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Abstract
In this paper, we study the indirect stabilization of a system of plate equations which
are weakly coupled and locally damped. By virtue of the general results due to Burq in
the study of asymptotic behavior of solutions, we prove that the semigroup
associated to the system is logarithmically stable under some assumptions on the
damping and the coupling terms. For this purpose, we adopt an approach based on
the growth of the resolvent on the imaginary axis, which can be obtained by some
Carleman estimates.
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1 Introduction
Let Ω be a bounded domain in R

n with a C4 boundary Γ . Consider the following two
weakly coupled plate equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ytt + �2y + c(x)z + d(x)yt = 0 in R
+ × Ω ,

ztt + �2z + c(x)y = 0 in R
+ × Ω ,

y = �y = z = �z = 0 on R
+ × Γ ,

(y(0), yt(0)) = (y0, y1), (z(0), zt(0)) = (z0, z1) in Ω ,

(1.1)

where c(·) ∈ L∞(Ω ;R) is the coupling function, and d(·) ∈ L∞(Ω ;R) is the damping func-
tion. Both c(·) and d(·) are nonnegative.

In system (1.1), the damping which is distributed locally in the domain under consid-
eration acts through one of the equations only, and its effect is transmitted to the other
equation through the coupling. Thus, system (1.1) is a special case of the general frame-
work proposed by Russell (see [28]) for the indirect damping problem in elastic systems.
Motivated by Russell’s work, the indirect stabilization problem for all kinds of coupled sys-
tems have been extensively studied (see e.g. [1–4, 10, 16, 18, 23, 27, 30] and the references
therein).

It is well known that a single wave equation is exponentially stable if and only if the
geometric control condition (GCC for short) is satisfied (see [6]). When the GCC failed,
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Lebeau [22] first derived the logarithmic decay result for wave equations where no geo-
metric restriction was imposed on the damping regions. After that, the logarithmic decay
result was extended to many other problems (see [5, 9, 19] for a single wave or plate) with
internal or boundary damping. However, for the indirect stabilization for weakly coupled
wave-type equations (wave–wave, wave–plate, etc.), even under some geometric condi-
tions, the exponential stability does not hold (see [3]). There are many results related to
the polynomial decay. In this respect, we refer to [2–4] for the indirect stabilization for
weakly coupled systems of wave–wave or wave–Petrowsky type, and [17, 24, 25, 29] for
the weakly coupled plate–plate equations. Further, we refer to [21] for the uniform decay
rates of the coupled wave equation and plate equation with the coupling on the interface,
and [15] for the polynomial decay estimate for a single plate equation with local degener-
ated dissipations.

It should be pointed out that there are few references addressing the logarithmic decay
rate for the indirect stabilization for weakly coupled wave-type equations. We refer to [11]
for the logarithmic decay rates of the energy of a hyperbolic–parabolic system coupled by
an interface, [12] for the logarithmic decay result of the weakly coupled hyperbolic equa-
tions, [13] for the logarithmic decay result of the weakly coupled wave–plate equations.
As far as we know, there is no reference addressing the asymptotic behavior of the system
(1.1).

In this paper, we will show the logarithmic decay property for solutions of the system
(1.1). Due to Burq’s [8] general results in the study of asymptotic behavior of solutions, it
suffices to show some high-frequency estimates with exponential loss on the resolvent. To
this aim, we borrow some ideas in [12, 13]. In [12], to get the energy decay for a system
coupled by two wave equations, one is required to establish an interpolation inequality for
a system coupled by two elliptic equations. In [13], to get the energy decay for a system
coupled by wave–plate equations, one is required to establish an interpolation inequality
for a system coupled by one elliptic and two parabolic equations. In our case, we consider
the coupled plate–plate equations, noting that the plate operator “∂2

t + �2” can be decom-
posed as two conjugate Schrödinger ones “∂2

t + �2 = (i∂t + �)(–i∂t + �)”, therefore, we
have to get an interpolation inequality for a system coupled by four parabolic-type equa-
tions (see (4.5)). Since there is no elliptic-type equation in our situation, the interpolation
inequality we obtain here differs from [12, 13]. See Sect. 3 for more details.

The rest of this paper is organized as follows. In Sect. 2, we give the main results in this
paper. Section 3 is addressed to proving an interpolation inequality by virtue of Carleman
estimates for the parabolic equations. At last, in Sect. 4, we prove our main results.

