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Abstract
In a recent paper (Filomat 32:4577–4586, 2018) the authors have investigated the
existence and uniqueness of a solution for a nonlinear sequential fractional
differential equation. To present an analytical improvement for Fazli–Nieto’s results
with some conditions removed based on a new technique is the main objective of
this paper. In addition, we introduce an infinite system of nonlinear sequential
fractional differential equations and discuss the existence of a solution for them in the
classical Banach sequence spaces c0 and �p by applying the Darbo fixed point
theorem. Moreover, the proposed method is applied to several examples to show the
clarity and effectiveness.
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1 Introduction and preliminaries
As is well known, the fractional differential equations (FDEs) is a fundamental topic that
considered as a powerful tool in many fields, for example, dynamic systems, rheology,
blood flow phenomena, biophysics, electrical networks, modeled by different fractional
order derivatives equations; see for details [2–5] and the references therein. Also, in the
last two decades, FDEs have been used to model various stable physical phenomena [6–
8]. For example, when the random oscillation force is assumed to be white noise, Brown’s
motion is well described by some fractional differential equations. On the other hand,
during the last years, many studies have been done on the existence and uniqueness of
solution of nonlinear initial fractional differential equations by the use of some fixed point
theorems; see [9–20].

Recently, Fazli and Nieto [1] investigated the existence and uniqueness of the following
interesting problem, which is a model of physical phenomena:

{
D2αu(x) = f (x, u(x),Dαu(x)), x ∈ (0, T],
limx→0 x1–αu(x) = u0, limx→0 x1–αDαu(x) = u1,

(1)
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where 0 < α ≤ 1, 0 < T < ∞. The term D2α is for the sequence fractional derivative pre-
sented by Miller and Ross [21],

{
Dαu = Dαu,
Dkαu = DαD(k–1)αu (k = 2, 3, . . .),

(2)

where Dα is the classical Riemann–Liouville fractional derivative of order α.
Before giving the weighted Cauchy type problem obtained in [1], let us recall some no-

tions introduced in that work. Let

C1–α[0, T] =
{

u ∈ C[0, T] : x1–αu ∈ C[0, T]
}

(3)

be the weighted spaces of continuous functions with the following norm:

‖u‖C1–α [0,T] = max
0≤x≤T

∣∣x1–αu(x)
∣∣.

We define the following spaces of functions:

Cα
1–α[0, T] =

{
u ∈ C[0, T] : x1–αu ∈ C1–α[0, T],Dαu ∈ C1–α[0, T]

}
,

with the norm

‖u‖Cα
1–α [0,T] = ‖u‖C1–α [0,T] +

∥∥Dαu
∥∥

C1–α [0,T],

which are Banach spaces.
A function u ∈ Cα

1–α[0, T] is called a lower solution of the initial value problem (1), if
D2αu(x) ≤ f (x, u(x),Dαu(x)) for every x ∈ (0, T] and

lim
x→0

x1–αu(x) ≤ u0, lim
x→0

x1–αDαu(x) ≤ u1.

Let f : [0, T] ×R
2 →R be a function satisfying the following axioms:

(H1) for every u ∈ Cα
1–α[0, T], f (x, u(x),Dαu(x)) ∈ Cγ [0, T] for some 0 ≤ γ < 1.

(H2) f is non-decreasing in all its arguments except for the first argument and

f (x, u, v) – f (x, ũ, ṽ) ≤ L1(u – ũ) + L2(v – ṽ)

for some L1, L2 > 0 whenever x ∈ (0, T] and u ≥ ũ, v ≥ ṽ.
The weighted Cauchy type problem presented in [1] is given by the following result.

Theorem 1.1 Assume that (H1)–(H2) hold. Then there exists 0 < δ ≤ T such that the exis-
tence of a lower solution for (1)–(2) in Cα

1–α[0, δ] provides the existence of a unique solution
u ∈ Cα

1–α[0, δ] for (1).

Moreover, the authors in [1] defined the generalization of (1) and obtained some results
for it as follows:{

Dnαu(x) = f (x, u(x),Dαu(x),D2αu(x), . . . ,D(n–1)αu(x)), x ∈ (0, T],
limx→0 x1–αDkαu(x) = uk (k = 0, 1, . . . , n – 1),

(4)

where 0 < α ≤ 1.
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Definition 1.1 For 0 < α ≤ 1, we define the space

Cnα
1–α[0, T] =

{
u ∈ C1–α[0, T] : Dkαu ∈ C1–α[0, T], k = 1, 2, . . . , n – 1

}
,

equipped with the norm

‖u‖Cnα[0,T]
1–α

=
n–1∑
k=0

∥∥Dkαu
∥∥

C1–α [0,T].

To prove the main results, we need the following assumptions:
(H3) f : [0, T] ×R

n →R be a function such that, for every u ∈ Cnα
1–α[0, T],

f
(·, u(·),Dαu(x),D2αu(x), . . . ,D(n–1)αu(x)

) ∈ Cγ [0, T]

for some 0 ≤ γ < 1.
(H4) f is non-decreasing in all its arguments except for the first argument and there exists

L > 0 such that

f (x, u1, . . . , un) – f (x, ũ1, . . . , ũn) ≤ L
n∑

i=1

(ui – ũi), ui ≥ ũi, i = 1, 2, . . . , n.

