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1 Introduction

The fractional differential equation (FDE) is one of the most important topics in the re-
cent years, not only because it can be used for modeling real-life phenomena, but also
it gives researchers a wide range as regards the material properties. The fractional-order
models are more adequate than the previously used integer-order models [1, 2], because
fractional-order derivatives and integrals enable the description of the memory and hered-
itary properties of different substances. A system of fractional partial differential equations
is a tool with impact on modeling several phenomena in different fields, such as fluid me-
chanic, biology, finance and material science.

Finding the exact solution for a FDE is very difficult even for a the linear one, so approx-
imate solutions are needed. The solution of the system of fractional partial differential
equations was pointed out by several researchers such as Ertiirk and Momani who ap-
plied the differential transform method [3]. Ghazanfari investigated the fractional complex
transform method [4]. Jafari et al. presented a Laplace transform with the iterative method
[5]. Ahmed et al. used the Laplace Adomian decomposition method and the Laplace vari-
ational iteration method [6].

Homotopy analysis method is one of the most effective methods for solving FDE [7, 8].
It can give a convergent series solution that depends on a convergent control parameter,
and the series can be represented using various basis functions. The major drawback of the
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method is that for each term you have to solve a sub-differential equation or the evaluation
of some sub-integration, which affects the speed and memory usage. So these limitations
call for other efficient and practical algorithms. In this article, we use the Sumudu trans-
formation to overcome these limitations, which further allows one to use and apply all of
the HAM features such as choosing the initial guess, the control parameter, and the ba-
sis function. Sumudu transforms had been incorporated with other several methods such
as the homotopy perturbation method [9], the Adomian decomposition method [10] and
the homotopy analysis method [11, 12]. Comparing with the standard HAM the proposed
method is capable for reducing the volume of the computational work while still maintain-
ing the high accuracy of the numerical results, and therefore amounts to an improvement
in the performance of the approach [13].

The rest of the paper is organized as follows. In Sect. 2, we review some facts about frac-
tional derivative and the Sumudu transformation and then introduce the solution proce-
dure in Sect. 3. The existence of the solution is given in Sect. 4. The convergence of the
method is illustrated in Sect. 5. Numerical examples illustrating the theoretical results are
provided in Sect. 6.

2 Preliminaries and notations
In this section, some definitions and properties of the fractional calculus and Sumudu
transform are briefly mentioned. For more details see [14—20].

2.1 Fractional calculus
We start with the following definition.

Definition 2.1 A real function f(¢); ¢ > 0, is said to be in the space C,; u € N, if there
exists a real number p > u, such that f(¢) = t£1(¢), where f1(¢) € C(0,00), and it is said to
be in the space C}, if and only iff"eCyneN.

Now we can give the main definitions of fractional integrals and derivatives.

Definition 2.2 The Riemann-Liouville fractional integral operator (J*) of order « > 0, of
a function f € C,, u > -1, is defined as

o _ L ! _ el
IO | -9 wds @0, 1)
Jf &) =f (), (2)
where I'(«) is the well-known gamma function.

Definition 2.3 The fractional derivative of a function f € C”; in the Caputo sense is de-
fined as

o _ 1 ! _ oyra=1r(n)
D0 = s [ =9 )

wheren—1<a<nandn e N,

We mention the following basic properties of fractional derivatives and integrals:
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1 Iff € C”, for some n € N, then D*f is well defined for all 0 < « < n with D*f € C_;.
2 Iffe CZ for some u > —1, then

-1
n tk

D)@ =f0) -y P00+, @)
k=0 ’

providedn-1<oa <n.

3 Forall y > o one has

'y +1)

—t)/*a‘
'y-a+1)

D¢ =

2.2 Sumudu transform

The Sumudu transform is given by [21]

1 [ =
S[fe] £ = / e7 () dt, (5)

0

where f € A with
i} .
A={f@®) 1 3IM, 711,72 > 0, |[f ()| < Me T ,if t € (-1) x [0, 00)}.

