be a strong solution of (1), (3)–(4) on Ω × (0, T], under the condition
of Theorem 1.1, we have

sup
0≤t≤T

‖√ρu̇‖2
L2 +

∫ T

0
‖∇u̇‖2

L2 ds ≤ C(T), (66)

sup
0≤t≤T

(‖∇ρ‖Lp + ‖u‖H2
) ≤ C(T). (67)

Proof Taking η = 1 in (46), integrating (46) over (0,σ (T)], we get

sup
0≤t≤σ (T)

‖√ρu̇‖2
L2 +

∫ σ (T)

0
μ‖∇u̇‖2

L2 ds

≤ C
(
1 + m

1
4
0 + m0

)
+ C

∫ σ (T)

0

(‖∇u‖2
L2 + m0

)‖√ρu̇‖2
L2 ds ≤ C, (68)

which combines (39) and (40), and we obtain

sup
0≤t≤T

‖√ρu̇‖2
L2 +

∫ T

0
‖∇u̇‖2

L2 dt ≤ C(T). (69)
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Next, applying the operator ∇ to (1)1, and multiplying the resulting equation by
p|∇ρ|p–2∇ρ , p > 2, we obtain

d
dt

∫

|∇ρ|p dx = (1 – p)
∫

|∇ρ|p div u dx – p
∫

|∇ρ|p–2∇ρ(∇u · ∇ρ) dx

– p
∫

ρ|∇ρ|p–2∇ρ · ∇(div u) dx

≤ C
∫

|∇ρ|p|∇u|dx + C
∫

|∇ρ|p–1∣∣∇2u
∣
∣dx

≤ C‖∇u‖L∞‖∇ρ‖p
Lp + C‖∇ρ‖p–1

Lp
∥
∥∇2u

∥
∥

Lp , (70)

then we have

d
dt

‖∇ρ‖p ≤ C
(‖∇u‖L∞‖∇ρ‖Lp +

∥
∥∇2u

∥
∥

Lp
)
, (71)

where the terms on the right-hand side of the above inequality can be estimated as

‖∇u‖L∞ ≤ C
(‖∇w‖L∞ + ‖∇v‖L∞

)

≤ C
(‖∇w‖Lp +

∥
∥∇2w

∥
∥

Lp + ‖∇v‖L∞
)

≤ C
(‖∇u̇‖L2 + ‖∇v‖BMO ln

(
e +

∥
∥∇2v

∥
∥

Lp
)

+ 1
)

≤ C
(‖∇u̇‖L2 +

(‖P‖L∞ + ‖P‖L2
)

ln
(
e +

∥
∥∇2v

∥
∥

Lp
)

+ 1
)

≤ C
(‖∇u̇‖L2 + ln

(
e + ‖∇ρ‖Lp

)
+ 1

)
(72)

and

∥
∥∇2u

∥
∥

Lp ≤ C
(∥
∥∇2v

∥
∥

Lp +
∥
∥∇2w

∥
∥

Lp
)

≤ C
(‖∇P‖Lp + ‖ρu̇‖Lp

)

≤ C
(‖∇ρ‖Lp + ‖∇u̇‖L2

)
. (73)

Inserting (72) and (73) into (71), we have

d
dt

(‖∇ρ‖Lp + e
)

≤ C
(‖∇u̇‖L2 + e

)
ln

(
e + ‖∇ρ‖Lp

)‖∇ρ‖Lp + C
(‖∇u̇‖L2 + e

)(‖∇ρ‖Lp + e
)
. (74)

Both sides of (74) divided by ‖∇ρ‖p + e lead to

d
dt

ln
(‖∇ρ‖Lp + e

) ≤ C
(‖∇u̇‖L2 + e

)
ln

(
e + ‖∇ρ‖Lp

)
+ C

(‖∇u̇‖L2 + e
)
. (75)

Then, by using the Gronwall inequality and (69), we have

sup
0≤t≤T

‖∇ρ‖Lp ≤ C(T). (76)
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Moreover, from (69), we have

‖u‖H2 ≤ C
(‖ρu̇‖L2 + ‖∇P‖L2

) ≤ C
(‖ρu̇‖L2 + ‖∇ρ‖Lp

) ≤ C(T). (77)

This completes the proof of Lemma 3.6. �

3.2 Higher-order estimates of the solutions
For completeness of our proof, we list the higher-order estimates of the solution (ρ, u)
below, which can be derived in a similar manner to those obtained in [12] after some
modifications.