Theorem 1.2 Assume that (H3)–(H4) hold. Then there exists 0 < δ ≤ T such that the ex-
istence of a lower solution for (4) in Cα

1–α[0, δ] provides the existence of a unique solution
u ∈ Cα

1–α[0, δ] for (4).

In present paper, we address the following questions.
(Q1) Is it possible to remove the non-decreasing conditions of the mappings f in Theo-

rem 1.1 and Theorem 1.2?
(Q2) Is it possible to remove assumption of the existence of a lower solution of the prob-

lems (1) and (4)?
(Q3) Is it possible to define the problem (1) as an infinite system and discuss the existence

results of the solution to it in spaces c0 and �p?
In the sequel, we prove that the non-decreasing condition of function f in Theorem 1.1
and Theorem 1.2 is not necessary. Also, in Theorem 1.1 and Theorem 1.2, we need to
find a lower solution of (1) and (4), respectively, while we show that do not need to this
assumptions. In fact, by removing some of the assumptions and even with the weakening
of other conditions of the main results of [1], using the new technique, we get the same
results. Moreover, we present some remarks and examples to support the results herein
and we compare the main results of Fazli and Nieto [1] and our results. In addition, since
the theory of infinite systems of differential equations is an attractive research topic of the
theory of differential equations in Banach spaces (for details, see [22–24]), we consider the
problem (1) as an infinite system as follows:

{
D2αun(x) = fn(x, un(x),Dαun(x)), x ∈ (0, T],
limx→0 x1–αun(x) = u0

n, limx→0 x1–αDαun(x) = u1
n, n = 1, 2, . . . ,

(5)

where 0 < T < ∞, α and D2α are defined in (2), and also fn(x, u(x),Dαu(x)), i = 1, 2, . . . ,
are real valued functions. Actually, we study the existence of the solution for the infinite
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system (5) in the spaces c0 and �p, 1 ≤ p < ∞, which c0 is the space of sequences tends to
zero. For this purpose, we use the Darbo fixed point theorem. Finally, illustrative examples
are presented to evaluate the realization and effectiveness of our results.

At first, we recall some important definitions, lemmas and theorems that we use in our
proofs of the main results. For details see [25, 26].

Definition 1.2 The Riemann–Liouville fractional integral of order γ of a function u ∈
C[0, T] is defined as

Iγ u(x) =
1

Γ (γ )

∫ x

0

u(s)
(x – s)1–γ

ds, 0 ≤ x ≤ T .

Definition 1.3 The Riemann–Liouville fractional derivative Dγ of order 0 < γ ≤ 1 of a
function u : [0, T) −→R is defined by

Dγ u(x) =
1

Γ (1 – γ )
d

dx

∫ x

0
(x – s)–γ u(s) ds,

provided the right-hand side is defined for almost every x ∈ (0, T). Herein, Γ (·) represents
the classical Gamma function.

Lemma 1.3 Let α,β ≥ 0. If u ∈ L1(0, T), then IαIβu = Iα+βu almost everywhere on (0, T).

Lemma 1.4 Let α ≥ 0. If u ∈ L1(0, T), then DαIαu = u almost everywhere on (0, T).

Lemma 1.5 Assume that u ∈ C(0, T] ∩ L1(0, T) with a fractional derivative of order 0 <
α ≤ 1 that belongs to C(0, T] ∩ L1(0, T). Then

IαDαu(x) = u(x) + cxα–1

for some c ∈R.

Throughout this paper (X,‖ · ‖) indicates a Banach space, for every E ⊂ X, Ē indicates
the closure of E, and conv(E) indicates the closed convex hull of X. Also, note that MX is
the family of non-empty bounded subsets of X and NX is the family of non-empty and rel-
atively compact subsets of X. The use of the measure of noncompactness(MNC) concepts
was first proposed by Kuratowski [27]. Here, we will give a brief overview of this notion,
which is used in Sect. 3.

Definition 1.4 ([28]) A mapping μ : MX −→ R
+ is said to be a measure of the noncom-

pactness in E if it satisfies the following conditions:
(A1) The family Kerμ = {X ∈MX : μ(E) = 0} is non-empty and Kerμ ⊂NX ;
(A2) X1 ⊂ E2 ⇒ μ(E1) ≤ μ(E2);
(A3) μ(Ē) = μ(E);
(A4) μ(conv E) = μ(E);
(A5) μ(γ E1 + (1 – γ )E2) ≤ γμ(E1) + (1 – γ )μ(E2) for 0 ≤ γ ≤ 1;
(A6) if (En) is a sequence of closed sets fromME such that En+1 ⊂ En and limn→∞ μ(En) =

0, then the intersection set E∞ =
⋂∞

n=1 En is non-empty.
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In addition, the definition of the Hausdorff measure of noncompactnesss χ which can
be found in [27] is expressed as follows:

χ (s) = inf{ε > 0 : S has finite ε-net in X}.