2 Statement of the main results
Let m∗ = infy∈H2(Ω)∩H1

0 (Ω) ‖�y‖2
L2(Ω)/‖y‖2

L2(Ω). Throughout this paper, we assume that c(·)
and d(·) satisfy

⎧
⎨

⎩

c(x) ≥ c0 > 0 in ωc,

‖c‖L∞(Ω) < m∗,
(2.1)

and

d(x) ≥ d0 > 0 in ωd, (2.2)
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where ωc and ωd are arbitrary non-empty open subsets of Ω . The solutions y and
z to system (1.1) are complex-valued functions. In what follows, we shall use C =
C(Ω ,ωc,ωd, c0, d0) to denote generic positive constants which may vary from line to line.

Now let us introduce the energy space H over the field C as follows:

H =
(
H2(Ω) ∩ H1

0 (Ω)
) × L2(Ω) × (

H2(Ω) ∩ H1
0 (Ω)

) × L2(Ω).

For any U = (y, u, z, v), Ũ = (ỹ, ũ, z̃, ṽ) ∈H, their inner product is

(U , Ũ) �=
∫

Ω

(
�y� ¯̃y + �z� ¯̃z + c(x)y ¯̃z + c(x)z ¯̃y)dx +

∫

Ω

(u ¯̃u + v ¯̃v) dx. (2.3)

Define a linear unbounded operator A : D(A) ⊂H →H by

⎧
⎨

⎩

D(A) = {U = (y, u, z, v) ∈H : AU ∈H, y|Γ = �y|Γ = z|Γ = �z|Γ = 0},
AU = (u, –�2y – c(x)z – d(x)u, v, –�2z – c(x)y).

(2.4)

In fact, if U = (y, u, z, v) ∈ D(A), we have y ∈ H4(Ω), u ∈ H2(Ω) ∩ H1
0 (Ω), z ∈ H4(Ω) and

v ∈ H2(Ω) ∩ H1
0 (Ω).

Let U0 = (y0, y1, z0, z1). Then system (1.1) can be rewritten as

dU
dt

= AU , U(0) = U0.

Proposition 2.1 Assume ‖c‖L∞(Ω) < m∗. ThenA is the infinitesimal generator of a C0 semi-
group of contractions {etA}t≥0 on H. Furthermore, A has a compact resolvent.

Proof Since D(A) = H, by the Lumer–Phillips theorem (see [26]), A generates a C0 semi-
group of contractions if A is dissipative and 0 ∈ ρ(A), where ρ(A) denotes the resolvent
set of A. For any U = (y, u, z, v) ∈ D(A), noting the inner product (2.3) we define on H, it
is easy to show that

Re(AU , U) = –
∫

Ω

d(x)|u|2 dx ≤ 0. (2.5)

On the other hand, given F = (f 0, f 1, g0, g1) ∈H, let us consider the problemAU = F , which
is equivalent to

⎧
⎨

⎩

u = f 0 in Ω ,

v = g0 in Ω ,
(2.6)

and

⎧
⎪⎪⎨

⎪⎪⎩

–�2y – c(x)z = d(x)f 0 + f 1 in Ω ,

–�2z – c(x)y = g1 in Ω ,

y = �y = z = �z = 0 on Γ .

(2.7)
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Let G = (H2(Ω) ∩ H1
0 (Ω)) × (H2(Ω) ∩ H1

0 (Ω)). In the following, we shall prove that the
problem (2.6)–(2.7) has a unique solution U = (y, u, z, v) ∈ D(A). Introduce a sesquiliner
form Λ over the product space G × G as follows:

Λ(V , Ṽ ) =
∫

Ω

(
�y� ¯̃y + �z� ¯̃z + c(x)y ¯̃z + c(x)z ¯̃y)dx, (2.8)

where V = (y, z), Ṽ = (ỹ, z̃) ∈ G . It is easy to see that Λ is continuous and coercive. Thus,
by the Lax–Milgram theorem, for (–d(x)f 0 – f 1, –g1) ∈ G ′, the system (2.7) has a unique
weak solution (y, z) ∈ G such that, for any (ỹ, z̃) ∈ G ,

∫

Ω

(
�y� ¯̃y + �z� ¯̃z + c(x)y ¯̃z + c(x)z ¯̃y)dx = –

∫

Ω

(
d(x)f 0 ¯̃y + f 1 ¯̃y + g1 ¯̃z)dx. (2.9)

Denote by D′(Ω) the space of all distributions on Ω . By the equality above, one has

�2y + c(x)z = –d(x)f 0 – f 1 in D′(Ω), (2.10)

which implies �2y = –c(x)z – d(x)f 0 – f 1 ∈ L2(Ω). Let f̃ = c(x)z + d(x)f 0 + f 1. Then there
exists a unique solution ϑ ∈ H2(Ω) ∩ H1

0 (Ω) such that �ϑ = f̃ in Ω and ϑ = 0 on Γ . Now,
noting (2.9), for any ỹ ∈ H2(Ω) ∩ H1

0 (Ω) we have
∫

Ω
ϑ�ỹ dx =

∫

Ω
f̃ ỹ dx = –

∫

Ω
�y�ỹ dx.