Lemma 3.7 Let (ρ, u) be a classical solution of (1), (3)–(4) on Ω × (0, T], under the con-
dition of Theorem 1.1, the following estimates hold:

sup
0≤t≤T

‖√ρut‖2
L2 +

∫ T

0
‖∇ut‖2

L2 ds ≤ C(T), (78)

sup
0≤t≤T

(‖ρ‖2
H2 +

∥
∥P(ρ)

∥
∥2

H2
) ≤ C(T). (79)

Proof Estimate (78) follows directly from the following simple facts that

∫

ρ|ut|2 dx ≤
∫

ρ|u̇|2 dx +
∫

ρ|u · ∇u|2 dx ≤ C + ‖√ρu‖L2‖u‖L6‖∇u‖2
L6

≤ C (80)

and

∫ T

0
‖∇ut‖2

L2 ds ≤
∫ T

0
‖∇u̇‖2

L2 ds +
∫ T

0

∥
∥∇(u · ∇u)

∥
∥2

L2 ds

≤ C +
∫ T

0
‖u‖2

L∞
∥
∥∇2u

∥
∥2

L2 ds +
∫ T

0
‖∇u‖4

L4 ds

≤ C, (81)

where in the last inequality we have used the Sobolev embedding inequalities and
Lemma 3.6.

Next, we prove (79). P satisfies

Pt + u · ∇P + γ P div u = 0, (82)

which together with (1)1 yields

d
dt

(∥
∥∇2ρ

∥
∥2

L2 + ‖∇P‖2
L2

)

≤ C
(∥
∥∇2u

∥
∥

L4‖∇ρ‖L4
∥
∥∇2ρ

∥
∥

L2 + ‖∇u‖L∞
∥
∥∇2ρ

∥
∥2

L2

+
∥
∥∇2u

∥
∥

L4‖∇P‖L4
∥
∥∇2P

∥
∥

L2 + ‖∇u‖L∞
∥
∥∇2P

∥
∥2

L2 +
∥
∥∇3u

∥
∥

L2

∥
∥∇2P

∥
∥

L2
)

≤ C
(∥
∥∇2u

∥
∥

1
2
L2

∥
∥∇3u

∥
∥

1
2
L2‖∇ρ‖ 1

2
L2

∥
∥∇2ρ

∥
∥

3
2
L2 + ‖∇u‖L∞

∥
∥∇2ρ

∥
∥2

L2
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+
∥
∥∇2u

∥
∥

1
2
L2

∥
∥∇3u

∥
∥

1
2
L2‖∇P‖ 1

2
L2

∥
∥∇2P

∥
∥

3
2
L2 + ‖∇u‖L∞

∥
∥∇2P

∥
∥2

L2

+
∥
∥∇3u

∥
∥

L2

∥
∥∇2P

∥
∥

L2
)

≤ C
(∥
∥∇3u

∥
∥2

L2 +
∥
∥∇2ρ

∥
∥2

L2 +
∥
∥∇2P

∥
∥2

L2 + ‖∇u‖L∞
∥
∥∇2ρ

∥
∥2

L2

+ ‖∇u‖L∞
∥
∥∇2P

∥
∥2

L2
)

≤ C
∥
∥∇3u

∥
∥2

L2 + C
(‖∇u‖L∞ + 1

)(∥
∥∇2ρ

∥
∥2

L2 +
∥
∥∇2P

∥
∥2

L2
)

≤ C‖∇u̇‖L2 + C
(‖∇u̇‖L2 + ln

(
e + ‖∇ρ‖Lp

)
+ 1

)(∥
∥∇2ρ

∥
∥2

L2 +
∥
∥∇2P

∥
∥2

L2
)
, (83)

where in the last inequality we have used (72) and the following standard L2-estimate for
elliptic system (9) and (10)

∥
∥∇3u

∥
∥

L2 ≤ C
(∥
∥∇3v

∥
∥

L2 +
∥
∥∇3w

∥
∥

L2
) ≤ C

(∥
∥∇2P

∥
∥

L2 +
∥
∥∇(ρu̇)

∥
∥

L2
)

≤ C
(∥
∥∇2ρ

∥
∥

L2 + ‖∇u̇‖L2
)
.