The Sumudu transform possesses the following main properties:
1 S[c] = ¢ for any constant c;
2 S[E"] = % for any m > 0;

3 Slaf(t) £ Bg(0)] = aS[f ()] = BS[g(®)];

4 Forn—1<a <n,wehave
n-1
S[DEf@] = neS[f®] - Y9 (0").

i=0

The inverse Sumudu transform of a function F(n) is given by [21]

SUEM] =f(0) = — / e estp(l) ds
Y

278 ) _iso s/) s

St
= E Residues|:e F(l/s):|,
s

which exists provided F(1/s)/s is a meromorphic function, with singularities s satisfying

Re(s) < ¢ for some constant ¢, and

< MR™K

E(1/s)
=

for some positive constants R, M, and K.

Page 3 of 16



Alomari Advances in Difference Equations (2020) 2020:222 Page 4 of 16

3 Solution procedure
To express the solution by the proposed method, let us consider the fractional partial dif-
ferential equation

D} u(x,t) = N[u(x, 1)), (6)

where n — 1 < @ < n for positive integer #, subject to the initial conditions

P ) an—l ;
u(x,0) = fol), ”g’; ‘) G % ha@. (7)
By taking the Sumudu transform for both sides of Eq. (6), we have
n-1 k
LU S L S ] (®)
n pars at =0+
L gk u(x, t)
S[u(x, t)] = n“S[N[u(x, t)]] + n* ok 9)
k=0 t=0*
=n*S[N[u(x,1)]] + g(n.£i(»), (10)

where

g(n.fi®) = fole) + nfix) -+ + 0" foma ().

Now the main difficulty here is to find the solution u(x, £) by invoking the inverse Sumudu
transform for Eq. (10), in particular for the nonlinear term n“S[N[u(x, £)]]. To tackle this,
we can utilize the HAM by defining the homotopy map

(1-q)S[px, t;q) — uo(x, 1)] = hgNy [p(x, 8 9)], (11)

where g € [0,1] is an embedding parameter, / is the convergence control parameter,
Ni[¢(x, ¢ q)] the nonlinear operator given by

Ni[o(x. 9)] = S[p(x. t;q)] — n“S[N[o(x. £ 9)]] - g(n.fi(x)), (12)

and ¢(x, £; q) is a Taylor series with respect to g defined by
oo
¢, t59) = ) tmlx,0)g™. (13)
m=0

We can note that, as g varies from 0 to 1, the zeroth-order deformation equation (13)
varies from the initial guess ¢(x, t;0) = uo(x, t) to the exact solution ¢(x,t; 1) = u(x, £).
We have the following auxiliary result.

Theorem 3.1 The nonlinear term N[¢(x, t;q)] satisfies the property

0 1 3(k)q k 4 .
N[p@tq)]=> TN S untd | |4 (14)
’ j=0 q=0

k=0 9



Alomari Advances in Difference Equations (2020) 2020:222

Proof The Maclaurin series of N[¢(x,t; )] with respect to ¢ is given by

(x’t 61) Z (x’t 61)]} qk
k=0
1ox [ [& ‘
= Z Ea_q" N Zuj(x,t)q’ g~
k=0 L j=0 q=0
0 1 3k [ & A 00 ’ .
-3 wa |V duwlen)d + Y wxod | q
k=0 " L j=0 j=k+1 4=0
0 1 ak [ & ' .
:Zﬁa_qk N Zu,(x,t)q’ q,
k=0 L j=0 q=0

which completes the proof. d
The next theorem presents the recursive formula of the unknown coefficients u,,(x, t).

Theorem 3.2 If we substitute Eq. (13) into the zeroth-order deformation equation (11),
then the unknown functions u,,(x, t) are given by

n-1 i
U (%,8) = (R + Yo )by (%, 2) = h<S'1[naS[Rm_1]] + (1= xm) Zﬁ(x)%) (15)
i=0 ’
where
1 N pe )]
Rt = 0, 2] » (16)
and
o, ifm<1,
Hom = 1, ifm>1,

forallm=1,2,3,....