Since the mapping –� : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) is surjective, it follows that �y = –ϑ ∈

H2(Ω)∩H1
0 (Ω). Then, by the elliptic regularity theory, we have y ∈ H4(Ω) and the follow-

ing estimate holds:

‖y‖H4(Ω) ≤ C
(‖�y‖H2(Ω) + ‖y‖L2(Ω)

)
. (2.11)

Thus, combining �(�y) ∈ L2(Ω) with �y|Γ = 0, by the elliptic regularity theory, once
again we have

‖�y‖H2(Ω) ≤ C
(‖�y‖L2(Ω) +

∥
∥c(x)z + d(x)u + f 1∥∥

L2(Ω)

)
. (2.12)

Similarly, we also have z ∈ H4(Ω), �z ∈ H1
0 (Ω), and the following estimates hold:

‖z‖H4(Ω) ≤ C
(‖�z‖H2(Ω) + ‖z‖L2(Ω)

)
, (2.13)

and

‖�z‖H2(Ω) ≤ C
(‖�z‖L2(Ω) +

∥
∥c(x)y + g1∥∥

L2(Ω)

)
. (2.14)

On the other hand, taking (ỹ, z̃) = (y, z) in (2.9), it is easy to find that

‖�y‖L2(Ω) + ‖�z‖L2(Ω) ≤ C‖F‖H. (2.15)

Finally, combining (2.6) with (2.11)–(2.15) we conclude that 0 ∈ ρ(A) and

‖y‖H4(Ω) + ‖u‖H2(Ω) + ‖z‖H4(Ω) + ‖v‖H2(Ω) ≤ C‖F‖H, (2.16)

which implies that A–1 is compact. �
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The energy of system (1.1) at time t is given by

E(t) =
1
2

∫

Ω

(∣
∣�y(t)

∣
∣2 +

∣
∣yt(t)

∣
∣2 +

∣
∣�z(t)

∣
∣2 +

∣
∣zt(t)

∣
∣2)dx +

∫

Ω

c(x) Re(yz̄) dx. (2.17)

When d ≡ 0, E(·) is obviously conservative. Otherwise, we have

E(t2) – E(t1) = –
∫ t2

t1

∫

Ω

d(x)|yt|2 dx dt, ∀t2 ≥ t1 ≥ 0,

which implies the energy is nonincreasing and system (1.1) is dissipative.
Our main result is stated as follows.

Theorem 2.1 Let c(·) and d(·) satisfy (2.1) and (2.2), respectively. Suppose that ωc ∩ ωd �=
∅. Then there exists a constant C > 0 such that for all (y0, y1, z0, z1) ∈ D(A) the solution
etA(y0, y1, z0, z1) ∈ C(R+; D(A)) ∩ C1(R+;H) to system (1.1) satisfies

∥
∥etA(

y0, y1, z0, z1)∥∥
H ≤ C

ln(2 + t)
∥
∥
(
y0, y1, z0, z1)∥∥

D(A), ∀t ≥ 0. (2.18)

In order to prove Theorem 2.1, let us recall the following result:

Lemma 2.1 ([7, Theorem A]) Assume thatB is the infinitesimal generator of a bounded C0

semigroup {etB}t∈R+ on Hilbert space H̃. Let ρ(B) denote the resolvent set of B. If iR ⊂ ρ(B)
and there exists a positive constant C such that

sup
|τ |≤ξ

∥
∥(iτ – B)–1∥∥

L(H̃) ≤ CeCξ , ∀ξ ≥ 0,

then, for any k ∈N
∗, there exists a positive constant Ck such that

sup
s≥t

∥
∥esB(1 – B)–k∥∥

L(H̃) ≤ Ck

lnk(2 + t)
, ∀t ≥ 0,

where N∗ = N \ {0}.

According to Lemma 2.1, Theorem 2.1 is reduced to the following resolvent estimate of
the operator A.

Theorem 2.2 Under the assumptions of Theorem 2.1, we have iR ⊂ ρ(A) and there exists
a constant C > 0 such that, for every β ∈ R,

∥
∥(iβ – A)–1∥∥

L(H) ≤ CeC|β|.

