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Abstract
In this paper, we investigate the Sumudu transforms and homotopy analysis method
(S-HAM) for solving a system of fractional partial differential equations. A general
framework for solving such a kind of problems is presented. The method can also be
utilized to solve systems of fractional equations of unequal orders. The algorithm is
reliable and robust. Existence and convergence results concerning the proposed
solution are given. Numerical examples are introduced to demonstrate the efficiency
and accuracy of the algorithm.
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1 Introduction
The fractional differential equation (FDE) is one of the most important topics in the re-
cent years, not only because it can be used for modeling real-life phenomena, but also
it gives researchers a wide range as regards the material properties. The fractional-order
models are more adequate than the previously used integer-order models [1, 2], because
fractional-order derivatives and integrals enable the description of the memory and hered-
itary properties of different substances. A system of fractional partial differential equations
is a tool with impact on modeling several phenomena in different fields, such as fluid me-
chanic, biology, finance and material science.

Finding the exact solution for a FDE is very difficult even for a the linear one, so approx-
imate solutions are needed. The solution of the system of fractional partial differential
equations was pointed out by several researchers such as Ertürk and Momani who ap-
plied the differential transform method [3]. Ghazanfari investigated the fractional complex
transform method [4]. Jafari et al. presented a Laplace transform with the iterative method
[5]. Ahmed et al. used the Laplace Adomian decomposition method and the Laplace vari-
ational iteration method [6].

Homotopy analysis method is one of the most effective methods for solving FDE [7, 8].
It can give a convergent series solution that depends on a convergent control parameter,
and the series can be represented using various basis functions. The major drawback of the
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method is that for each term you have to solve a sub-differential equation or the evaluation
of some sub-integration, which affects the speed and memory usage. So these limitations
call for other efficient and practical algorithms. In this article, we use the Sumudu trans-
formation to overcome these limitations, which further allows one to use and apply all of
the HAM features such as choosing the initial guess, the control parameter, and the ba-
sis function. Sumudu transforms had been incorporated with other several methods such
as the homotopy perturbation method [9], the Adomian decomposition method [10] and
the homotopy analysis method [11, 12]. Comparing with the standard HAM the proposed
method is capable for reducing the volume of the computational work while still maintain-
ing the high accuracy of the numerical results, and therefore amounts to an improvement
in the performance of the approach [13].

The rest of the paper is organized as follows. In Sect. 2, we review some facts about frac-
tional derivative and the Sumudu transformation and then introduce the solution proce-
dure in Sect. 3. The existence of the solution is given in Sect. 4. The convergence of the
method is illustrated in Sect. 5. Numerical examples illustrating the theoretical results are
provided in Sect. 6.

2 Preliminaries and notations
In this section, some definitions and properties of the fractional calculus and Sumudu
transform are briefly mentioned. For more details see [14–20].

2.1 Fractional calculus
We start with the following definition.

Definition 2.1 A real function f (t); t > 0, is said to be in the space Cμ; μ ∈ �, if there
exists a real number p > μ, such that f (t) = tpf1(t), where f1(t) ∈ C(0,∞), and it is said to
be in the space Cn

μ if and only if f (n) ∈ Cμ; n ∈ N.

Now we can give the main definitions of fractional integrals and derivatives.

Definition 2.2 The Riemann–Liouville fractional integral operator (Jα) of order α ≥ 0, of
a function f ∈ Cμ, μ ≥ –1, is defined as

Jαf (t) =
1

Γ (α)

∫ t

0
(t – s)α–1f (t) ds (α > 0), (1)

J0f (t) = f (t), (2)

where Γ (α) is the well-known gamma function.

Definition 2.3 The fractional derivative of a function f ∈ Cn
–1 in the Caputo sense is de-

fined as

Dαf (t) =
1

Γ (n – α)

∫ t

0
(t – s)n–α–1f (n)(t) ds, (3)

where n – 1 < α < n and n ∈N.

We mention the following basic properties of fractional derivatives and integrals:
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1 If f ∈ Cn
–1 for some n ∈N, then Dαf is well defined for all 0 ≤ α ≤ n with Dαf ∈ C–1.