Proof By substituting the series in Eq. (13) in the left-hand side of Eq. (11) and equating
the coefficients of the powers ¢', i = 1,2,...,m, we have

q': S[ul(x, t)],
7 S[uaxt)] - S[ur(x,8)],

q": S[um(x, )] = S[ttm-1(%,8)] = S[ttn(%,8) ] = Yo S[thm-1(%, 1) ].

With the aid of Theorem 3.1, the right-hand side can be written as

q': h(S[uo(x, t)] n*S[Ry] — (V f(x)))
7 :  h(S[mt)] - n*S[R1]),

Page 5of 16
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q": h(S[um—l(xr t)] - naS[Rm—l])
= 1(S[ttmr (%, 1) = 1 S[Ryp1] = (1 = ) (v, fi(x)))

from which follows that

S[um(x! t)] = (h+ Xm)S[um—l (x, t)]
= (n*S[Rma] + (1 = xm)g (v, fi(x))). (17)

Applying the inverse Sumudu transform for Eq. (17) yields

Un(%,8) = (R+ Xom) U1 (%, 2)

n-1 i
tl
- h(S’l[n“S[Rm-l]] + (1= Xm) Zﬁ(x)ﬁ)
i=0
and this ends the proof. 0

In practice, we define the mth approximate solution of the given problem as
M
Up(x,t) = Z u;(x,t),
i=0
while the residual error for the given solution is defined as

Resy = D Up(x,t) = N[Up(x, £)]. (18)

4 Existence and convergence results
In this section, we introduce the main results regarding the existence and convergence of

the proposed algorithm.

Theorem 4.1 If optimal h # 0 exists, and uy(x,t) is properly chosen in Eq. (15) in such a
way that ||ty (x, £)|| < Mlu,(x,t)|l, where 0 < A < 1, then the series Y .. un(x, t) converges
uniformly, where || - || denotes the usual infinite norm.

Proof Let S, be the sequence of partial sums S, = Y, u;(x, £). We show that the sequence
{Sn}52, is Cauchy. First we observe that

2 1
I1Sm41 = Sull = lttns1ll < Al < A Ntgpall < -+ < A llzzoll.

With the help of the above equation, for all n,m € N with n > m, we have

”Sn _Sm” = ”Sn _Sn—l + Sn—l _Sn—2 + Sn—2 toe = Sm+1 + Sm+1 - Sm”
= ”Sn _Sn—IH + ”Sn—l —Sn—2” +eeet ||Sm+1 —Sm”
< Mol + A" Mol + -+ + X" o |

= “MO”(A” L Am+1)’
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which leads to

m+1

A
Sn - Sm = ) 19
I =7 luoll (19)

and consequently ||S, — S,,|| = 0 as n,m — oo. Thus, the sequence {S,} is a Cauchy se-
quence, and hence it converges. O

Corollary 4.2 Suppose Y .- u;(x,t) converges to the solution u(x,t) of Eq. (6) and satisfies
the hypotheses of Theorem 4.1, then the maximal absolute truncation error using the first
m terms in the domain (x,t) € §2 can be estimated as

u(x, t) — Z u;(x,t)| <

- —1-A
i=0

m+1

=
=/

sup
(x,0)ef2

, (20)

where & = sup, o |to(x, ).

Proof Since S, = Y, ui(x,t), as n — oo the partial sum S, — u(x,t). Therefore, Eq. (19)
can be written as

Jue )=,

u(x, t) — Z u;(x, t)
i=0

)\.m+1

IA

" Juos 0]

}Lm+1

A

T (xil)]£)9|u0(x, t) ’

Thus, the maximum absolute truncation error on §2 satisfies

)\m+1
sup |u(x,t) — Y wuilx,t)] < =z,
(xD)eR ; 1-2
which ends the proof. g

It is worthy to mention that, for the initial value problem, we can choose the initial guess
as ug(x, t) = Z f x) . Moreover, when N[¢(x,£;q)] is a polynomial of ¢(x,t;q) and it
s derivative and the nonhomogeneous term is analytic at the initial point then R,, can be
written as ) .o cix)tiforreMandO<a < 1.