Remark 2.1 In this paper, we assume that ωc ∩ ωd �= ∅. It would be quite interesting to
consider the case that ωc ∩ ωd = ∅. Some results are obtained in [4] for one dimensional
coupled wave equations. For the multi-dimensional case, as far as we know, it is an un-
solved problem.
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3 An interpolation inequality for the coupled parabolic system
In this section, we shall prove an interpolation inequality for the following coupled
parabolic system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ps + �p = w in Q,

ws – �w – id(x)ps – c(x)q = w0 in Q,

qs + �q = z in Q,

zs – �z – c(x)p = z0 in Q,

p = �p = q = �q = 0 on Σ .

(3.1)

Here Q = (–2, 2) × Ω , Σ = (–2, 2) × Γ and w0, z0 ∈ L2(Q).
Set

X �= (–1, 1) × Ω , X̃ �= (–2, 2) × ω, ω = ωc ∩ ωd.

We have the following interpolation inequality for the system (3.1).

Theorem 3.1 Under the assumptions in Theorem 2.1, there exists a constant C > 0 such
that, for any ε > 0, any solution (p, w, q, z) of the system (3.1) satisfies

‖p‖L2(X) + ‖w‖L2(X) + ‖q‖L2(X) + ‖z‖L2(X)

≤ CeC/ε(∥∥w0∥∥
L2(Q) +

∥
∥z0∥∥

L2(Q) + ‖p‖L2(X̃) + ‖dps‖L2(Q)
)

+ Ce–1/ε(‖p‖L2(Q) + ‖w‖L2(Q) + ‖q‖L2(Q) + ‖z‖L2(Q)
)
. (3.2)

3.1 Some preliminaries
The proof of Theorem 3.1 is based on the Carleman estimates for the parabolic operators
±∂s + �. In this subsection, we collect some known results we need.

As we know, Carleman estimate can be regarded as a weighted energy estimate. To begin
with, we first give the choice of the weight functions. Let ω0 be a non-empty subdomain
of Ω such that ω0 ⊂ ω0 ⊂ ω. By [14, Lemma 1.1] we know that there exists a function
ψ̂ ∈ C2(Ω ;R) such that

ψ̂ > 0 in Ω , ψ̂ = 0 on ∂Ω , |∇ψ̂ | > 0 in Ω \ ω0. (3.3)

With such choice of ψ̂ and λ,μ > 1, we define

⎧
⎨

⎩

ψ = ψ(s, x) �= ψ̂(x)
‖ψ̂‖L∞(Ω)

+ b2 – s2, x ∈ Ω , s ∈R,

θ = e�, � = λφ, φ = eμψ ,
(3.4)

where b ∈ (1, 2) will be given later.
Choose a cut-off function η ∈ C∞

0 (ω) such that

⎧
⎨

⎩

0 ≤ η(x) ≤ 1, x ∈ ω,

η(x) = 1, x ∈ ω0.
(3.5)
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For fixed μ, proceeding with exactly the same analysis as [13], we have the following
result.

Lemma 3.1 ([13, Lemma 3.2]) Let γ ∈R and � be given by (3.4). Let k be a positive integer
and k ≥ 2. Then, for a fixed μ, there is a constant λ0 > 0 such that, for all λ ≥ λ0, one can
find a constant C > 0 such that, for all z ∈ H2

0 (–b, b; H2(Ω) ∩ H1
0 (Ω)) and for any β ≥ 2,

∫ b

–b

∫

Ω

θ2ηk|∇z|2 dx ds

≤ 1
λβ

∫ b

–b

∫

Ω

θ2ηk|γ zs + �z|2 dx ds + Cλβ

∫ b

–b

∫

Ω

θ2ηk–2|z|2 dx ds. (3.6)

Further, we recall the following well-known Carleman estimate for the parabolic opera-
tor γ zs + �z.

Lemma 3.2 ([13, Lemma 3.4]) Let γ ∈ R and � be given by (3.4). Then there is a constant
μ1 > 0 such that, for all μ ≥ μ1, one can find two constants C > 0 and λ1 = λ1(μ) > 0 so
that, for any λ ≥ λ1, for all z ∈ H2

0 (–b, b; H2(Ω) ∩ H1
0 (Ω)),

λμ2
∫ b

–b

∫

Ω

θ2φ
(|∇z|2 + λ2μ2φ2|z|2)dx ds

≤ C
(∫ b

–b

∫

Ω

θ2|γ zs + �z|2 dx ds + λ3μ4
∫ b

–b

∫

ω0

θ2φ3|z|2 dx ds
)

. (3.7)

3.2 Proof of Theorem 3.1
To prove the interpolation inequality (3.2), first we apply the Carleman estimates in
Lemma 3.2 to p, w, q and z, respectively, to get (3.13). Then the main difficulty is to esti-
mate the energy of (p̂, q̂, ŵ, ẑ) localized on ω0 by only the energy of p localized on ω, which
can be solved by using their coupling relations and the multiplier technique. Since the
proof is long, we divide it into several steps.