2 If f ∈ Cn
μ for some μ ≥ –1, then

(
JαDα

)
f (t) = f (t) –

n–1∑
k=0

f (k)(0+) tk

k!
, (4)

provided n – 1 ≤ α ≤ n.
3 For all γ > α one has

Dαtγ =
Γ (γ + 1)

Γ (γ – α + 1)
tγ –α .

2.2 Sumudu transform
The Sumudu transform is given by [21]

S
[
f (t)

]
= F(η) =

1
η

∫ ∞

0
e

–t
η f (t) dt, (5)

where f ∈ A with

A =
{

f (t) | ∃M, τ1, τ2 > 0,
∣∣f (t)

∣∣ < Me
|t|
τj , if t ∈ (–1)j × [0,∞)

}
.

The Sumudu transform possesses the following main properties:
1 S[c] = c for any constant c;
2 S[tm] = ηm

Γ (m+1) for any m > 0;
3 S[αf (t) ± βg(t)] = αS[f (t)] ± βS[g(t)];
4 For n – 1 < α ≤ n, we have

S
[
Dα

t f (t)
]

= η–αS
[
f (t)

]
–

n–1∑
i=0

η–α+if (i)(0+)
.

The inverse Sumudu transform of a function F(η) is given by [21]

S–1[F(η)
]

= f (t) =
1

2π i

∫ γ +i∞

γ –i∞
estF

(
1
s

)
ds
s

=
∑

Residues

[
estF(1/s)

s

]
,

which exists provided F(1/s)/s is a meromorphic function, with singularities s satisfying
Re(s) < c for some constant c, and

∣∣∣∣F(1/s)
s

∣∣∣∣ ≤ MR–K

for some positive constants R, M, and K .
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3 Solution procedure
To express the solution by the proposed method, let us consider the fractional partial dif-
ferential equation

Dα
t u(x, t) = N

[
u(x, t)

]
, (6)

where n – 1 < α < n for positive integer n, subject to the initial conditions

u(x, 0) = f0(x),
∂u(x, t)

∂t

∣∣∣∣
t=0

= f1(x), . . . ,
∂n–1u(x, t)

∂tn–1

∣∣∣∣
t=0

= fn–1(x). (7)

By taking the Sumudu transform for both sides of Eq. (6), we have

S[u(x, t)]
ηα

–
n–1∑
k=0

ηk–α ∂ku(x, t)
∂tk

∣∣∣∣
t=0+

= S
[
N

[
u(x, t)

]]
, (8)

S
[
u(x, t)

]
= ηαS

[
N

[
u(x, t)

]]
+

n–1∑
k=0

ηk ∂ku(x, t)
∂tk

∣∣∣∣
t=0+

(9)

= ηαS
[
N

[
u(x, t)

]]
+ g

(
η, fi(x)

)
, (10)

where

g
(
η, fi(x)

)
= f0(x) + ηf1(x) · · · + ηn–1fn–1(x).

Now the main difficulty here is to find the solution u(x, t) by invoking the inverse Sumudu
transform for Eq. (10), in particular for the nonlinear term ηαS[N[u(x, t)]]. To tackle this,
we can utilize the HAM by defining the homotopy map

(1 – q)S
[
φ(x, t; q) – u0(x, t)

]
= �qN1

[
φ(x, t; q)

]
, (11)

where q ∈ [0, 1] is an embedding parameter, � is the convergence control parameter,
N1[φ(x, t; q)] the nonlinear operator given by

N1
[
φ(x, t; q)

]
= S

[
φ(x, t; q)

]
– ηαS

[
N

[
φ(x, t; q)

]]
– g

(
η, fi(x)

)
, (12)

and φ(x, t; q) is a Taylor series with respect to q defined by

φ(x, t; q) =
∞∑

m=0

um(x, t)qm. (13)

We can note that, as q varies from 0 to 1, the zeroth-order deformation equation (13)
varies from the initial guess φ(x, t; 0) = u0(x, t) to the exact solution φ(x, t; 1) = u(x, t).

We have the following auxiliary result.

Theorem 3.1 The nonlinear term N[φ(x, t; q)] satisfies the property

N
[
φ(x, t; q)

]
=

∞∑
k=0

[
1
k!