Theorem 4.3 IfR,,; in Eq. (15) is of the form R,,,_1 = ¢o(x) + Zﬁil cu(x)t"™ for positive real
number r, then Eq. (6) subject to the initial conditions Eq. (7) admits at least one solution.

Proof Using the properties of the Sumudu transform, we have

n“S[Rm-11=1 < [co)] ch(x)S "] ) = co(x)n® + Z F[rn " 1 nre.

Since « > 0, the Sumudu inverse for n*S[R,,_1] exists and is given by

M
S n*S[Rya] = T'ler + Leo@)e* +

n=1

c,()Crnm+a +1]
I'rn+1]

ru+o
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Hence, as M — oo the series u(x, t) = limy;_, o Zﬁo uy,(x, t) becomes a solution of Eq. (6)
and it satisfies the initial conditions by choosing u(x, t) = Zf‘f& 1 fi(x) % This completes the

proof. O

5 Numerical examples
In this section we present several examples to show the feasibility and robustness of the
proposed technique.

5.1 Example 1
Consider the fractional linear system of PDE [6]

Dfu(x, t) — vi(x, t) — u(x, t) + v(x, t) = -2, (21)

Df v(x, £) + Uy(x, ) —u(x, t) + vix, t) = =2, (22)
where 0 <, B < 1, subject to the initial conditions
u(x,0)=1+¢% v(x,0) = -1 + €.

According to the solution procedure, we can choose ug(x,t) = 1 + € and vo(x,¢) = € — 1.

To determine R,,_;, we substitute

Gultq) = ) unx,0q" and  ¢y(xtq) = Y viulx, 0"
m=0

m=0

in Eq. (16) to give

1 9!
Ruy,y = m W[(fﬁv(% L q))x +@ulx, 59) — Pu(x, 1) — 2] |q:0
OV
= va,; S+ et~ Vi1 = 2(1 = Xom) (23)
and
1 gt
Rvy g = n—1) ag1 [~ (Pux.t;0)), + dulx, £:9) — du(x, 15 q) — 2] |q=0
OUyy_
=~ e = Vet = 2L = ). 24)

Then the mth-order approximations are given by

avm—l

Um = (h + Xm)um—l - hS_l |:77aS|: + Up-1 = Vm-1— 2(1 - Xm)i|

= (1= xm)(1 +€), (25)

Vi = (A4 Xim)Vim-1 — hS™ |:77/35|:—— + U1

<D
N
3
KN
|
|
<
N
L
|
N
—
|
=
S5
[

=1 = xm) (-1 +€). (26)
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4
S) —_— =
I —
s M/ \
o>>
= / """ hforu
Q
= 0 - hforv }
S
o
S
S
8 -2r
S
Q
_4 Il Il Il L L L
-2.0 -15 -1.0 -0.5 0.0
h
Figure 1 7-curve using 15 terms of approximation for Example 1

Then the first few terms of the series are
R +3h+3)tY  R2(h+3)t2* &Rt
+ + + .-
I'ox+1) I'2a +1) I'Ba +1)

eh(h* +3h+3)tP  eh*(2h+3)t R
pa— + —
rp+1) reg+1) r3g+1)

ulx,t)=1+e" +

‘o

+ .-

v(x, £)=-1+¢*

To determine the region for which the solution is convergent, we plot the fi—curve in
Fig. 1. Clearly, the values of D%*#(0.9,0) and D?*°v(0.9,0) do not change in the region
—1.5 < h < -0.5. For simplicity, we fix & = —1. Then the solution for Example 1 becomes

( t) ) . P et ethO( extBa ) . ( ta)
u(x,t)=1+¢e" - + - +-o=1+€Eyq(—t%),
e+l T'Ca+l) I'Ga+1) o+
eth et?h e3P
vix,t)=—-1+¢€" + + + +~~~=—1+e"Eﬁ,1(t‘3),
rg+1) reg+1) r@Ep+1)

where E,, 1(2) = Y 3 #ﬁ;l) is the Mittag-Leffler function which is the exact solution. We
note that the S-HAM solution can generate the Laplace Adomian decomposition solution

when 7 = -1 given by [6].