Lemma 1.6 ([29]) Let Λ be a non-empty, closed, bounded and convex subset of a Banach
space X and let H : Λ −→ Λ be a continuous mapping such that there exists a constant
L ∈ [0, 1) with the property μ(H(Λ)) ≤ Lμ(Λ). Then H has a fixed point in Λ.

Proposition 1.7 ([30]) If W ⊂ C(I, X) for all continuous functions on I to E is bounded
and equicontinuous, then the set μ(W (x)) is continuous on I and

μ(W ) = sup
x∈I

μ
(
W (x)

)
, μ

(∫ x

0
W (η) dη

)
≤

∫ x

0
μ

(
W (η)

)
dη.

Theorem 1.8 ([30]) Let Q be a bounded subset of the Banach space X = c0. As (e(1), e(2), . . .)
is a Schauder basis for c0, the Hausdorff MNC χ for Q is given by

χc0 = lim
n→∞

{
sup
x∈Q

(
max
k≥n

|xk|
)}

.

Theorem 1.9 ([30]) Let Q be a bounded subset of the Banach space X = �p. As (e(1), e(2), . . .)
is a Schauder basis for �p, the Hausdorff MNC χ for Q is given by

χ�p = lim
n→∞

{
sup
x∈Q

(∑
k≥n

|xk|p
) 1

p
}

.

2 An improvement of the existence and uniqueness of solutions to the initial
value problem

In the following theorems, we remove some of the hypotheses of Theorems 1.1 and 1.2.
Moreover, we show that under our assumptions (1) and (4) have a unique solution. This
gives a partial answer to (Q1) and (Q2).

Theorem 2.1 Let f : [0, T] × R
2 → R be a function such that, for every u ∈ Cα

1–α[0, T],
f (x, u(x),Dαu(x)) ∈ Cγ [0, T] for some 0 ≤ γ < 1, and also

∣∣f (x, u, v) – f (x, ũ, ṽ)
∣∣ ≤ L1|u – ũ| + L2|v – ṽ|, ∀x ∈ (0, t],∀(u, v), (ũ, ṽ) ∈R

2

for some L1, L2 > 0. Then there exists 0 < δ ≤ T such that the problem (1) possesses a unique
solution in Cα

1–α[0, δ].

Proof Fix δ > 0 such that

l = max{L1, L2}
(

δ2α Γ (α)
Γ (3α)

+ δα Γ (α)
Γ (2α)

)
< 1.

Consider the operator A defined on Cα
1–α[0, δ] by

Au(x) = u0xα–1 + u1
Γ (α)
Γ (2α)

x2α–1 + I2αf
(
x, u(x),Dαu(x)

)
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for each u ∈ Cα
1–α[0, δ] and x ∈ [0, δ]. It is obvious that u is a solution of the problem (1) if

and only if u is fixed point of the operator A. By the same arguments as given in the proof
of Theorem 4.2 of [1], we draw the conclusion that the operator A is well defined. Now,
we only need to show that A is a contraction mapping. For each u, ũ ∈ Cα

1–α[0, δ], we have

∥∥Au(x) – Aũ(x)
∥∥

Cα
1–α [0,δ]

=
∥∥I2α

[
f
(
x, u(x),Dαu(x)

)
– f

(
x, ũ(x),Dαũ(x)

)]∥∥
Cα

1–α [0,δ]

≤ L1
∥∥I2α

∣∣(u(x) – ũ(x)
)∣∣∥∥

Cα
1–α [0,δ] + L2

∥∥I2α
∣∣Dα

(
u(x) – ũ(x)

)∣∣∥∥
Cα

1–α [0,δ]

= L1
∥∥I2α

∣∣(u(x) – ũ(x)
)∣∣∥∥

C1–α [0,δ] + L1
∥∥Iα

∣∣(u(x) – ũ(x)
)∣∣∥∥

C1–α [0,δ]

+ L2
∥∥I2α

∣∣Dα
(
u(x) – ũ(x)

)∣∣∥∥
C1–α [0,δ] + L2

∥∥Iα
∣∣Dα

(
u(x) – ũ(x)

)∣∣∥∥
C1–α [0,δ]

≤ max{L1, L2}
(

δ2α Γ (α)
Γ (3α)

+ δα Γ (α)
Γ (2α)

)
‖u – ũ‖Cα

1–α [0,δ]

≤ L‖u – ũ‖Cα
1–α [0,δ].

Since the space Cα
1–α[0, δ] is a complete metric space, applying the Banach contraction,

the operator A has a unique fixed point and this fixed point is the unique solution of the
problem (1). �

Theorem 2.2 Let f : [0, T] ×R
n →R be a function such that, for every u ∈ Cnα

1–α[0, T],

f
(
x, u(x),Dαu(x),D2αu(x), . . . ,D(n–1)αu(x)

) ∈ Cγ [0, T]

for some 0 ≤ γ < 1, and also

∣∣f (x, u1, . . . , un) – f (x, ũ1, . . . , ũn)
∣∣ ≤ L

n∑
i=1

|ui – ũi|ui ≥ ũi, i = 1, 2, . . . , n

for some L > 0. Then there exists 0 < δ ≤ T such that the problem (4) possesses a unique
solution in Cnα

1–α[0, δ].