Step 1. There is no boundary conditions for p, w, q and z at s = ±2 in the system (3.1).
Thus, we need to introduce a cut-off function ϕ = ϕ(s) ∈ C∞

0 (–b, b) such that

⎧
⎨

⎩

0 ≤ ϕ(s) ≤ 1, |s| < b,

ϕ(s) = 1, |s| ≤ b0.
(3.8)

Here 1 < b0 < b ≤ 2 are given as follows:

b �=

√

1 +
1
μ

ln
(
2 + eμ

)
, b0

�=

√

b2 –
1
μ

ln

(
1 + eμ

eμ

)

, (3.9)

where μ is the parameter appeared in Lemma 3.2 and is large enough. Put

p̂ = ϕp, ŵ = ϕw, q̂ = ϕq, ẑ = ϕz. (3.10)
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Noting that ϕ does not depend on x, it follows from (3.1) that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̂s + �p̂ = F1 in Q,

ŵs – �ŵ = F2 in Q,

q̂s + �q̂ = F3 in Q,

ẑs – �ẑ = F4 in Q,

p̂ = �p̂ = q̂ = �q̂ = 0 on Σ ,

(3.11)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F1
�= ŵ + ϕsp,

F2
�= idp̂s + c(x)q̂ + ϕsw – idϕsp + ϕw0,

F3
�= ẑ + ϕsq,

F4 = c(x)p̂ + ϕsz + ϕz0.

(3.12)

By using Lemma 3.2 for γ = ±1, we conclude that there is a μ1 > 0 such that, for all
μ ≥ μ1, one can find two constants C = C(μ) > 0 and λ1 = λ1(μ) so that, for all λ ≥ λ1,

λμ2
∫ b

–b

∫

Ω

θ2φ
(|∇p̂|2 + |∇ŵ|2 + |∇q̂|2 + |∇ ẑ|2

+ λ2μ2φ2(|p̂|2 + |ŵ|2 + |q̂|2 + |ẑ|2))dx ds

≤ C
[∫ b

–b

∫

Ω

θ2(|F1|2 + |F2|2 + |F3|2 + |F4|2
)

dx ds

+ λ3μ4
∫ b

–b

∫

ω0

θ2φ3(|p̂|2 + |ŵ|2 + |q̂|2 + |ẑ|2)dx ds
]

. (3.13)

Step 2. Let us estimate
∫ b

–b
∫

ω0
θ2|ẑ|2 dx ds.

Recall that η ∈ C∞
0 (ω) satisfying η = 1 in ω0. By (3.11) and (3.12), we have

θ2η12|ẑ|2

= θ2η12ẑ(q̂s + �q̂) – θ2η12ẑϕsq

= –θ2η12q̂(ẑs – �ẑ) +
(
θ2η12ẑq̂

)

s –
(
θ2η12)

sẑq̂ – θ2η12ẑϕsq

+
n∑

j=1

[
θ2η12(ẑq̂xj – ẑxj q̂)

]

xj
+

n∑

j=1

(
θ2η12)

xj
(ẑxj q̂ – ẑq̂xj ). (3.14)

Integrating (3.14) on (–b, b)×Ω , noting that ẑ(–b) = ẑ(b) = 0 in Ω , q̂ = ẑ = 0 on the bound-
ary, by (3.11)–(3.12), we find that

∫ b

–b

∫

Ω

θ2η12|ẑ|2 dx ds

≤ C
[∫ b

–b

∫

Ω

θ2∣∣z0∣∣2 dx ds +
∫ b

–b

∫

ω

θ2|p̂|2 dx ds
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+
∫

(–b,–b0)∪(b0,b)

∫

Ω

θ2(|q|2 + |z|2)dx ds + λ5
∫ b

–b

∫

Ω

θ2η11|q̂|2 dx ds

+ λ2
∫ b

–b

∫

Ω

θ2η10|∇q̂|2 dx ds +
1
λ3

∫ b

–b

∫

Ω

θ2|∇ ẑ|2
]

. (3.15)

Next, taking β = 3 in Lemma 3.1, we have

∫ b

–b

∫

Ω

θ2η10|∇q̂|2 dx ds

≤ 1
λ3

∫ b

–b

∫

Ω

θ2η10|F3|2 dx ds + Cλ3
∫ b

–b

∫

Ω

θ2η8|q̂|2 dx ds. (3.16)

Combining (3.15) and (3.16) we obtain

∫ b

–b

∫

Ω

θ2η12|ẑ|2 dx ds

≤ C
[∫ b

–b

∫

Ω

θ2∣∣z0∣∣2 dx ds +
∫ b

–b

∫

ω

θ2|p̂|2 dx ds

+
∫

(–b,–b0)∪(b0,b)

∫

Ω

θ2(|q|2 + |z|2)dx ds

+ λ5
∫ b

–b

∫

Ω

θ2η8|q̂|2 dx ds +
1
λ3

∫ b

–b

∫

Ω

θ2(|∇ ẑ|2 + λ2|ẑ|2)dx ds
]

. (3.17)

Step 3. Let us estimate
∫ b

–b
∫

Ω
θ2η8|q̂|2 dx ds.