5.2 Example 2
Consider the fractional coupled Burgers equations [22]

D%t = Uy + 20ty — (uv)y, (27)

DPy=vyy + 20w, — (uv)y, (28)

subject to the initial conditions u(x,0) = v(x,0) = cosx. According to the S-HAM algo-
rithm, we can choose u( = vy = cosx. The mth orders are given by

U = (o + B)thy—1 — Tittg(1 = Y) — S (naS((um—l)xx

m-1 m-1 m-1
=2 (i)attmork + Y (i)sVimork + Y uk("m—l—k)x)); (29)
k=0 k=0 k=0
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Vi = (Xom + Vi1 — vo(1 = xom) — st (nﬂs((vm—l)xx

m-1 m-1 m-1
=2 )1k + ) (U)sVimork Y uk("m—l—k)x>>' (30)
k=0 k=0 k=0

The first few terms are of the series solutions are

( MR+ 2)tY  R2*(2sin(x) +1)  2h%sin(x)e*h )

u=cos(x)| 1+ - I
I'lo +1) I'2a +1) Fa+p+1)

~ ) B+ 2P AP (2sin(x) +1)  2A2 sin(x)t* P

V_Cos(x)< YTy T resn) "r(a+ﬁ+1)+'”)

With « = 8 and 7 = -1, the solutions become

tOt t2a
u=cos(x)|1- +
Ma+1) TI'a+1)
[ tZu
v=cos(x)(1- + + -
I'e+1) TI'(a+1)

.. ) = COS(x)Ea,l (_ta)’

) = cos(x)Eq,1 (-2).

For @ # B, we present the solution when « = 0.9, 8 = 0.8 and % = —0.2 in Fig. 2 and its

residual error in Fig. 3. We note that the exact solution of the fractional coupled Burger

equation when (o = B) is obtained via S-HAM but in the fractional variational iteration
method (FVIM) the approximate one is only obtained; see [22]. Moreover, the S-HAM
solution is discussed for ¢ € [0, 1] whereas the FVIM solution is addressed for ¢ € [0, 0.005],
which is a small time. Figure 4 represent the S-HAM solution when « = 0.5 and 8 = 0.25

for t € [0, 1] with A = —0.324.

5.3 Example 3

Consider the following nonlinear FPDE:

\ (7

DY u(x, t) — uy(x, t)v(x, t) — ulx, £) = 1, (31)
DPv(x, t) + vu(x, ul, £) + v(x, 1) = 1, (32)
S A
‘ A/

i \ \/’(\\\\\\}}
' &

Figure 2 Solution Example 2 using & = 0.9 and 8 = 0.8. (a) for u(x, t) and (b) for v(x,t)

705

L4
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Figure 3 Residual error for Example 2 using 20th-order of approximation with & = 0.9 and 8 = 0.8. (a) for
resdual error of u(x, t) and (b) for resdual error of v(x, t)

Figure 4 (a) u(x,t) and (b) v(x, t) of Example 2 using & = 0.5 and B =0.25

3 \

S

(=}

s 7l 1

°°>

S R i for u

&)

~ Ir - b

s #ifor v

S

S

0\3 0

3

Q / B
L ‘ ‘ ‘ ‘

-20 -15 -1.0 -05 0.0
f
Figure 5 h-curve using 20 terms of approximation for Example 3

where 0 <@ <1 and 0 < B < 1, subject to the initial conditions u(x,0) = €*, v(x,0) = ™.