Proof The proof is the same as Theorem 2.1. �

Remark 2.1 Let f : [0, T] × R
2 → R be a non-decreasing function in all its arguments

except for the first argument such that

f (x, u, v) – f (x, ũ, ṽ) ≤ L1(u – ũ) + L2(v – ṽ)

for some L1, L2 > 0 for all u ≥ ũ, v ≥ ṽ and x ∈ (0, T]. Then

∣∣f (x, u, v) – f (x, ũ, ṽ)
∣∣ ≤ L1|u – ũ| + L2|v – ṽ|

for all (u, v), (ũ, ṽ) ∈ R
2 and x ∈ (0, T].
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Remark 2.2 Let f : [0, T] × R
n → R be a non-decreasing function in all its arguments

except for the first argument such that

f (x, u1, . . . , un) – f (x, ũ1, . . . , ũn) ≤ L
n∑

i=1

(ui – ũi)ui ≥ ũi, i = 1, 2, . . . , n

for L > 0 and x ∈ (0, T]. Then

∣∣f (x, u1, . . . , un) – f (x, ũ1, . . . , ũn)
∣∣ ≤ L

n∑
i=1

|ui – ũi|

for all (u1, . . . , un), (ũ1, . . . , ũn) ∈ R
n and x ∈ (0, T].

Remark 2.3 By using Remark 2.1 and Remark 2.2, we can conclude that our theorems are
really generalizations of Theorem 1.1 and Theorem 1.2.

Remark 2.4 In Theorem 1.1 and Theorem 1.2, we need to find a lower solution of (1) and
(4), respectively, while we do not need this assumption in Theorem 2.1 and Theorem 2.2.
In general, finding a lower solution of (1) and (4) is difficult.

Remark 2.5 The mapping f in Theorem 1.1 and Theorem 1.2 is non-decreasing in all
its arguments except for the first argument, while this assumption is not required in our
theorems.

Now, with the following examples, we show that our main theorems are generalizations
of the main theorems of [1] that are Theorem1.1 and Theorem1.2.

Example 2.1 The linear initial value problem is given as follows:

{
Du(x) = x2 – ν1 sin(2k)Dαu(x)

8 – ν2 tanh(x)u(x)
4 , x ∈ (0, T],

limx→0 x 1
2 u(x) = a, limx→0 x 1

2 D 1
2 u(x) = b.

(6)

This problem is a special case of (1) with α = 1
2 , T , a, b,ν1,ν2 > 0, max{ν1,ν2} < 4

(2+
√

π ) and
f (x, u(x),Dαu(x)) = x2 – ν1 sin(2k)Dαu(x)

8 – ν2 tanh(x)u(x)
4 . It is easy to see that

∣∣f (x, u(x),Dαu(x)
)

– f
(
x, v(x),Dαv(x)

)∣∣ ≤ ν2

4
∣∣v(x) – u(x)

∣∣ +
ν1

8
∣∣Dαv(x) – Dαu(x)

∣∣.
Applying Theorem 2.1 the linear initial value problem (6) possesses a unique solution
in Cα

1–α[0,γ ]. It is simple to verify that Theorem 1.1 cannot be applied to our example.
Because f is not increasing in all its arguments except for the first argument, that is, the
condition (H2) of Theorem 1.1 is not satisfied.

Example 2.2 Let α = 2
3 , n = 4, ai ≥ 0, i = 1, 2, 3, 4 and

f
(
x, u(x),Dαu(x),D2αu(x),D3αu(x)

)
= ex –

ζ1

e(x+3α) u(x) –
ζ2

e(x+3α) D
αu(x)

+
ζ3

e(x+3α) D
2αu(x) –

ζ4

e(x+3α) D
3αu(x).



Ahmadi et al. Advances in Difference Equations        (2020) 2020:226 Page 8 of 20

If max1≤i≤4{ζi} < e4

5.86 , then, by applying Theorem (4), the problem

⎧⎪⎨
⎪⎩
D 8

3 u(x) = ex – ζ1
e(x+2) u(x) – ζ2

e(x+2) Dαu(x) + ζ3
e(x+2) D2αu(x) – ζ4

e(x+2) D3αu(x),
limx→0 x 1

3 u(x) = a1, limx→0 x 1
3 D 2

3 u(x) = a2,
limx→0 x 1

3 D 4
3 u(x) = a3, limx→0 x 1

3 D2u(x) = a4,
(7)

where x ∈ (0, T], possesses a unique solution. On the other hand, since f is not increasing,
Theorem 2.2 is not applicable here.

3 Solution of infinite system (5)
In this section, we give a partial answer to (Q3). For this purpose, firstly, we present some
weighted continuous spaces. Then we discuss the existence of solution of infinite system
(5) in the Banach space c0 and �p in Sects. 3.1 and 3.2, respectively.

Definition 3.1 Let X be a norm space and C(I, X) be the family of all continuous functions
on I to X. We define a weighted spaces of continuous functions as follows:

C1–α(I, X) =
{

u ∈ C((0, T], X) : x1–αu ∈ C(I, X)
}

,

with the norm ‖u‖C1–α (I,X) = max0≤x≤T ‖x1–αu(x)‖X .