Multiplying the second equation of (3.11) by θ2η8q̂, we get

c(x)θ2η8|q̂|2

= θ2η8q̂(ŵs – �ŵ) – θ2η8q̂
(
idp̂s + ϕsw – idϕsp + ϕw0)

= –θ2η8ŵ(q̂s + �q̂) +
(
θ2η8q̂ŵ

)

s –
(
θ2η8)

sq̂ŵ – θ2η8q̂
(
idϕps + ϕsw + ϕw0)

–
n∑

j=1

[
θ2η8(q̂ŵxj – q̂xj ŵ)

]

xj
–

n∑

j=1

(
θ2η8)

xj
(q̂xj ŵ – q̂ŵxj ). (3.18)

Now, integrating (3.18) on (–b, b) × Ω , recalling (2.1) for c0, we find that

c0

∫ b

–b

∫

Ω

θ2η8|q̂|2 dx ds

≤ C
[∫ b

–b

∫

Ω

θ2∣∣w0∣∣2 dx ds +
∫ b

–b

∫

ω

θ2|ps|2 dx ds

+
∫

(–b,–b0)∪(b0,b)

∫

Ω

θ2(|w|2 + |q|2)dx ds

+ λ10
∫ b

–b

∫

Ω

θ2η7|ŵ|2 dx ds + λ2
∫ b

–b

∫

Ω

θ2η6|∇ŵ|2 dx ds

+
1
λ8

∫ b

–b

∫

Ω

θ2(|∇q̂|2 + λ2|ẑ|2)
]

. (3.19)
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By Lemma 3.1 and taking β = 8, we have

∫ b

–b

∫

Ω

θ2η6|∇ŵ|2 dx ds

≤ 1
λ8

∫ b

–b

∫

Ω

θ2η6|F2|2 dx ds + Cλ8
∫ b

–b

∫

Ω

θ2η4|ŵ|2 dx ds. (3.20)

Substituting (3.20) into (3.19), it is easy to show

∫ b

–b

∫

Ω

θ2η8|q̂|2 dx ds

≤ C
[∫ b

–b

∫

Ω

θ2∣∣w0∣∣2 dx ds +
∫ b

–b

∫

ω

θ2|ps|2 dx ds

+
∫

(–b,–b0)∪(b0,b)

∫

Ω

θ2(|w|2 + |q|2)dx ds

+ λ10
∫ b

–b

∫

Ω

θ2η4|ŵ|2 dx ds +
1
λ8

∫ b

–b

∫

Ω

θ2(|∇q̂|2 + λ2|ẑ|2 + λ2|q̂|2)
]

. (3.21)

Step 4. Let us estimate
∫ b

–b
∫

Ω
θ2η4|ŵ|2 dx ds.

Similar to (3.14), we have

θ2η4|ŵ|2

= θ2η4ŵ(p̂s + �p̂) – θ2η4ŵϕsp

= –θ2η4p̂(ŵs – �ŵ) +
(
θ2η4ŵp̂

)

s –
(
θ2η4)

sŵp̂ – θ2η4ŵϕsp

+
n∑

j=1

[
θ2η4(ŵp̂xj – ŵxj p̂)

]

xj
+

n∑

j=1

(
θ2η4)

xj
(ŵxj p̂ – ŵp̂xj ). (3.22)

Integrating (3.22) on (–b, b) × Ω , we find that

∫ b

–b

∫

Ω

θ2η4|ŵ|2 dx ds

≤ C
[

λ20
∫ b

–b

∫

ω

θ2|p|2 dx ds +
∫ b

–b

∫

ω

θ2|ps|2 dx ds

+
∫

(–b,–b0)∪(b0,b)

∫

Ω

θ2|w|2 dx ds

+
∫ b

–b

∫

Ω

θ2∣∣w0∣∣2 dx ds + λ2
∫ b

–b

∫

Ω

θ2η2|∇p̂|2 dx ds

+
1

λ18

∫ b

–b

∫

Ω

θ2(|∇ŵ|2 + λ2|q̂|2)
]

. (3.23)

