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Abstract
We study the existence of nonoscillatory solutions tending to zero of a class of
third-order nonlinear neutral dynamic equations on time scales by employing
Krasnoselskii’s fixed point theorem. Two examples are given to illustrate the
significance of the conclusions.

MSC: 34K11; 34N05; 39A10; 39A13

Keywords: Nonoscillatory solution; Neutral dynamic equation; Third-order; Time
scale

1 Introduction
In this paper, we consider the existence of nonoscillatory solutions tending to zero of a
class of third-order nonlinear neutral dynamic equations

(
r1(t)

(
r2(t)

(
x(t) + p(t)x

(
g(t)

))�)�)� + f
(
t, x

(
h(t)

))
= 0 (1.1)

on a time scale T satisfying supT = ∞, where t ∈ [t0,∞)T = [t0,∞) ∩ T with t0 ∈ T. The
following conditions are assumed to hold throughout this paper:

(C1) r1, r2 ∈ Crd([t0,∞)T, (0,∞));
(C2) p ∈ Crd([t0,∞)T,R) and limt→∞ p(t) = p0, where |p0| < 1;
(C3) g, h ∈ Crd([t0,∞)T,T), g(t) ≤ t, and limt→∞ g(t) = limt→∞ h(t) = ∞; if p0 ∈ (–1, 0],

then there exists a sequence {ck}k≥0 such that limk→∞ ck = ∞ and g(ck+1) = ck ;
(C4) f ∈ C([t0,∞)T ×R,R), f (t, x) is nondecreasing in x, and xf (t, x) > 0 for x �= 0.
The details of the theory of time scales can be found in [1–4, 8, 9] and hence they are

omitted here. In recent years, the existence of nonoscillatory solutions of neutral dynamic
equations on time scales has been studied successively in [6, 7, 11, 13–17]. Zhu and Wang
[17] were concerned with a first-order neutral dynamic equation

[
x(t) + p(t)x

(
g(t)

)]� + f
(
t, x

(
h(t)

))
= 0.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02678-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02678-x&domain=pdf
mailto:litongx2007@163.com


Qiu et al. Advances in Difference Equations        (2020) 2020:231 Page 2 of 9

Afterward, Deng and Wang [6] and Gao and Wang [7] investigated a second-order neutral
dynamic equation

[
r(t)
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))�]� + f
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= 0

under the different assumptions
∫ ∞

t0
1/r(t)�t = ∞ and

∫ ∞
t0

1/r(t)�t < ∞, respectively. Fur-
thermore, Qiu [11] studied (1.1) with

∫ ∞
t0

1/r1(t)�t =
∫ ∞

t0
1/r2(t)�t = ∞, whereas other

cases of the convergence and divergence of
∫ ∞

t0
1/r1(t)�t and

∫ ∞
t0

1/r2(t)�t were consid-
ered in [14–16]. Similar sufficient conditions for the existence of nonoscillatory solutions
tending to zero of neutral dynamic equations have been presented. However, it is not easy
to find a necessary condition for equations to have a nonoscillatory solution tending to
zero asymptotically.

Mojsej and Tartal’ová [10] studied the asymptotic behavior of nonoscillatory solutions
to a third-order differential equation

(
1

p(t)

(
1

r(t)
x′(t)

)′)′
+ q(t)f

(
x(t)

)
= 0.

They stated some necessary and sufficient conditions ensuring the existence of nonoscil-
latory solutions tending to zero. Motivated by [10], Qiu [12] studied the existence of
nonoscillatory solutions tending to zero of (1.1) under the conditions 0 ≤ p0 < 1 and
g(t) ≥ t. The conclusions extend and improve the results reported in the papers [11, 14–
16].

The purpose of this paper is to further discuss the same problem of (1.1) with |p0| < 1 and
g(t) ≤ t. The existence of nonoscillatory solutions tending to zero of (1.1) is established
by employing Krasnoselskii’s fixed point theorem. Finally, two examples are presented to
show the versatility of the conclusions.