Then, combining (83), Lemma 3.6 and the Gronwall inequality, we have (79). �

Lemma 3.8 Let (ρ, u) be a classical solution of (1), (3)–(4) on Ω × (0, T], under the con-
dition of Theorem 1.1, the following estimates hold:

sup
0≤t≤T

(‖ρt‖H1 + ‖Pt‖H1
)

+
∫ T

0

(‖ρtt‖2
L2 + ‖Ptt‖2

L2
)

ds ≤ C(T), (84)

sup
0≤t≤T

‖∇ut‖2
L2 +

∫ T

0
‖√ρutt‖2

L2 ds ≤ C(T). (85)

Proof First, from (82) and Lemma 3.6, we obtain

‖Pt‖L2 ≤ C
(‖u‖L∞‖∇P‖L2 + ‖∇u‖L2

) ≤ C. (86)

Furthermore, differentiating (82) yields

∇Pt + u · ∇∇P + ∇u · ∇P + γ∇P div u + γ P∇ div u = 0, (87)

which together with Lemma 3.6 and Lemma 3.7, one gets

‖∇Pt‖L2 ≤ C
(‖u‖L∞

∥
∥∇2P

∥
∥

L2 + ‖∇u‖L4‖∇P‖L4 +
∥
∥∇2u

∥
∥

L2
) ≤ C. (88)

The combination of (86) and (88) implies

sup
0≤t≤T

‖Pt‖H1 ≤ C. (89)

Note that Ptt satisfies

Ptt + ut · ∇P + u · ∇Pt + γ P div ut + γ Pt div u = 0, (90)
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from which, together with (89) and Lemma 3.7, we have

∫ T

0
‖Ptt‖2

L2 ds ≤
∫ T

0
C

(‖ut‖L4‖∇P‖L4 + ‖∇u‖L4‖Pt‖L4 + ‖∇ut‖L2
)2 ds

≤ C. (91)

Next, we differentiate (1)2 with respect to t, then multiplying the resulting equation by
utt , one gets after integration by parts

1
2

d
dt

∫
(
μ|∇ut|2 + (λ + μ)(div ut)2)dx +

∫

ρu2
tt dx

=
d
dt

(

–
1
2

∫

ρt|ut|2 dx –
∫

ρtu · ∇u · ut dx +
∫

Pt div ut dx
)

+
1
2

∫

ρtt|ut|2 dx +
∫

(ρtu · ∇u)t · ut dx –
∫

ρut · ∇u · utt dx

–
∫

ρu · ∇ut · utt dx –
∫

Ptt div ut dx

:=
d
dt

L0 +
5∑

i=1

Li. (92)

The terms on the right-hand side of Eq. (92) can be estimated as follows:

L0 = –
1
2

∫

ρt|ut|2 dx –
∫

ρtu · ∇u · ut dx +
∫

Pt div ut dx

≤ C
(‖ρt‖L4‖ut‖L4‖ut‖L2 + ‖ρt‖L4‖u‖L∞‖∇u‖L4‖ut‖L2 + ‖Pt‖L2‖∇ut‖L2

)

≤ C
(‖ρt‖H1‖ut‖

1
2
L2‖∇ut‖

3
2
L2 + ‖ρt‖H1‖u‖2

H2‖∇ut‖L2 + ‖Pt‖L2‖∇ut‖L2
)

≤ δ‖∇ut‖2
L2 + C

(‖ρt‖4
H1‖ut‖2

L2 + ‖ρt‖2
H1‖u‖4

H2 + ‖Pt‖2
L2

)

≤ δ‖∇ut‖2
L2 + C, (93)

where we have used Lemma 3.6, (84) and the Poincaré inequality. We have

L1 =
1
2

∫

ρtt|ut|2 dx = –
1
2

∫

(ρtu + ρut) · ∇|ut|2 dx

≤ C
(‖ρt‖L4‖u‖L∞‖ut‖L4‖∇ut‖L2 + ‖ut‖2

L4‖∇ut‖L2
)

≤ C
(
1 + ‖∇ut‖2

L2
)‖∇ut‖2

L2 , (94)

L2 =
∫

(ρtu · ∇u)t · ut dx

=
∫

(ρttu · ∇u + ρtut · ∇u + ρtu · ∇ut) · ut dx

≤ C
(‖ρtt‖L2‖u‖L∞‖∇u‖L4‖ut‖L4 + ‖ρt‖L4‖∇u‖L4‖ut‖2

L4

+ ‖ρt‖L4‖u‖L∞‖∇ut‖L2‖ut‖L4
)