Applying Lemma 3.1 again, we deduce

∫ b

–b

∫

Ω

θ2η2|∇p̂|2 dx ds ≤ 1
λ18

∫ b

–b

∫

Ω

θ2|ŵ|2 dx ds + Cλ18
∫ b

–b

∫

ω

θ2|p|2 dx ds. (3.24)
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By (3.23)–(3.24) we get

∫ b

–b

∫

Ω

θ2η4|ŵ|2 dx ds

≤ C
[

λ20
∫ b

–b

∫

ω

θ2|p|2 dx ds +
∫ b

–b

∫

ω

θ2|ps|2 dx ds

+
∫

(–b,–b0)∪(b0,b)

∫

Ω

θ2|w|2 dx ds +
∫ b

–b

∫

Ω

θ2∣∣w0∣∣2 dx ds

+
1

λ18

∫ b

–b

∫

Ω

θ2(|∇ŵ|2 + λ2|q̂|2 + λ2|ŵ|2)
]

. (3.25)

Step 5. Combining (3.13), (3.17), (3.21) and (3.25), by (3.10), we have

λμ2
∫ 1

–1

∫

Ω

θ2φ
(|∇p|2 + |∇w|2 + |∇q|2 + |∇z|2

+ λ2μ2φ2(|p|2 + |w|2 + |q|2 + |z|2))dx ds

≤ CeCλ

[∫ b

–b

∫

Ω

(∣
∣z0∣∣2 +

∣
∣w0∣∣2 + |dps|2

)
dx ds +

∫ b

–b

∫

ω

|p|2 dx ds
]

+ Cλ18
∫

(–b,–b0)∪(b0,b)

∫

Ω

θ2(|p|2 + |w|2 + |q|2 + |z|2)dx ds. (3.26)

Recalling (3.4) and (3.9) for the definitions of φ, b and b0, it is easy to see that

⎧
⎨

⎩

φ(s, ·) ≥ 2 + eμ, for |s| ≤ 1,

φ(s, ·) ≤ 1 + eμ, for b0 ≤ |s| ≤ b.
(3.27)

Fixing the parameter μ in (3.9), and using (3.27), one finds that

λe2λ(2+eμ)
∫ 1

–1

∫

Ω

(|∇p|2 + |∇w|2 + |∇q|2 + |∇z|2 + |p|2 + |w|2 + |q|2 + |z|2)dx ds

≤ CeCλ

[∫ 2

–2

∫

Ω

(∣
∣z0∣∣2 +

∣
∣w0∣∣2 + |dps|2

)
dx ds +

∫ 2

–2

∫

ω

|p|2 dx ds
]

+ Cλ18e2λ(1+eμ)
∫ 2

–2

∫

Ω

(|p|2 + |w|2 + |q|2 + |z|2)dx ds, (3.28)

which implies

∫ 1

–1

∫

Ω

(|p|2 + |w|2 + |q| + |z|2)dx ds

≤ CeCλ

[∫ 2

–2

∫

Ω

(∣
∣z0∣∣2 +

∣
∣w0∣∣2 + |dps|2

)
dx ds +

∫ 2

–2

∫

ω

|p|2 dx ds
]

+ Ce–λ

∫ 2

–2

∫

Ω

(|p|2 + |w|2 + |q|2 + |z|2)dx ds. (3.29)

For every ε > 0, by taking λ in (3.29) large enough, it follows that (3.2) holds. Thus we
complete the proof of Theorem 3.1.
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4 Proof of the main result
In this section, we shall give the proof of the logarithmic decay result. To this end, we only
need to prove Theorem 2.2.

Proof of Theorem 2.2 We divide the proof into two steps.
Step 1. Fix F = (f 0, f 1, g0, g1) ∈H and U0 = (y0, y1, z0, z1) ∈ D(A). Then

(iβ – A)U0 = F (4.1)

is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

iβy0 – y1 = f 0 in Ω ,

�2y0 – β2y0 + iβ dy0 + c(x)z0 = f 1 + (iβ + d)f 0 in Ω ,

iβz0 – z1 = g0 in Ω ,

�2z0 – β2z0 + c(x)y0 = g1 + iβg0 in Ω ,

y0 = �y0 = z0 = �z0 = 0 on Γ .

(4.2)

Put

p = eβsy0, q = eβsz0, s ∈R. (4.3)

Then (p, q) solves the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

�2p – pss + idps + c(x)q = [f 1 + (iβ + d)f 0]eβs in R× Ω ,

�2q – qss + c(x)p = (g1 + iβg0)eβs in R× Ω ,

p = �p = q = �q = 0 on R× Γ .