2 Auxiliary results
Let BC[T0,∞)T denote the Banach space of all bounded continuous functions mapping
[T0,∞)T into R with the norm ‖x‖ = supt∈[T0,∞)T |x(t)|. For the sake of convenience, we
define

z(t) = x(t) + p(t)x
(
g(t)

)
, (2.1)

and state the following lemmas which will be used in the sequel.

Lemma 2.1 (see [5, Krasnoselskii’s fixed point theorem]) Let X be a Banach space and Ω

be a bounded, convex, and closed subset of X. If there exist two operators U , V : Ω → X such
that Ux + Vy ∈ Ω for all x, y ∈ Ω , where U is a contraction mapping and V is completely
continuous, then U + V has a fixed point in Ω .

Lemma 2.2 Suppose that x is an eventually positive solution of (1.1) and there exists a
constant a ≥ 0 such that limt→∞ z(t) = a. Then

lim
t→∞ x(t) =

a
1 + p0

.
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The proof is similar to those of [6, Lemma 2.3], [7, Theorem 1], and [17, Theorem 7],
and thus is omitted.

3 Main results
In this section, our existence criteria for eventually positive solutions tending to zero as
t → ∞ of (1.1) are established by employing Krasnoselskii’s fixed point theorem.

Theorem 3.1 Assume that

H1(t0) < ∞ and
∫ ∞

t0

∫ s

t0

f (u, 2H1(h(u)))
r1(s)

�u�s < ∞, (3.1)

where

H1(t) =
∫ ∞

t

�v
r2(v)

,

which satisfies limt→∞ H1(g(t))/H1(t) = 1. Then (1.1) has an eventually positive solution x
with limt→∞ x(t) = 0, where r2z� and r1(r2z�)� are both eventually negative.

Proof Suppose that (3.1) holds. There will be two cases to be considered.
Case (i). 0 ≤ p0 < 1. Take p1 such that p0 < p1 < (1 + 4p0)/5 < 1. When p0 > 0, choose a

sufficiently large T0 ∈ [t0,∞)T such that

p(t) > 0,
5p1 – 1

4
≤ p(t) ≤ p1 < 1, p(t)

H1(g(t))
H1(t)

≥ 5p1 – 1
4

, t ∈ [T0,∞)T,
∫ ∞

T0

∫ s

T0

f (u, 2H1(h(u)))
r1(s)

�u�s ≤ 1 – p1

4
. (3.2)

When p0 = 0, choose p1 such that |p(t)| ≤ p1 ≤ 1/13 for t ∈ [T0,∞)T. In view of (C3), there
exists a T1 ∈ (T0,∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1,∞)T.

Define

Ω1 =
{

x ∈ BC[T0,∞)T : H1(t) ≤ x(t) ≤ 2H1(t)
}

.

It is easy to prove that Ω1 is a bounded, convex, and closed subset of BC[T0,∞)T. Define
U1 and V1: Ω1 → BC[T0,∞)T as follows:

(U1x)(t) =

⎧
⎨

⎩
(U1x)(T1), t ∈ [T0, T1)T,

3p1H1(t)/2 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V1x)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(V1x)(T1), t ∈ [T0, T1)T,

3H1(t)/2

+
∫ ∞

t
∫ v

T1

∫ s
T1

f (u, x(h(u)))/(r1(s)r2(v))�u�s�v, t ∈ [T1,∞)T.

(3.3)

We can prove that U1 and V1 satisfy all conditions in Lemma 2.1. The proof is expatia-
tory but similar to those of [6, Theorem 2.5], [7, Theorem 2], [12, Theorem 3.1], and [17,
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Theorem 8]; so we omit it here. By virtue of Lemma 2.1, there exists an x ∈ Ω1 such that
(U1 + V1)x = x. Hence, for t ∈ [T1,∞)T, we have

x(t) =
3(1 + p1)

2
H1(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ v

T1

∫ s

T1

f (u, x(h(u)))
r1(s)r2(v)

�u�s�v.