∂ (k)q
∂qk N

[ k∑
j=0

uj(x, t)qj

]

q=0

]
qk . (14)
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Proof The Maclaurin series of N[φ(x, t; q)] with respect to q is given by

N
[
φ(x, t; q)

]
=

∞∑
k=0

1
k!

∂k

∂qk

{
N

[
φ(x, t; q)

]}
q=0qk

=
∞∑

k=0

1
k!

∂k

∂qk

{
N

[ ∞∑
j=0

uj(x, t)qj

]}

q=0

qk

=
∞∑

k=0

1
k!

∂k

∂qk

{
N

[ k∑
j=0

uj(x, t)qj +
∞∑

j=k+1

uj(x, t)qj

]}

q=0

qk

=
∞∑

k=0

1
k!

∂k

∂qk

{
N

[ k∑
j=0

uj(x, t)qj

]}

q=0

qk ,

which completes the proof. �

The next theorem presents the recursive formula of the unknown coefficients um(x, t).

Theorem 3.2 If we substitute Eq. (13) into the zeroth-order deformation equation (11),
then the unknown functions um(x, t) are given by

um(x, t) = (� + χm)um–1(x, t) – �

(
S–1[ηαS[Rm–1]

]
+ (1 – χm)

n–1∑
i=0

fi(x)
ti

i!

)
, (15)

where

Rm–1 =
1

(m – 1)!
∂m–1N1[φ(x, t; q)]

∂qm–1

∣∣∣∣
q=0

(16)

and

χm =

{
0, if m ≤ 1,
1, if m > 1,

for all m = 1, 2, 3, . . . .

Proof By substituting the series in Eq. (13) in the left-hand side of Eq. (11) and equating
the coefficients of the powers qi, i = 1, 2, . . . , m, we have

q1 : S
[
u1(x, t)

]
,

q2 : S
[
u2(x, t)

]
– S

[
u1(x, t)

]
,

...

qm : S
[
um(x, t)

]
– S

[
um–1(x, t)

]
= S

[
um(x, t)

]
– χmS

[
um–1(x, t)

]
.

With the aid of Theorem 3.1, the right-hand side can be written as

q1 : �
(
S
[
u0(x, t)

]
– ηαS[R0] – g

(
v, fi(x)

))
,

q2 : �
(
S
[
u1(x, t)

]
– ηαS[R1]

)
,
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...

qm : �
(
S
[
um–1(x, t)

]
– ηαS[Rm–1]

)

= �
(
S
[
um–1(x, t)

]
– ηαS[Rm–1] – (1 – χm)g

(
v, fi(x)

))

from which follows that

S
[
um(x, t)

]
= (� + χm)S

[
um–1(x, t)

]

– �
(
ηαS[Rm–1] + (1 – χm)g

(
v, fi(x)

))
. (17)

Applying the inverse Sumudu transform for Eq. (17) yields

um(x, t) = (� + χm)um–1(x, t)

– �

(
S–1[ηαS[Rm–1]

]
+ (1 – χm)

n–1∑
i=0

fi(x)
ti

i!

)
,

and this ends the proof. �

In practice, we define the mth approximate solution of the given problem as

UM(x, t) =
M∑
i=0

ui(x, t),

while the residual error for the given solution is defined as

ResM = Dα
t UM(x, t) – N

[
UM(x, t)

]
. (18)

4 Existence and convergence results
In this section, we introduce the main results regarding the existence and convergence of
the proposed algorithm.

Theorem 4.1 If optimal � �= 0 exists, and u0(x, t) is properly chosen in Eq. (15) in such a
way that ‖un+1(x, t)‖ ≤ λ‖un(x, t)‖, where 0 ≤ λ < 1, then the series

∑∞
n=0 un(x, t) converges

uniformly, where ‖ · ‖ denotes the usual infinite norm.

Proof Let Sn be the sequence of partial sums Sn =
∑n

i=0 ui(x, t). We show that the sequence
{Sn}∞n=0 is Cauchy. First we observe that

‖Sn+1 – Sn‖ = ‖un+1‖ ≤ λ‖un‖ ≤ λ2‖un–1‖ ≤ · · · ≤ λn+1‖u0‖.