≤ C
(‖ρtt‖2

L2 + ‖∇ut‖2
L2

)
, (95)



Li et al. Advances in Difference Equations        (2020) 2020:214 Page 22 of 27

L3 + L4 = –
∫

ρut · ∇u · utt dx –
∫

ρu · ∇ut · utt dx

≤ ‖√ρutt‖L2‖ut‖L4‖∇u‖L4 + ‖√ρutt‖L2‖u‖L∞‖∇ut‖L2

≤ δ‖√ρutt‖2
L2 + ‖∇ut‖2

L2 , (96)

L5 = –
∫

Ptt div ut dx ≤ ‖Ptt‖2
L2 + ‖∇ut‖2

L2 . (97)

At last, integrating (92) over time (0, T), and inserting estimates (93)–(97), we have

∫
(
μ|∇ut|2 + (λ + μ)|div ut|2

)
dx +

∫ T

0

∫

ρu2
tt dx ds

≤ C +
∫ T

0
C

(
1 + ‖∇ut‖2

L2
)‖∇ut‖2

L2 ds, (98)

from which, together with the Gronwall inequality, one obtains (85) immediately. This
completes the proof of Lemma 3.8. �

Lemma 3.9 Let (ρ, u) be a classical solution of (1), (3)–(4) on Ω × (0, T], under the con-
dition of Theorem 1.1, the following estimates hold:

sup
0≤t≤T

(‖ρ‖H3 + ‖P‖H3
) ≤ C(T), (99)

sup
0≤t≤T

(‖∇ut‖2
L2 + ‖∇u‖2

H2
)

+
∫ T

0

(‖∇ut‖2
H1 + ‖∇u‖2

H3
)

ds ≤ C(T). (100)

Proof It follows from Lemma 3.8 that

∥
∥∇(ρu̇)

∥
∥

L2 ≤ ‖∇ρut‖L2 + ‖ρ∇ut‖L2 + ‖∇ρu · ∇u‖L2 + ‖ρ∇u · ∇u‖L2

+
∥
∥ρu · ∇2u

∥
∥

L2

≤ ‖∇ρ‖L4‖ut‖L4 + ‖∇ut‖L2 + ‖∇ρ‖L4‖u‖L∞‖∇u‖L4 + ‖∇u‖2
L4

+ ‖u‖L∞
∥
∥∇2u

∥
∥2

L2

≤ C, (101)

which together with Lemma 3.6 gives

sup
0≤t≤T

‖ρu̇‖H1 ≤ C. (102)

The standard H1 estimate for elliptic system (28) yields

∥
∥∇2u

∥
∥

H1 ≤ C
(‖ρu̇‖H1 + ‖∇P‖H1

) ≤ C. (103)

Then, as a consequence of (67) and (103), we have

sup
0≤t≤T

‖∇u‖H2 ≤ C. (104)
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Moreover, the standard L2-estimate for elliptic system (28) and Lemma 3.8 yield

∥
∥∇2ut

∥
∥

L2 ≤ ‖ρutt‖L2 + ‖ρtut‖L2 + ‖ρtu · ∇u‖L2 + ‖ρut · ∇u‖L2

+ ‖ρu · ∇ut‖L2 + ‖∇Pt‖L2

≤ ‖ρutt‖L2 + ‖ρt‖L4‖ut‖L4 + ‖ρt‖L4‖u‖L∞‖∇u‖L4

+ ‖ut‖L4‖∇u‖L4 + ‖u‖L∞‖∇ut‖L2 + ‖∇Pt‖L2

≤ ‖ρutt‖L2 + C, (105)

which together with (85) implies

∫ T

0
‖∇ut‖2

H1 ds ≤ C. (106)

On the other hand, applying the standard H2-estimate for the elliptic system (28) again
leads to

∥
∥∇2u

∥
∥

H2 ≤ C
(‖ρu̇‖H2 + ‖∇P‖H2

)

≤ C
(∥
∥∇2(ρut)

∥
∥

L2 +
∥
∥∇2(ρu · ∇u)

∥
∥

L2 +
∥
∥∇3P

∥
∥

L2
)
, (107)

where

∥
∥∇2(ρut)

∥
∥

L2 ≤ C
(∥
∥∇2ρut

∥
∥

L2 + ‖∇ρ∇ut‖L2 +
∥
∥∇2ut

∥
∥

L2
)