Since
∫ ∞

t

∫ v

T1

∫ s

T1

f (u, x(h(u)))
r1(s)r2(v)

�u�s�v ≤ H1(t)
∫ ∞

T1

∫ s

T1

f (u, 2H1(h(u)))
r1(s)

�u�s

and

lim
t→∞ H1(t)

∫ ∞

T1

∫ s

T1

f (u, 2H1(h(u)))
r1(s)

�u�s = 0,

we arrive at limt→∞ z(t) = 0, which implies that limt→∞ x(t) = 0 with the help of Lemma 2.2.
For t ∈ [T1,∞)T, we obtain

r2(t)z�(t) = –
3(1 + p1)

2
–

∫ t

T1

∫ s

T1

f (u, x(h(u)))
r1(s)

�u�s < 0

and

r1(t)
(
r2(t)z�(t)

)� = –
∫ t

T1

f
(
u, x

(
h(u)

))
�u < 0.

Case (ii). –1 < p0 < 0. Take p1 satisfying –p0 < p1 < (1 – 4p0)/5 < 1. Choose a sufficiently
large T0 ∈ [t0,∞)T such that (3.2) holds and

p(t) < 0,
5p1 – 1

4
≤ –p(t) ≤ p1 < 1, –p(t)

H1(g(t))
H1(t)

≥ 5p1 – 1
4

, t ∈ [T0,∞)T.

Proceeding as in the proof of Case (i), define V1 as in (3.3) and U ′
1 on Ω1 as follows:

(
U ′

1x
)
(t) =

⎧
⎨

⎩
(U ′

1x)(T1), t ∈ [T0, T1)T,

–3p1H1(t)/2 – p(t)x(g(t)), t ∈ [T1,∞)T.

Similarly, there exists an x ∈ Ω1 such that (U ′
1 + V1)x = x. For t ∈ [T1,∞)T, we have

x(t) =
3(1 – p1)

2
H1(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ v

T1

∫ s

T1

f (u, x(h(u)))
r1(s)r2(v)

�u�s�v

and we arrive at the same conclusions as in Case (i). This completes the proof. �

Theorem 3.2 Assume that

H1(t0) = ∞ or
∫ ∞

t0

∫ v

t0

1
r1(s)r2(v)

�s�v = ∞.

Then (1.1) has no eventually positive solutions x satisfying that r2z� and r1(r2z�)� are both
eventually negative.
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Proof Suppose that x is an eventually positive solution of (1.1), and there exists a T0 ∈
[t0,∞)T such that

r2(t)z�(t) < 0, r1(t)
(
r2(t)z�(t)

)� < 0, t ∈ [T0,∞)T.

From (C3), there exists a T1 ∈ (T0,∞)T such that h(t) ≥ T0 for t ∈ [T1,∞)T. Integrating
(1.1) from T1 to s, s ∈ [σ (T1),∞)T, by (C4) we obtain

r1(s)
(
r2(s)z�(s)

)� – r1(T1)
(
r2(T1)z�(T1)

)� = –
∫ s

T1

f
(
u, x

(
h(u)

))
�u < 0,

which yields

(
r2(s)z�(s)

)� <
r1(T1)(r2(T1)z�(T1))�

r1(s)
. (3.4)

Integrating (3.4) from T1 to v, v ∈ [σ (T1),∞)T, we get

r2(v)z�(v) – r2(T1)z�(T1) < r1(T1)
(
r2(T1)z�(T1)

)�
∫ v

T1

1
r1(s)

�s

or

z�(v) <
r2(T1)z�(T1)

r2(v)
+

r1(T1)(r2(T1)z�(T1))�

r2(v)

∫ v

T1

1
r1(s)

�s. (3.5)

Integrating (3.5) from T1 to t, t ∈ [σ (T1),∞)T, we obtain

z(t) < z(T1) + r2(T1)z�(T1)
∫ t

T1

1
r2(v)

�v

+ r1(T1)
(
r2(T1)z�(T1)

)�

∫ t

T1

∫ v

T1

1
r1(s)r2(v)

�s�v.