According to the solution procedure, we can choose u(x, £) = €* and v (x, £) = e7*, the mth

Page 11 of 16
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(a)

Figure 6 Solution of Example 3 using o = 0.99 and 8 = 0.98, (a) for u(x, t) and (b) for v(x, t)

Figure 7 Residual error for (a) u(x,t) and (b) v(x, t) using 20th order of approximation with & = 0.99 and
B =098 for Example 3

Figure 8 Solution of Example 3 for o = 0.7, B = 0.5, (a) for u(x, t) and (b) for v(x, t)

order is given by

tm = (A + YXm)th-1 — (1 - Xm)(ex)

m—1
ou;
~BSTH S| =Y it (L= ) |, (33)
j=0
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Table 1 Solution and residual error for Example 3 when o = 0.7 and 8 = 0.8 at several values of x and
t using 60 terms of the series (h=-1)

X t
0 02 04 06 0.8 1
0 u 1. 149505 2.01823 2.72055 3.74817 542523
Eu 0. 444110716 444110710 222010710 211010710 2403107°
0.25 u 1.28403 191105 2.56371 342903 468035 6.70162
Eu 1.11010716 6.661 10710 1.1101071° 6661 1071° 252210710 2.882107°
05 u 164872 24452 3.26413 433873 587729 8.34054
Eu 0. 0. 888210710 222010710 305210710 3495107°°
0.75 u 2117 3.13107 416348 5.50681 741419 10.445
Eu 0. 6.661 10710 1332107 22201071 373310710 4282107
1 u 2.71828 401174 531827 7.00666 9.38762 13.1471
Eu 0. 222010710 13321071 13321071 460310710 5.293107°
0 v 1. 0.77102 067532 064818 0.69700 0.87441
Ev 0 8.8821071° 1.1101071° 22201071 8952 107" 1013107
0.25 v 0.77880 0.60431 0.53668 0.52694 0.58472 0.76075
Ev 1.1101076 0 6.6611071° 22206 10710 830107 941310~/
05 v 0.60653 047448 042870 043252 049728 067224
Ev 0 444110710 222010710 22201071 7.790 107" 8854107/
0.75 v 047237 037336 0.34461 0.35899 042918 0.60330
Ev 0 666110710 6.6611071° 222010710 7403107 8413107/
1 v 0.36788 0.29462 0.27912 030172 037614 0.54961
Ev 0 444110710 6.6611071° 17761071 7.097 107" 8.083107/
Vi = (Bt X))Vt = R(L = xm) (€7)
"y,
-1 ]
-S| nPs Z aum—l—i + Vo1 + (1= Xm) (34)
j=0
Thus, the solution becomes
h2ep B2 e e h*t” 280
u(x,t) =— + + - - +e +---,
Fle+p+1) I'QRa+1) TI'Rx+1) TI(a+1) I(a+1)
R2txth R2t2P e R e RtP  2e*hth
v(x, t) = —x

Ta+B+1) TRB+1) TER+1) TB+1) T+ ¢

To determine the region for which the solution converges, we plot the i-curve in Fig. 5.
It is clear that the values of D?*°%(0.9,0) and D??81(0.9,0) do not change in the region
—-1.5 < h < -0.5. For simplicity, we fixed i = —1. When « = 8 = 1 the solution becomes

et e
ulx,t) =€+t + — + — + ... =",
2 6
e e
i t)=e* —te™ + - e

2 6

(35)

(36)

The solution for Example 3 is presented in Fig. 6 and the residual error is given in Fig. 7.