With the help of the above equation, for all n, m ∈N with n ≥ m, we have

‖Sn – Sm‖ = ‖Sn – Sn–1 + Sn–1 – Sn–2 + Sn–2 + · · · – Sm+1 + Sm+1 – Sm‖
≤ ‖Sn – Sn–1‖ + ‖Sn–1 – Sn–2‖ + · · · + ‖Sm+1 – Sm‖
≤ λn‖u0‖ + λn–1‖u0‖ + · · · + λm+1‖u0‖
= ‖u0‖

(
λn + λn–1 + · · · + λm+1),
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which leads to

‖Sn – Sm‖ ≤ λm+1

1 – λ
‖u0‖, (19)

and consequently ‖Sn – Sm‖ → 0 as n, m → ∞. Thus, the sequence {Sn} is a Cauchy se-
quence, and hence it converges. �

Corollary 4.2 Suppose
∑∞

i=0 ui(x, t) converges to the solution u(x, t) of Eq. (6) and satisfies
the hypotheses of Theorem 4.1, then the maximal absolute truncation error using the first
m terms in the domain (x, t) ∈ Ω can be estimated as

sup
(x,t)∈Ω

∣∣∣∣∣u(x, t) –
m∑

i=0

ui(x, t)

∣∣∣∣∣ ≤ λm+1

1 – λ
Ξ , (20)

where Ξ = sup(x,t)∈Ω |u0(x, t)|.

Proof Since Sn =
∑n

i=0 ui(x, t), as n → ∞ the partial sum Sn → u(x, t). Therefore, Eq. (19)
can be written as

∥∥u(x, t) – Sm
∥∥ =

∥∥∥∥∥u(x, t) –
m∑

i=0

ui(x, t)

∥∥∥∥∥
≤ λm+1

1 – λ

∥∥u0(x, t)
∥∥

≤ λm+1

1 – λ
sup

(x,t)∈Ω

∣∣u0(x, t)
∣∣.

Thus, the maximum absolute truncation error on Ω satisfies

sup
(x,t)∈Ω

∣∣∣∣∣u(x, t) –
m∑

i=0

ui(x, t)

∣∣∣∣∣ ≤ λm+1

1 – λ
Ξ ,

which ends the proof. �

It is worthy to mention that, for the initial value problem, we can choose the initial guess
as u0(x, t) =

∑M–1
i=0 fi(x) ti

i! . Moreover, when N[φ(x, t; q)] is a polynomial of φ(x, t; q) and it
s derivative and the nonhomogeneous term is analytic at the initial point then Rm can be
written as

∑∞
i=0 ci(x)tri for r ∈ � and 0 < α ≤ 1.

Theorem 4.3 If Rm–1 in Eq. (15) is of the form Rm–1 = c0(x) +
∑M

n=1 cn(x)trn for positive real
number r, then Eq. (6) subject to the initial conditions Eq. (7) admits at least one solution.

Proof Using the properties of the Sumudu transform, we have

ηαS[Rm–1] = ηα

(
S
[
c0(x)

]
+

M∑
n=1

cn(x)S
[
trn]

)
= c0(x)ηα +

M∑
n=1

cn(x)
Γ [rn + 1]

ηrn+α .

Since α > 0, the Sumudu inverse for ηαS[Rm–1] exists and is given by

S–1[ηαS[Rm–1] = Γ [α + 1]c0(x)tα +
M∑

n=1

cn(x)Γ [rn + α + 1]
Γ [rn + 1]

trn+α .
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Hence, as M → ∞ the series u(x, t) = limM→∞
∑M

n=0 un(x, t) becomes a solution of Eq. (6)
and it satisfies the initial conditions by choosing u0(x, t) =

∑M–1
i=0 fi(x) ti

i! . This completes the
proof. �

5 Numerical examples
In this section we present several examples to show the feasibility and robustness of the
proposed technique.

5.1 Example 1
Consider the fractional linear system of PDE [6]

Dα
t u(x, t) – vx(x, t) – u(x, t) + v(x, t) = –2, (21)

Dβ
t v(x, t) + ux(x, t) – u(x, t) + v(x, t) = –2, (22)

where 0 < α,β ≤ 1, subject to the initial conditions

u(x, 0) = 1 + ex, v(x, 0) = –1 + ex.