Letting t → ∞, we have z(t) → –∞. From (2.1), it follows that p0 ∈ (–1, 0], and then there
exist a T2 ∈ [T1,∞)T and a p1 with –p0 < p1 < 1 such that z(t) < 0 or

x(t) < –p(t)x
(
g(t)

) ≤ p1x
(
g(t)

)
, t ∈ [T2,∞)T.

By (C3), choose some positive integer k0 such that ck ∈ [T2,∞)T for all k ≥ k0. Then, for
any k ≥ k0 + 1, we have

x(ck) < p1x(ck–1) < p2
1x(ck–2) < · · · < pk–k0

1 x(ck0 ).

This inequality implies that limk→∞ x(ck) = 0. It follows from (2.1) that limk→∞ z(ck) = 0
which contradicts z(t) → –∞ as t → ∞. The proof is complete. �

Theorem 3.3 Assume that

H2(t0) < ∞ and
∫ ∞

t0

f
(
t, 2H2

(
h(t)

))
�t < ∞, (3.6)
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where

H2(t) =
∫ ∞

t

∫ ∞

v

1
r1(s)r2(v)

�s�v,

which satisfies limt→∞ H2(g(t))/H2(t) = 1. Then (1.1) has an eventually positive solution x
with limt→∞ x(t) = 0, where r2z� is eventually negative and r1(r2z�)� is eventually positive.

Proof Suppose that (3.6) holds. There are two cases to be considered.
Case (i). 0 ≤ p0 < 1. Take p1 as in Case (i) of Theorem 3.1. When p0 > 0, choose a suffi-

ciently large T0 ∈ [t0,∞)T such that

p(t) > 0,
5p1 – 1

4
≤ p(t) ≤ p1 < 1, p(t)

H2(g(t))
H2(t)

≥ 5p1 – 1
4

, t ∈ [T0,∞)T,
∫ ∞

T0

f
(
t, 2H2

(
h(t)

))
�t ≤ 1 – p1

4
.

When p0 = 0, choose p1 such that |p(t)| ≤ p1 ≤ 1/13 for t ∈ [T0,∞)T. By virtue of (C3),
there exists a T1 ∈ (T0,∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1,∞)T.

Define

Ω2 =
{

x ∈ BC[T0,∞)T : H2(t) ≤ x(t) ≤ 2H2(t)
}

(3.7)

and U2, V2: Ω2 → BC[T0,∞)T as follows:

(U2x)(t) =

⎧
⎨

⎩
(U2x)(T1), t ∈ [T0, T1)T,

3p1H2(t)/2 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V2x)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(V2x)(T1), t ∈ [T0, T1)T,

3H2(t)/2

+
∫ ∞

t
∫ ∞

v
∫ ∞

s f (u, x(h(u)))/(r1(s)r2(v))�u�s�v, t ∈ [T1,∞)T.

(3.8)

The remainder of the proof is similar to that of Theorem 3.1 and so is omitted. By
Lemma 2.1, there exists an x ∈ Ω2 such that (U2 + V2)x = x. For t ∈ [T1,∞)T, we have

x(t) =
3(1 + p1)

2
H2(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, x(h(u)))
r1(s)r2(v)

�u�s�v.

Since

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, x(h(u)))
r1(s)r2(v)

�u�s�v ≤ H2(t)
∫ ∞

T1

f
(
u, 2H2

(
h(u)

))
�u

and

lim
t→∞ H2(t)

∫ ∞

T1

f
(
u, 2H2

(
h(u)

))
�u = 0,
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we get limt→∞ z(t) = 0, which implies that limt→∞ x(t) = 0 due to Lemma 2.2. For t ∈
[T1,∞)T, we obtain

r2(t)z�(t) = –
3(1 + p1)

2

∫ ∞

t

1
r1(s)

�s –
∫ ∞

t

∫ ∞

s

f (u, x(h(u)))
r1(s)

�u�s < 0

and

r1(t)
(
r2(t)z�(t)

)� =
3(1 + p1)

2
+

∫ ∞

t
f
(
u, x

(
h(u)

))
�u > 0.