Definition 3.2 We denote the spaces of continuous functions

Cα
1–α(I, X) =

{
u ∈ C1–α(I, X) : Dαu ∈ C1–α(I, X)

}
,

with the norm ‖u‖Cα
1–α (I,X) = ‖u‖C1–α (I,X) + ‖Dαu‖C1–α (I,X).

Throughout this section, we define I = (0, T], u0 = {u0
n}∞n=1, u1 = {u1

n}∞n=1, u(x) = {un(x)}∞n=1

and f (x, u(x),Dαu(x)) = {fn(x, u(x),Dαu(x))}∞n=1, which belongs to some Banach space
(X,‖ · ‖). Therefore, one has system (5) as follows:

{
D2αu(x) = f (x, u(x),Dαu(x)), x ∈ (0, T],
limx→0 x1–αu(x) = u0, limx→0 x1–αDαu(x) = u1, n = 1, 2, . . . ,

(8)

where un(x), n = 1, 2, 3, . . . , are continuous on I , f is defined on I × X × X −→ X and fi is a
real valued function.

3.1 Solution in space c0

In this subsection, let X = c0. We intend to show the existence of a solution of the infinite
system (5) in the Banach space c0 with the norm ‖u‖ = sup{|ui| : i = 1, 2, 3, . . .}.

Suppose that the following conditions are satisfied:
(C1) {un

0}∞n=1 and {un
1}∞n=1 belong to c0;

(C2) for any fixed u, f (x, u(x),Dαu(x)) is measurable;
(C3) for each x ∈ I , u(x) ∈ c0 and i = 1, 2, . . . , we have

∣∣fi
(
x, u(x),Dαu(x)

)∣∣ ≤ ji(x) + ki(x) sup
{|un| : n ≥ i

}
,
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where ji(x) and ki(x) are continuous real valued functions on I such that the se-
quence {ki(x)}∞i=1 is equibounded on I and the sequence (ji(x)) converges uniformly
on I to the zero function identically;

(C4) the family of {fx(u)}x∈I where fx(u) = f (x, u(x),Dαu(x)) is equicontinuous at any point
of the space c0.

Theorem 3.1 Under the conditions (C1)–(C4), with ( Tα

Γ (α+1) + T2α

Γ (2α+1) )K < 1, where
maxi supx∈I |ki(x)| ≤ K , the infinite system (5) possesses at least one solution {un(x)}∞n=1 =
u(x) ∈ c0 for any x ∈ I .

Proof Suppose that u(x) = {un(x)}∞n=1 satisfies the boundary conditions of the infinite sys-
tem (8). We define the operator A : Cα

1–α(I, c0) −→ Cα
1–α(I, c0) by

Au(x) = u0xα–1 + u1
Γ (α)
Γ (2α)

x2α–1 + I2αf
(
x, u(x),Dαu(x)

)
.

Applying (C2), A is well defined. We show that A is bounded on Cα
1–α(I, c0),

∥∥x1–αAu(x)
∥∥

c0
+

∥∥x1–αDαAu(x)
∥∥

c0

=
∥∥∥∥u0 + u1

Γ (α)
Γ (2α)

xα + x1–αI2αf
(
x, u(x),Dαu(x)

)∥∥∥∥
c0

+
∥∥u1 + x1–αIαf

(
x, u(x),Dαu(x)

)∥∥
c0

≤ sup
i≥1

∣∣∣∣ui
0 + ui

1
Γ (α)
Γ (2α)

xα + x1–αI2αfi
(
x, u(x),Dαu(x)

)∣∣∣∣
+ sup

i≥1

∣∣ui
1 + x1–αIαfi

(
x, u(x),Dαu(x)

)∣∣
≤ sup

i≥1

∣∣ui
0
∣∣ + sup

i≥1

∣∣ui
1
∣∣( Γ (α)

Γ (2α)
xα + 1

)

+
x1–α

Γ (2α)
sup
i≥1

∣∣∣∣
∫ x

0
(x – η)2α–1fi

(
η, u(η),Dαu(η)

)
dη

∣∣∣∣
+

x1–α

Γ (α)
sup
i≥1

∣∣∣∣
∫ x

0
(x – η)α–1fi

(
η, u(η),Dαu(η)

)
dη

∣∣∣∣
≤ ‖u0‖c0 + ‖u1‖c0

(
Γ (α)
Γ (2α)

Tα + 1
)

+
T1–α

Γ (2α)
sup
i≥1

∣∣∣∣
∫ x

0
(x – η)2α–1(ji(x) + ki(x) sup

{|un| : n ≥ i
})

dη

∣∣∣∣
+

T1–α

Γ (α)
sup
i≥1

∣∣∣∣
∫ x

0
(x – η)α–1(ji(x) + ki(x) sup

{|un| : n ≥ i
})

dη

∣∣∣∣.
Using (C3), there exists J = maxi supx∈I |ji(x)|, therefore

max
x∈I

∥∥x1–αAu(x)
∥∥

c0
+ max

x∈I

∥∥x1–αDαAu(x)
∥∥

c0

≤ max
x∈I

(
‖u0‖c0 + ‖u1‖c0

(
Γ (α)
Γ (2α)

xα + 1
)
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+
x1–α

Γ (2α)
sup
i≥1

∫ x

0
(x – η)2α–1(∣∣ji(x)