According to the solution procedure, we can choose u0(x, t) = 1 + ex and v0(x, t) = ex – 1.
To determine Rm–1, we substitute

φu(x, t; q) =
∞∑

m=0

um(x, t)qm and φv(x, t; q) =
∞∑

m=0

vm(x, t)qm

in Eq. (16) to give

Rum–1 =
1

(m – 1)!
∂m–1

∂qm–1

[(
φv(x, t; q)

)
x + φu(x, t; q) – φv(x, t; q) – 2

]∣∣
q=0

=
∂vm–1

∂x
+ um–1 – vm–1 – 2(1 – χm) (23)

and

Rvm–1 =
1

(m – 1)!
∂m–1

∂qm–1

[
–
(
φu(x, t; q)

)
x + φu(x, t; q) – φv(x, t; q) – 2

]∣∣
q=0

= –
∂um–1

∂x
+ um–1 – vm–1 – 2(1 – χm). (24)

Then the mth-order approximations are given by

um = (� + χm)um–1 – �S–1
[
ηαS

[
∂vm–1

∂x
+ um–1 – vm–1 – 2(1 – χm)

]]

– �(1 – χm)
(
1 + ex), (25)

vm = (� + χm)vm–1 – �S–1
[
ηβS

[
–

∂um–1

∂x
+ um–1 – vm–1 – 2(1 – χm)

]]

– �(1 – χm)
(
–1 + ex). (26)
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Figure 1 �-curve using 15 terms of approximation for Example 1

Then the first few terms of the series are

u(x, t) = 1 + ex +
ex
�(�2 + 3� + 3)tα

Γ (α + 1)
+

ex
�

2(2� + 3)t2α

Γ (2α + 1)
+

ex
�

3t3α

Γ (3α + 1)
+ · · · ,

v(x, t) = –1 + ex –
ex
�(�2 + 3� + 3)tβ

Γ (β + 1)
+

ex
�

2(2� + 3)t2β

Γ (2β + 1)
–

ex
�

3t3β

Γ (3β + 1)
+ · · · .

To determine the region for which the solution is convergent, we plot the �–curve in
Fig. 1. Clearly, the values of D0.99

t u(0.9, 0) and D0.99
t v(0.9, 0) do not change in the region

–1.5 ≤ � ≤ –0.5. For simplicity, we fix � = –1. Then the solution for Example 1 becomes

u(x, t) = 1 + ex –
extα

Γ (α + 1)
+

ext2α

Γ (2α + 1)
–

ext3α

Γ (3α + 1)
+ · · · = 1 + exEα,1

(
–tα

)
,

v(x, t) = –1 + ex +
extβ

Γ (β + 1)
+

ext2β

Γ (2β + 1)
+

ext3β

Γ (3β + 1)
+ · · · = –1 + exEβ ,1

(
tβ

)
,

where Eγ ,1(z) =
∑∞

k=0
zk

Γ (γ k+1) is the Mittag-Leffler function which is the exact solution. We
note that the S-HAM solution can generate the Laplace Adomian decomposition solution
when � = –1 given by [6].

5.2 Example 2
Consider the fractional coupled Burgers equations [22]

Dα
t u = uxx + 2uux – (uv)x, (27)

Dβ
t v = vxx + 2vvx – (uv)x, (28)

subject to the initial conditions u(x, 0) = v(x, 0) = cos x. According to the S-HAM algo-
rithm, we can choose u0 = v0 = cos x. The mth orders are given by

um = (χm + �)um–1 – �u0(1 – χm) – S–1

(
ηαS

(
(um–1)xx

– 2
m–1∑
k=0

(uk)xum–1–k +
m–1∑
k=0

(uk)xvm–1–k +
m–1∑
k=0

uk(vm–1–k)x

))
, (29)
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vm = (χm + �)vm–1 – �v0(1 – χm) – S–1

(
ηβS

(
(vm–1)xx

– 2
m–1∑
k=0

(vk)xvm–1–k +
m–1∑
k=0

(uk)xvm–1–k +
m–1∑
k=0

uk(vm–1–k)x

))
. (30)

The first few terms are of the series solutions are

u = cos(x)
(

1 +
�(� + 2)tα

Γ (α + 1)
+
�

2t2α(2 sin(x) + 1)
Γ (2α + 1)

–
2�2 sin(x)tα+β

Γ (α + β + 1)
+ · · ·

)
,

v = cos(x)
(

1 +
�(� + 2)tβ

Γ (β + 1)
+
�

2t2β (2 sin(x) + 1)
Γ (2β + 1)

–
2�2 sin(x)tα+β

Γ (α + β + 1)
+ · · ·

)
.