Case (ii). –1 < p0 < 0. Introduce BC[T0,∞)T and its subset Ω2 as in (3.7). Define V2 as
in (3.8) and U ′

2 on Ω2 as follows:

(
U ′

2x
)
(t) =

⎧
⎨

⎩
(U ′

2x)(T1), t ∈ [T0, T1)T,

–3p1H2(t)/2 – p(t)x(g(t)), t ∈ [T1,∞)T.

The following proof is similar to Case (i) and we omit it here. There exists an x ∈ Ω2 such
that (U ′

2 + V2)x = x. For t ∈ [T1,∞)T, we have

x(t) =
3(1 – p1)

2
H2(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, x(h(u)))
r1(s)r2(v)

�u�s�v

and obtain the similar results as in Case (i). This completes the proof. �

4 Examples
In this section, two examples are presented to show the applications of our results. The
first example is given to illustrate Theorem 3.1.

Example 4.1 Let T =
⋃∞

n=1[3n – 2, 3n]. For t ∈ [4,∞)T, consider

(
t4

(
t2

(
x(t) –

t – 1
2t

x(t – 3)
)�)�)�

+ tx3(t) +
x(t)
t2 = 0. (4.1)

Here, r1(t) = t4, r2(t) = t2, p(t) = –(t – 1)/(2t), g(t) = t – 3, h(t) = t, and f (t, x) = tx3 + x/t2. It
is obvious that the coefficients of (4.1) satisfy (C1)–(C4). Since

∫ ∞

t0

�t
r2(t)

=
∫ ∞

4

�t
t2 < 1

and

H1(t) =
∫ ∞

t

�v
v2 < 1,

we obtain

f
(
u, 2H1

(
h(u)

))
= u · (2H1(u)

)3 +
2H1(u)

u2 < 8u +
2
u2 < 9u
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and
∫ ∞

t0

∫ s

t0

f (u, 2H1(h(u)))
r1(s)

�u�s < 9
∫ ∞

4

∫ s

4

u
s4 �u�s

< 9
∫ ∞

4

∫ s

4

1
s3 �u�s < 9

∫ ∞

4

1
s2 �s < ∞.

By Theorem 3.1, we see that (4.1) has an eventually positive solution x satisfying
limt→∞ x(t) = 0, where r2z� and r1(r2z�)� are both eventually negative.

Now, we give the second example to demonstrate Theorems 3.2 and 3.3.

Example 4.2 Let T =
⋃∞

n=1[2n – 1, 2n]. For t ∈ [3,∞)T, consider

(
t3

(
t
((

3
2

+
1
t

)
x(t)

)�)�)�

+
1
t2 x

(
t
2

)
= 0. (4.2)

Here, r1(t) = t3, r2(t) = t, p(t) = 1/2 + 1/t, g(t) = t, h(t) = t/2, and f (t, x) = x/t2. It is obvious
that the coefficients of (4.2) satisfy (C1)–(C4). Since

∫ ∞

t0

�t
r2(t)

=
∫ ∞

3

�t
t

= ∞,

in terms of Theorem 3.2, we deduce that (4.2) has no eventually positive solutions x sat-
isfying limt→∞ x(t) = 0, where r2z� and r1(r2z�)� are both eventually negative. However,
we have

∫ ∞

t0

∫ ∞

v

1
r1(s)r2(v)

�s�v =
∫ ∞

3

∫ ∞

v

1
s3v

�s�v < ∞

and

H2(t) =
∫ ∞

t

∫ ∞

v

1
s3v

�s�v.

Furthermore, there exists a constant M > 0 such that

f
(
t, 2H2

(
h(t)

))
=

2
t2 H2

(
t
2

)
≤ 2M

t2

and
∫ ∞

t0

f
(
t, 2H2

(
h(t)

))
�t ≤ 2M

∫ ∞

3

�t
t2 < ∞.

By virtue of Theorem 3.3, we conclude that (4.2) has an eventually positive solution x
satisfying limt→∞ x(t) = 0, where r2z� is eventually negative and r1(r2z�)� is eventually
positive.
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