∣∣ +
∣∣ki(x)

∣∣ sup
{|un| : n ≥ i

})
dη

+
x1–α

Γ (α)
sup
i≥1

∫ x

0
(x – η)α–1(ji(x) + ki(x) sup

{|un| : n ≥ i
})

dη.
)

≤ ‖u0‖c0 + ‖u1‖c0

(
Γ (α)
Γ (2α)

tα + 1
)

+
1

Γ (2α)
max

x∈I
sup
i≥1

x1–α

∫ x

0
(x – η)2α–1(∣∣ji(x)

∣∣ +
∣∣ki(x)

∣∣ sup
{|un| : n ≥ i

})
dη

+
1

Γ (α)
max

x∈I
sup
i≥1

x1–α

∫ x

0
(x – η)α–1(∣∣ji(x)

∣∣ +
∣∣ki(x)

∣∣ sup
{|un| : n ≥ i

})
dη

≤ ‖u0‖c0 + ‖u1‖c0

(
Γ (α)
Γ (2α)

Tα + 1
)

+
(

Tα

Γ (α + 1)
+

T2α

Γ (α + 1)

)
J

+
(

Tα

Γ (2α + 1)
+

T2α

Γ (2α + 1)

)
K‖u‖c0 ,

and so

‖Au‖ ≤ ‖u0‖c0 + ‖u1‖c0

(
Γ (α)
Γ (2α)

Tα + 1
)

+
(

Tα

Γ (α + 1)
+

T2α

Γ (2α + 1)

)
J

+
(

Tα

Γ (α + 1)
+

T2α

Γ (2α + 1)

)
K‖u‖.

Then we conclude that

r =
‖u0‖c0 + ‖u1‖c0 ( Γ (α)

Γ (2α) Tα + 1) + ( Tα

Γ (α+1) + T2α

Γ (2α+1) )J

1 – ( Tα

Γ (α+1) + T2α

Γ (2α+1) )K

is the optimal solution of the inequality

‖u0‖c0 + ‖u1‖c0

(
Γ (α)
Γ (2α)

Tα + 1
)

+
(

Tα

Γ (α + 1)
+

T2α

Γ (α + 1)

)
J

+
(

Tα

Γ (2α + 1)
+

T2α

Γ (2α + 1)

)
Kr

′ ≤ r
′
.

Define the closed, bounded and convex set

Br =
{

u ∈ Cα
1–α(I, c0) : ‖u‖ ≤ r, lim

x→0
x1–αun(x) = un

0, lim
x→0

x1–αDαun(x) = un
1,

}
,

where n = 1, 2, . . . . Clearly, A is bounded on Br . In the following, we show that A is con-
tinuous on Br . We can write

∥∥Au(x) – Av(x)
∥∥

c0

≤ sup
i≥1

1
Γ (2α)

∫ x

0
(x – η)2α–1∣∣fi

(
η, u(η),Dαu(η)

)
– fi

(
η, v(η),Dαv(η)

)∣∣dη

≤ 1
Γ (2α)

∫ x

0
(x – η)2α–1∥∥f

(
η, u(η),Dαu(η)

)
– f

(
η, v(η),Dαv(η)

)∥∥
c0

dη.
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The family of {fx(u)}x∈I where fx(u) = f (x, u(x),Dαu(x)) is equicontinuous on c0. Bearing
(C4) in mind, we have

∀v, u ∈ Br and ∀ε > 0, ∃δ > 0: ‖u – v‖ ≤ δ �⇒ ∥∥fx(u) – fx(v)
∥∥

c0
≤ ε

z
, ∀x ∈ I,

where z = T2

Γ (2α+1) . Therefore, we conclude that

∥∥Au(x) – Av(x)
∥∥

c0
≤ 1

Γ (2α)

∫ x

0
(x – η)2α–1∥∥fη(u) – fη(v)

∥∥
c0

dη < ε,

which means that A is continuous. Without loss of generality, we can suppose x1 > x2.
There exist m1, m2 and m3 in R

+ such that

∣∣xα–1
1 – xα–1

2
∣∣ ≤ m1|x1 – x2|, for all x1 ≤ η ≤ x2,∣∣xα–1

1 – xα–1
2

∣∣ ≤ m2|x1 – x2|, for all x1 ≤ η ≤ x2, (9)∣∣(x2 – η)2α–1 – (x1 – η)2α–1∣∣ < m3|x1?x2|, for all x1 ≤ η ≤ x2.