≤ C
(∥
∥∇2ρ

∥
∥

L2‖ut‖L∞ + ‖∇ρ‖L4‖∇ut‖L4 +
∥
∥∇2ut

∥
∥

L2
)

≤ C
(∥
∥∇2ρ

∥
∥

L2‖∇ut‖H1 + ‖∇ρ‖H1‖∇ut‖H1 +
∥
∥∇2ut

∥
∥

L2
)

≤ C‖∇ut‖H1 (108)

and

∥
∥∇2(ρu · ∇u)

∥
∥

L2 ≤ C
(∥
∥∇2ρu · ∇u

∥
∥

L2 +
∥
∥∇2u · ∇u

∥
∥

L2 +
∥
∥u · ∇3u

∥
∥

L2

+ ‖∇ρ∇u · ∇u‖L2 +
∥
∥∇ρu · ∇2u

∥
∥

L2
)

≤ C
(∥
∥∇2ρu · ∇u

∥
∥

L2 +
∥
∥∇2u · ∇u

∥
∥

L2 +
∥
∥u · ∇3u

∥
∥

L2

+ ‖∇ρ∇u · ∇u‖L2 +
∥
∥∇ρu · ∇2u

∥
∥

L2
)

≤ C
(∥
∥∇2ρ

∥
∥

L2‖u‖L∞‖∇u‖L∞ +
∥
∥∇2∥∥

L4‖∇u‖L4

+ ‖u‖L∞
∥
∥∇3u

∥
∥

L2 + ‖∇ρ‖L6‖∇u‖2
L6

+ ‖∇ρ‖L4‖u‖L∞
∥
∥∇2u

∥
∥

L4
)

≤ C. (109)
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In order to estimate the third term on the right-hand side of (107), applying ∇3 to (82) and
integrating the resulting equation over Ω , we obtain

d
dt

∥
∥∇3P

∥
∥2

L2 ≤ C
(∥
∥∇3u · ∇P

∥
∥

L2 +
∥
∥∇u · ∇3P

∥
∥

L2 +
∥
∥∇2u · ∇2P

∥
∥

L2

+
∥
∥∇4uP

∥
∥

L2
)

≤ C
(∥
∥∇3u

∥
∥

L2‖∇P‖L∞ + ‖∇u‖L∞
∥
∥∇3P

∥
∥

L2 +
∥
∥∇2u

∥
∥

L4

∥
∥∇2P

∥
∥

L4

+
∥
∥∇4u

∥
∥

L2
)

≤ C
(∥
∥∇3P

∥
∥

L2 +
∥
∥∇4u

∥
∥

L2
)

≤ C
(∥
∥∇3P

∥
∥

L2 +
∥
∥∇2(ρu̇)

∥
∥

L2
)

≤ C
(∥
∥∇3P

∥
∥

L2 +
∥
∥∇2(ρut)

∥
∥

L2 +
∥
∥∇2(u · ∇u)

∥
∥

L2
)

≤ C
(∥
∥∇3P

∥
∥

L2 +
∥
∥∇2ρ

∥
∥

L2‖ut‖L∞ +
∥
∥∇2ut

∥
∥

L2 + ‖∇ρ‖L4‖∇ut‖L4

+
∥
∥∇2u · ∇u

∥
∥

L2 +
∥
∥u · ∇3u

∥
∥

L2 +
∥
∥∇u · ∇2u

∥
∥

L2
)

≤ C
(∥
∥∇3P

∥
∥

L2 + ‖∇ut‖H1 + ‖∇ρ‖H1‖∇ut‖H1 +
∥
∥∇2u

∥
∥

L4‖∇u‖L4

+ ‖u‖L∞
∥
∥∇3u

∥
∥

L2 + ‖∇u‖L∞
∥
∥∇2u

∥
∥

L2
)

≤ C
(∥
∥∇3P

∥
∥

L2 + ‖∇ut‖H1 + 1
)
, (110)

which, together with the Gronwall inequality (106), implies that

sup
0≤t≤T

∥
∥∇3P

∥
∥

L2 ≤ C. (111)

Taking (106)–(111) into consideration, we have

∫ T

0
‖∇u‖2

H3 ds ≤ C. (112)

It is easy to check that similar arguments work for ρ by using (112). Hence the proof of
Lemma 3.9 is completed. �

Lemma 3.10 Let (ρ, u) be a classical solution of (1), (3)–(4) on Ω × (0, T], under the
condition of Theorem 1.1, the following estimates hold:

sup
0≤t≤T

(‖∇ut‖2
H1 +

∥
∥∇4u

∥
∥2

L2
)

+
∫ T

0
‖∇utt‖2

H1 ds ≤ C(T). (113)

Proof Differentiating (1)2 with respect to t twice, one can get

ρuttt + ρu · ∇utt – μ�utt – (μ + λ)∇ div utt

= 2 div(ρu)utt + div(ρu)tut – 2(ρu)t · ∇ut – (ρttu + 2ρtut) · ∇u

– ρutt · ∇u – ∇Ptt . (114)
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Multiplying (114) by utt and then integrating the resulting equation over Ω , after integra-
tion by parts, we obtain

1
2

d
dt

∫

ρ|utt|2 dx +
∫

(
μ|∇utt|2 + (μ + λ)|div utt|2

)
dx

= –4
∫

ρuutt · ∇utt dx –
∫

(ρu)t · (∇(ut · utt) + 2∇ut · utt
)

dx

–
∫

(ρttu + 2ρtut) · ∇u · utt dx –
∫

ρutt · ∇u · utt dx +
∫

Ptt div utt dx

:=
5∑

i=1

Mi. (115)

Next, we estimate each term Mi, i=1,2,3,4,5, as follows:

M1 = –4
∫

ρuutt · ∇utt dx ≤ C‖u‖L∞‖√ρutt‖L2‖∇utt‖L2

≤ δ‖∇utt‖2
L2 + C‖√ρutt‖2

L2 . (116)

It follows from Lemma 3.7, Lemma 3.8, and Lemma 3.9 that

M2 = –
∫

(ρu)t · (∇(ut · utt) + 2∇ut · utt
)

dx

≤ C
(‖ρtu‖L4 + ‖ρut‖L4

)(‖∇ut‖L2‖utt‖L4 + ‖ut‖L4‖∇utt‖L2
)

≤ C
(‖ρt‖H1 + ‖ut‖H1

)(‖utt‖
1
2
L2‖∇utt‖

1
2
L2 + ‖ut‖H1‖∇utt‖L2

)

≤ δ‖∇utt‖2
L2 + C, (117)

M3 = –
∫

(ρttu + 2ρtut) · ∇u · utt dx

≤ C
(‖ρtt‖L2‖u‖L∞ + ‖ρt‖L4‖ut‖L4

)‖∇u‖L4‖utt‖L4

≤ C
(‖ρtt‖L2‖u‖H2 + ‖ρt‖H1‖ut‖

1
2
L2‖∇ut‖

1
2
L2

)‖∇u‖H1‖utt‖
1
2
L2‖∇utt‖

1
2
L2

≤ δ‖∇utt‖2
L2 + C‖ρtt‖2

L2 , (118)

M4 + M5 = –
∫

ρutt · ∇u · utt dx +
∫

Ptt div utt dx

≤ C
(‖√ρutt‖L2‖∇u‖L4‖utt‖L4 + ‖Ptt‖L2‖∇utt‖L2

)

≤ C
(‖√ρutt‖L2‖∇u‖H1‖utt‖

1
2
L2‖∇utt‖

1
2
L2 + ‖Ptt‖L2‖∇utt‖L2

)

≤ δ‖∇utt‖2
L2 + C

(‖√ρutt‖2
L2 + ‖Ptt‖2

L2
)
. (119)

Substituting (116)–(119) into (114) and choosing δ suitably small, we get

d
dt

∫

ρ|utt|2 dx +
∫

(
μ|∇utt|2 + (μ + λ)|div utt|2

)
dx

≤ C
(‖√ρutt‖2

L2 + ‖ρtt‖2
L2 + ‖Ptt‖2

L2 + 1
)
, (120)
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then, integrating the inequality (120) over (0, T), together with (84) and the Gronwall in-
equality, yields

sup
0≤t≤T

∫

ρ|utt|2 dx +
∫ T

0

∫

|∇utt|2 dx ds ≤ C(T), (121)

then (113) follows from (85) and (105). We have finished the proof of Lemma 3.10. �

Finally, by using the continuity argument, we can extend the local classical solution to a
global one, and thus Theorem 1.1 is proved.
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