(4.4)

Set w = ps + �p and z = qs + �q. Clearly, (p, w, q, z) solves the following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�p + ps = w in R× Ω ,

�w – ws + idps + c(x)q = [f 1 + (iβ + d)f 0]eβs in R× Ω ,

�q + qs = z in R× Ω ,

�z – zs + c(x)p = (g1 + iβg0)eβs in R× Ω ,

p = w = q = z = 0 on R× Γ .

(4.5)

Step 2. By (4.3), we have the following estimate:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖y0‖H2(Ω)∩H1
0 (Ω) + ‖z0‖H2(Ω)∩H1

0 (Ω)

≤ CeC|β|(‖p‖L2(X) + ‖w‖L2(X) + ‖q‖L2(X) + ‖z‖L2(X)),

‖p‖L2(Q) + ‖w‖L2(Q) + ‖q‖L2(Q) + ‖z‖L2(Q)

≤ CeC|β|(‖y0‖H2(Ω)∩H1
0 (Ω) + ‖z0‖H2(Ω)∩H1

0 (Ω)),

‖p‖L2(X̃) ≤ CeC|β|‖y0‖L2(ω).

(4.6)
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Applying Theorem 3.1 to Eq. (4.5), and by (4.6), we get

∥
∥y0∥∥

H2(Ω)∩H1
0 (Ω) +

∥
∥z0∥∥

H2(Ω)∩H1
0 (Ω)

≤ CeC|β|(∥∥f 0∥∥
L2(Ω) +

∥
∥f 1∥∥

L2(Ω) +
∥
∥g0∥∥

L2(Ω) +
∥
∥g1∥∥

L2(Ω) +
∥
∥dy0∥∥

L2(Ω)

)
. (4.7)

Multiplying the second equation of (4.2) by y0 and integrating it on Ω , we have

∫

Ω

(∣
∣�y0∣∣2 – β2∣∣y0∣∣2 + iβ d

∣
∣y0∣∣2 + cz0y0

)
dx =

∫

Ω

[
f 1 + (iβ + d)f 0]y0 dx. (4.8)

Multiplying the fourth equation of (4.2) by z0 and integrating it on Ω , we find that

∫

Ω

(∣
∣�z0∣∣2 – β2∣∣z0∣∣2 + cy0z0

)
dx =

∫

Ω

(
g1 + iβg0)z0 dx. (4.9)

Taking the imaginary part in both sides of (4.8) and (4.9), we have

|β|
∫

Ω

d
∣
∣y0∣∣2 dx

≤ C
(
1 + |β|)(∥∥f 0∥∥

L2(Ω) +
∥
∥f 1∥∥

L2(Ω) +
∥
∥g0∥∥

L2(Ω) +
∥
∥g1∥∥

L2(Ω)

)

× (∥
∥y0∥∥

L2(Ω) +
∥
∥z0∥∥

L2(Ω)

)
. (4.10)

As 0 ∈ ρ(A) (see the proof of Proposition 2.1), one can find a positive number δ > 0 such
that (–δ, δ) ⊂ ρ(A). For |β| < δ, Theorem 2.2 holds trivially. For |β| ≥ δ, combining (4.7)
and (4.10), we derive that

∥
∥y0∥∥

H2(Ω)∩H1
0 (Ω) +

∥
∥z0∥∥

H2(Ω)∩H1
0 (Ω)

≤ CeC|β|(∥∥f 0∥∥
L2(Ω) +

∥
∥f 1∥∥

L2(Ω) +
∥
∥g0∥∥

L2(Ω) +
∥
∥g1∥∥

L2(Ω)

)
. (4.11)

Recalling that y1 = iβy0 – f 0, z1 = iβz0 – g0, it follows

∥
∥y1∥∥

L2(Ω) +
∥
∥z1∥∥

L2(Ω)

≤ ∥
∥f 0∥∥

L2(Ω) + |β|∥∥y0∥∥
L2(Ω) +

∥
∥g0∥∥

L2(Ω) + |β|∥∥z0∥∥
L2(Ω)

≤ CeC|β|(∥∥f 0∥∥
L2(Ω) +

∥
∥f 1∥∥

L2(Ω) +
∥
∥g0∥∥

L2(Ω) +
∥
∥g1∥∥

L2(Ω)

)
. (4.12)

By (4.11)–(4.12), we know that there exists C > 0 such that

‖U0‖H ≤ CeC|β|∥∥(iβ – A)U0
∥
∥
H. (4.13)

Since A has compact resolvents, iβ ∈ ρ(A) as long as iβ – A is injective (see [20, Theo-
rem 6.29]). Therefore, by (4.13) we have iR ⊂ ρ(A) and

∥
∥(iβ – A)–1∥∥

L(H) ≤ CeC|β|.

This completes the proof of Theorem 2.2. �
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