Applying (9), for any u ∈ Br , we have

∥∥Au(x1) – Au(x2)
∥∥

c0

= sup
i≥1

∣∣∣∣ui
0
(
xα–1

1 – xα–1
2

)
+ ui

1
Γ (α)
Γ (2α)

(
x2α–1

1 – x2α–1
2

)

+
1

Γ (2α)

(∫ x1

0
(x1 – η)2α–1fi

(
η, u(η),Dαu(η)

)
dη

–
∫ x2

0
(x2 – η)2α–1fi

(
η, u(η),Dαu(η)

)
dη

)∣∣∣∣
≤ sup

i≥1

∣∣ui
0
(
xα–1

1 – xα–1
2

)∣∣ + sup
i≥1

∣∣∣∣ui
1

Γ (α)
Γ (2α)

(
x2α–1

1 – x2α–1
2

)∣∣∣∣
+

1
Γ (2α)

sup
i≥1

∣∣∣∣
∫ x1

0

(
(x2 – η)2α–1 – (x1 – η)2α–1)fi

(
η, u(η),Dαu(η)

)
dη

+
∫ x2

x1

(x2 – η)2α–1fi
(
η, u(η),Dαu(η)

)
dη

∣∣∣∣
≤ ‖u0‖|x2 – x1|m1 + ‖u1‖ Γ (α)

Γ (2α)
m2|x2 – x1|

+
1

Γ (2α)
(sup

i≥1

∫ x1

0
|x2 – x1|m3(ji(η) + ki(η) sup

{∣∣un(η)
∣∣ : n ≥ i

}
dη

+
∫ x2

x1

(x2 – η)2α–1(ji(η) + ki(η) sup
{∣∣un(η)

∣∣ : n ≥ i
}

dη
)

≤ ‖u0‖|x2 – x1|m1 + ‖u1‖ Γ (α)
Γ (2α)

m2|x2 – x1|

+
1

Γ (2α)
(
m3J + K‖u‖)|x1 – x2| +

1
Γ (2α + 1)

(
J + K‖u‖)(x1 – x2)2α ,

which tends to zero when x1 −→ x2. Thus, we deduce that A is equicontinuous on Br .
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Setting B̄ = conv(A(Br)), clearly B̄ ⊂ Br . Let Y ⊂ B̄, then A is continuous on Y and the
functions from the set of Y are equicontinuous on I . In view of the definition of the Haus-
dorff MNC χ on the space Cα

1–α(I, c0), Proposition 1.7 and Theorem 1.8, we have

χCα
1–α (I,c0)(Y ) = sup

x∈I
χc0

(
Y (x)

)
.

Recalling Theorem 1.8, for any u ∈ Y , we observe

χc0

(
Au(x)

)
= lim

i→∞

{
sup
u∈B

(
max
n≥i

Aun(x)
)}

≤ lim
i→∞

{
sup
u∈B

(
max
n≥i

∣∣∣∣un
0xα–1un

1
Γ (α)
Γ (2α)

x2α–1

+
1

Γ (2α)

∫ x

0
(x – η)2α–1fn

(
x, u(x),Dαu(x)

)
dη

∣∣∣∣
)}

≤ lim
i→∞

{
sup
u∈B

(
max
n≥i

1
Γ (2α)

∣∣∣∣
∫ x

0
(x – η)2α–1(jn(η)

+ kn(η) sup
{∣∣uk(η)

∣∣ : k ≥ n
})

dη

∣∣∣∣
)}

≤ K lim
i→∞

{
sup
u∈B

(
max
n≥i

1
Γ (2α)

∣∣∣∣
∫ x

0
(x – η)2α–1(sup

{∣∣uk(η)
∣∣ : k ≥ n

})
dη

∣∣∣∣
)}

≤ KT2α

Γ (2α + 1)
lim

i→∞

{
sup
u∈B

(
max
n≥i

∣∣un(x)
∣∣)}

.

Therefore

sup
x∈I

χc0

(
Au(x)

) ≤ KT2α

Γ (2α + 1)
sup
x∈I

lim
i→∞

{
sup
u∈B

(
max
n≥i

∣∣un(x)
∣∣)}

and

χCα
1–α (I,c0)

(
Au(x)

) ≤ KT2α

Γ (2α + 1)
χCα

1–α (I,c0)(Y ).

As KT2α

Γ (2α+1) < 1, applying Lemma 1.6, A possesses at least one fixed point in A, which is a
solution for (5) in the space Cα

1–α(I, c0). �

Now, with the following example, we clarify the main result of this subsection.

Example 3.1 The system of fractional differential equation is given as follows:

{
D2un(x) = x sin( 1

n +1)+tan(arctan(x))un(x)
n+1 , x ∈ (0, 1],

limx→0 x1–αun(x) = a
n , limx→0 x1–αDαun(x) = b

n , n = 1, 2, . . . ,
(10)

where un(x), n = 1, 2, 3, . . . are continuous on I . This system is a special case of (5) with
α = T = 1,

fn
(
x, u(x),Dαu(x)

)
=

x sin( 1
n + 1) + tan(arctan(x))un(x)

n + 1
,
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and a, b ≥ 0. Obviously, the conditions (C1) and (C2) are satisfied. Hereafter, we show that
f (x, u(x),Dαu(x)) ∈ c0. For any x ∈ (0, 1] and u ∈ c0, we conclude that

lim
n→∞ fn

(
x, u(x),Dαu(x)

)
= lim

n→∞
x sin( 1

n + 1) + tan(arctan(x))un(x)
n + 1

≤ lim
n→∞

sin( 1
n + 1) + supn≤1 |un(x)|

n + 1
= 0.