With α = β and � = –1, the solutions become

u = cos(x)
(

1 –
tα

Γ (α + 1)
+

t2α

Γ (2α + 1)
+ · · ·

)
= cos(x)Eα,1

(
–tα

)
,

v = cos(x)
(

1 –
tα

Γ (α + 1)
+

t2α

Γ (2α + 1)
+ · · ·

)
= cos(x)Eα,1

(
–tα

)
.

For α �= β , we present the solution when α = 0.9, β = 0.8 and � = –0.2 in Fig. 2 and its
residual error in Fig. 3. We note that the exact solution of the fractional coupled Burger
equation when (α = β) is obtained via S-HAM but in the fractional variational iteration
method (FVIM) the approximate one is only obtained; see [22]. Moreover, the S-HAM
solution is discussed for t ∈ [0, 1] whereas the FVIM solution is addressed for t ∈ [0, 0.005],
which is a small time. Figure 4 represent the S-HAM solution when α = 0.5 and β = 0.25
for t ∈ [0, 1] with � = –0.324.

5.3 Example 3
Consider the following nonlinear FPDE:

Dα
t u(x, t) – ux(x, t)v(x, t) – u(x, t) = 1, (31)

Dβ
t v(x, t) + vx(x, t)u(x, t) + v(x, t) = 1, (32)

Figure 2 Solution Example 2 using α = 0.9 and β = 0.8. (a) for u(x, t) and (b) for v(x, t)
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Figure 3 Residual error for Example 2 using 20th-order of approximation with α = 0.9 and β = 0.8. (a) for
resdual error of u(x, t) and (b) for resdual error of v(x, t)

Figure 4 (a) u(x, t) and (b) v(x, t) of Example 2 using α = 0.5 and β = 0.25

Figure 5 �-curve using 20 terms of approximation for Example 3

where 0 < α ≤ 1 and 0 < β ≤ 1, subject to the initial conditions u(x, 0) = ex, v(x, 0) = e–x.
According to the solution procedure, we can choose u0(x, t) = ex and v0(x, t) = e–x, the mth
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Figure 6 Solution of Example 3 using α = 0.99 and β = 0.98, (a) for u(x, t) and (b) for v(x, t)

Figure 7 Residual error for (a) u(x, t) and (b) v(x, t) using 20th order of approximation with α = 0.99 and
β = 0.98 for Example 3

Figure 8 Solution of Example 3 for α = 0.7, β = 0.5, (a) for u(x, t) and (b) for v(x, t)

order is given by

um = (� + χm)um–1 – �(1 – χm)
(
ex)

– �S–1

[
ηαS

[
–

m–1∑
j=0

∂uj

∂x
vm–1–i – um–1 + (1 – χm)

]]
, (33)
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Table 1 Solution and residual error for Example 3 when α = 0.7 and β = 0.8 at several values of x and
t using 60 terms of the series (� = –1)

x t

0 0.2 0.4 0.6 0.8 1

0 u 1. 1.49505 2.01823 2.72055 3.74817 5.42523
Eu 0. 4.441 10–16 4.441 10–16 2.220 10–15 2.110 10–10 2.403 10–6

0.25 u 1.28403 1.91105 2.56371 3.42903 4.68035 6.70162
Eu 1.110 10–16 6.661 10–16 1.110 10–15 6.661 10–16 2.522 10–10 2.882 10–6

0.5 u 1.64872 2.4452 3.26413 4.33873 5.87729 8.34054
Eu 0. 0. 8.882 10–16 2.220 10–15 3.052 10–10 3.495 10–6