Clearly, the present method can solve this kind of system of fractional partial differential

equation that accurate within 1077, Finally, the solution when o = 0.7 and 8 = 0.5 is plotted

in Fig. 8. Tables 1-3 present the solutions and their residual errors for several values of «

and B along x and t € [0, 1] with proper selection of /. Via those tables, we can observe that
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Table 2 Solution and residual error for Example 3 when o = 0.7 and 8 = 0.5 at several values of x and
t using 60 terms of the series (h = -0.85)

X

t

0 02 04 06 08 1

0 u 1.0000 14041 1.8025 23377 3.1298 44451

Eu 0 222010710 17761071 318310712 3231107 7.500107°
0.25 u 1.2840 1.8145 2.3303 3.0091 3.9948 56054

Eu 1.11010716 1.110 1076 18871071 3.581 10712 3.783107° 1576107
05 u 1.6487 23416 3.0081 38712 5.1055 7.0953

Eu 0 333110710 3.109107"° 534310712 85571077 2179107
0.75 u 2.1170 30183 3.8783 49782 6.5317 9.0084

Fu 0 4441510716 477410712 36381072 19731078 3162107
1 u 2.7183 3.8872 49956 63995 83629 11.465

Eu 0 1.110 10716 6.6611071° 261510712 3.097 1078 4801107
0 v 1.0000 060517 0.52571 051761 0.57958 0.76370

Ev 222010710 0 555110710 2.785 10712 5413107 1654107
0.25 v 0.77880 046439 040597 040975 047746 0.65966

Ev 33311071° 222010710 222010710 397910713 1.164 10710 3.025107°
05 v 0.60653 035474 031271 032574 039793 0.57863

Ev 222010710 333110710 444110710 739010713 1397107° 7.09310°°
0.75 v 047237 0.26935 0.24008 0.26032 0.33599 0.51552

Ev 0 555110710 0 1.13710713 96621077 1.100107°
1 v 0.36788 0.20285 0.18352 0.20937 0.28775 046638

Ev 0 666110710 222010710 227410713 7916 107° 1256107

Table 3 Solution and residual error for Example 3 when @ = 0.9 and B = 0.3 at several values of x and
t using 60 terms of the series (b =-0.55)

X

t

0 0.2 04 0.6 0.8 1
0 u 1.0000 11712 13467 15670 1.8569 2.2501
Eu 0 1.110 1070 18101074 362810712 1.069107° 10219107
0.25 u 1.2840 1.5260 17759 20839 24809 3.0088
Eu 111010710 333110710 23651071 482810712 1363107° 12631077
0.5 u 1.6487 1.9817 2.3270 2.7476 3.2822 3.9831
Eu 0 5551107 29031071 62341072 1.748107° 15041077
0.75 u 2.1170 2.5668 3.0346 3.5998 43110 5.2340
Eu 0 6.106 10710 33251071 841810712 22531077 18881077
1 u 2.7183 3.3180 3.9432 46940 56321 6.8402
Eu 0 222010710 40468 10714 1.0858 107" 28951077 2451107
0 v 1.0000 044309 0.37067 0.34020 0.33444 0.35088
Ev 0 11101070 2665 107> 2.505 1072 2.906 10710 35651077
0.25 v 0.77880 0.31806 0.26122 0.24137 0.24388 0.26700
Ev 111010716 1.1101070 2665107 22401072 262810710 59151077
05 v 0.60653 0.22068 0.17598 0.16441 0.17335 0.20168
Ev 0 222010710 2776 107> 212010712 220510710 6.812107°
0.75 v 047237 0.14484 0.10959 0.10446 0.11842 0.15080
Ev 0 33311071° 3.553107"° 1.892 10712 177810710 9974107
1 v 0.36788 0.085772 0.057893 0.057780 0.075645 011118
Ev 0 222010710 4996 1071° 1.860 10712 189510710 98861077

the method is effective for these kinds of problems. Different from the published research

[23], the present one considers this problem when « = 8 and @ # 8.

Page 14 of 16



Alomari Advances in Difference Equations (2020) 2020:222 Page 150f 16

6 Conclusion

Our concern was to provide asymptotic solutions to the system of fractional partial differ-
ential equations, using a relatively new analytical technique, the homotopy-Sumudu trans-
formation method. A sufficient condition for convergence is presented. Moreover, based
on sufficient conditions for convergence, an estimation of the maximum absolute error
is obtained. Several examples are presented to demonstrate the efficiency of the method.

Besides, the calculations involved in the method are very simple and straightforward.
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