0.75 u 2.117 3.13107 4.16348 5.50681 7.41419 10.445
Eu 0. 6.661 10–16 1.332 10–15 2.220 10–15 3.733 10–10 4.282 10–6

1 u 2.71828 4.01174 5.31827 7.00666 9.38762 13.1471
Eu 0. 2.220 10–16 1.332 10–15 1.332 10–15 4.603 10–10 5.293 10–6

0 v 1. 0.77102 0.67532 0.64818 0.69700 0.87441
Ev 0 8.882 10–16 1.110 10–15 2.220 10–15 8.952 10–11 1.013 10–6

0.25 v 0.77880 0.60431 0.53668 0.52694 0.58472 0.76075
Ev 1.110 10–16 0 6.661 10–16 2.2206 10–15 8.30 10–11 9.413 10–7

0.5 v 0.60653 0.47448 0.42870 0.43252 0.49728 0.67224
Ev 0 4.441 10–16 2.220 10–16 2.220 10–15 7.790 10–11 8.854 10–7

0.75 v 0.47237 0.37336 0.34461 0.35899 0.42918 0.60330
Ev 0 6.661 10–16 6.661 10–16 2.220 10–15 7.403 10–11 8.413 10–7

1 v 0.36788 0.29462 0.27912 0.30172 0.37614 0.54961
Ev 0 4.441 10–16 6.661 10–16 1.776 10–15 7.097 10–11 8.083 10–7

vm = (� + χm)vm–1 – �(1 – χm)
(
e–x)

– �S–1

[
ηβS

[m–1∑
j=0

∂vj

∂x
um–1–i + vm–1 + (1 – χm)

]]
. (34)

Thus, the solution becomes

u(x, t) = –
�

2tα+β

Γ (α + β + 1)
+

�
2t2α

Γ (2α + 1)
+

ex
�

2t2α

Γ (2α + 1)
–

ex
�

2tα

Γ (α + 1)
–

2ex
�tα

Γ (α + 1)
+ ex + · · · ,

v(x, t) =
�

2tα+β

Γ (α + β + 1)
–

�
2t2β

Γ (2β + 1)
+

e–x
�

2t2β

Γ (2β + 1)
+

e–x
�

2tβ

Γ (β + 1)
+

2e–x
�tβ

Γ (β + 1)
+ e–x + · · · .

To determine the region for which the solution converges, we plot the �-curve in Fig. 5.
It is clear that the values of D0.99

t u(0.9, 0) and D0.98
t v(0.9, 0) do not change in the region

–1.5 ≤ � ≤ –0.5. For simplicity, we fixed � = –1. When α = β = 1 the solution becomes

u(x, t) = ex + tex +
t2ex

2
+

t3ex

6
+ · · · = ex+t , (35)

v(x, t) = e–x – te–x +
t2e–x

2
–

t3e–x

6
+ · · · = e–x–t . (36)

The solution for Example 3 is presented in Fig. 6 and the residual error is given in Fig. 7.
Clearly, the present method can solve this kind of system of fractional partial differential
equation that accurate within 10–7. Finally, the solution when α = 0.7 and β = 0.5 is plotted
in Fig. 8. Tables 1–3 present the solutions and their residual errors for several values of α

and β along x and t ∈ [0, 1] with proper selection of �. Via those tables, we can observe that
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Table 2 Solution and residual error for Example 3 when α = 0.7 and β = 0.5 at several values of x and
t using 60 terms of the series (� = –0.85)

x t

0 0.2 0.4 0.6 0.8 1

0 u 1.0000 1.4041 1.8025 2.3377 3.1298 4.4451
Eu 0 2.220 10–16 1.776 10–15 3.183 10–12 3.231 10–9 7.500 10–6

0.25 u 1.2840 1.8145 2.3303 3.0091 3.9948 5.6054
Eu 1.110 10–16 1.110 10–16 1.887 10–15 3.581 10–12 3.783 10–9 1.576 10–5

0.5 u 1.6487 2.3416 3.0081 3.8712 5.1055 7.0953
Eu 0 3.331 10–16 3.109 10–15 5.343 10–12 8.557 10–9 2.179 10–5

0.75 u 2.1170 3.0183 3.8783 4.9782 6.5317 9.0084
Eu 0 4.4415 10–16 4.774 10–15 3.638 10–12 1.973 10–8 3.162 10–5

1 u 2.7183 3.8872 4.9956 6.3995 8.3629 11.465
Eu 0 1.110 10–16 6.661 10–15 2.615 10–12 3.097 10–8 4.801 10–5

0 v 1.0000 0.60517 0.52571 0.51761 0.57958 0.76370
Ev 2.220 10–16 0 5.551 10–16 2.785 10–12 5.413 10–9 1.654 10–6

0.25 v 0.77880 0.46439 0.40597 0.40975 0.47746 0.65966
Ev 3.331 10–16 2.220 10–16 2.220 10–16 3.979 10–13 1.164 10–10 3.025 10–6

0.5 v 0.60653 0.35474 0.31271 0.32574 0.39793 0.57863
Ev 2.220 10–16 3.331 10–16 4.441 10–16 7.390 10–13 1.397 10–9 7.093 10–6

0.75 v 0.47237 0.26935 0.24008 0.26032 0.33599 0.51552
Ev 0 5.551 10–16 0 1.137 10–13 9.662 10–9 1.100 10–5

1 v 0.36788 0.20285 0.18352 0.20937 0.28775 0.46638
Ev 0 6.661 10–16 2.220 10–16 2.274 10–13 7.916 10–9 1.256 10–5

Table 3 Solution and residual error for Example 3 when α = 0.9 and β = 0.3 at several values of x and
t using 60 terms of the series (� = –0.55)

x t

0 0.2 0.4 0.6 0.8 1

0 u 1.0000 1.1712 1.3467 1.5670 1.8569 2.2501
Eu 0 1.110 10–16 1.810 10–14 3.628 10–12 1.069 10–9 1.0219 10–7

0.25 u 1.2840 1.5260 1.7759 2.0839 2.4809 3.0088
Eu 1.110 10–16 3.331 10–16 2.365 10–14 4.828 10–12 1.363 10–9 1.263 10–7

0.5 u 1.6487 1.9817 2.3270 2.7476 3.2822 3.9831
Eu 0 5.551 10–17 2.903 10–14 6.234 10–12 1.748 10–9 1.504 10–7

0.75 u 2.1170 2.5668 3.0346 3.5998 4.3110 5.2340
Eu 0 6.106 10–16 3.325 10–14 8.418 10–12 2.253 10–9 1.888 10–7

1 u 2.7183 3.3180 3.9432 4.6940 5.6321 6.8402
Eu 0 2.220 10–16 4.0468 10–14 1.0858 10–11 2.895 10–9 2.451 10–7

0 v 1.0000 0.44309 0.37067 0.34020 0.33444 0.35088
Ev 0 1.110 10–16 2.665 10–15 2.505 10–12 2.906 10–10 3.565 10–9

0.25 v 0.77880 0.31806 0.26122 0.24137 0.24388 0.26700
Ev 1.110 10–16 1.110 10–16 2.665 10–15 2.240 10–12 2.628 10–10 5.915 10–9

0.5 v 0.60653 0.22068 0.17598 0.16441 0.17335 0.20168
Ev 0 2.220 10–16 2.776 10–15 2.120 10–12 2.205 10–10 6.812 10–9

0.75 v 0.47237 0.14484 0.10959 0.10446 0.11842 0.15080
Ev 0 3.331 10–16 3.553 10–15 1.892 10–12 1.778 10–10 9.974 10–9

1 v 0.36788 0.085772 0.057893 0.057780 0.075645 0.11118
Ev 0 2.220 10–16 4.996 10–15 1.860 10–12 1.895 10–10 9.886 10–9

the method is effective for these kinds of problems. Different from the published research
[23], the present one considers this problem when α = β and α �= β .
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6 Conclusion
Our concern was to provide asymptotic solutions to the system of fractional partial differ-
ential equations, using a relatively new analytical technique, the homotopy-Sumudu trans-
formation method. A sufficient condition for convergence is presented. Moreover, based
on sufficient conditions for convergence, an estimation of the maximum absolute error
is obtained. Several examples are presented to demonstrate the efficiency of the method.
Besides, the calculations involved in the method are very simple and straightforward.
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