Also, clearly |fn(x, u(x),Dαu(x))| ≤ jn(x) + kn(x) sup{|uk| : k ≥ n}, where

jn(x) =
x sin( 1

n + 1)
n + 1

, kn(x) =
tan(arctan(x))

n + 1
.

Moreover, jn(x) converges uniformly to zero and kn(x) is equibounded by K = 1
2 . Now, we

are going to check the conditions (C4). For any x ∈ (0, 1] and u, v ∈ c0 with ‖u(x) – v(x)‖ < δ,
we have

∥∥fx(u) – fx(v)
∥∥

c0
=

∥∥f
(
x, u(x),Dαu(x)

)
– f

(
x, v(x),Dαv(x)

)∥∥
= sup

n≥1

∣∣fn
(
x, u(x),Dαu(x)

)
– fn

(
x, v(x),Dαv(x)

)∣∣
= sup

n≥1

∣∣∣∣x sin( 1
n + 1) + tan(arctan(x))un(x)

n + 1

–
x sin( 1

n + 1) + tan(arctan(x))vn(x)
n + 1

∣∣∣∣
≤ 1

2
sup
n≥1

∣∣un(x) – vn(x)
∣∣

≤ 1
2
∥∥u(x) – v(x)

∥∥
c0

< ε.

Applying Theorem 3.1, hence the system of fractional differential equation (5) possesses
at least one solution in Cα

1–α(I, c0).

3.2 Solution in space lp

In this subsection, let X = �p. For a real number p ≥ 1, the space denoted by �p is the
Banach sequence space, when equipped with the following norm:

‖u‖P =

( ∞∑
i=1

|ui|P
) 1

p

.

In the following, we show that the infinite system (5) has at least on solution in the space
�p, when the following conditions are satisfied:

(C′
1) u0 and u1 belong to �p;

(C′
2) f : I × �p −→ �p is continuous;

(C′
3) for each x ∈ [0, t], u(x) ∈ �p and i = 1, 2, . . . , we have

∣∣fi
(
x, u(x),Dαu(x)

)∣∣p ≤ ji(x) + ki(x)|un|p,
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where ji(x) and ki(x) are continuous nonnegative functions on I such that the se-
quence {ki(x)}∞i=1 is equibounded on I , limi−→∞ sup ki(x) is integrable over I and the
series

∑∞
i=1 ji(x) converges uniformly on I ;

(C′
4) the family of {fx(u)}x∈I , where fx(u) = f (x, u(x),Dαu(x)) is equicontinuous at any

point of the space �p.

Theorem 3.2 Under the conditions (C′
1)–(C′

4), if

(
T2α

Γ (2α)((2α – 1)p + 1)
1
p

+
Tα

Γ (α)((α – 1)p + 1)
1
p

)
K

1
p < 1,

the infinite system (5) possesses at least one solution {un(x)}∞n=1 = u(x) ∈ �P for any x ∈ I ,
where J = supx∈I |j(x)|, j(x) =

∑∞
i=1 ji(x) and ki(x) is equibounded by K .

Proof Suppose that u(x) = {un(x)}∞n=1 satisfies the boundary conditions of the infinite sys-
tem (5). We define the operator A : Cα

1–α(I,�p) −→ Cα
1–α(I,�p) by

Au(x) = u0xα–1 + u1
Γ (α)
Γ (2α)

x2α–1 + I2αf
(
x, u(x),Dαu(x)

)
.

Applying (C′
2), A is well defined. We show that A is bounded on Cα

1–α(I,�p).

∥∥x1–αAu(x)
∥∥

p =
∥∥∥∥u0 + u1

Γ (α)
Γ (2α)

xα + x1–αI2αf
(
x, u(x),Dαu(x)

)∥∥∥∥
p

≤ ‖u0‖p + ‖u1‖p

(
Γ (α)
Γ (2α)

Tα + 1
)

+
∥∥x1–αI2αf

(
x, u(x),Dαu(x)

)∥∥
p +

∥∥x1–αIαf
(
x, u(x),Dαu(x)

)∥∥
p

≤ ‖u0‖p + ‖u1‖p

(
Γ (α)
Γ (2α)

Tα

)

+ T
p–1

p
x1–α

Γ (2α)

(∑
i≥1

∫ x

0

∣∣(x – η)2α–1∣∣p∣∣fi
(
η, u(η),Dαu(η)

)∣∣P dη

) 1
p

≤ ‖u0‖p + ‖u1‖p

(
Γ (α)
Γ (2α)

Tα

)

+ T
p–1

p
x1–α

Γ (2α)

(∑
i≥1

∫ x

0

∣∣(x – η)2α–1∣∣p(ji(η) + ki(η)
∣∣ui(η)

∣∣P)
dη

) 1
p

≤ ‖u0‖p + ‖u1‖p

(
Γ (α)
Γ (2α)

Tα

)

+ T
p–1

p
x1–α

Γ (2α)

(
J

x(2α–1)p+1

(2α – 1)p + 1
+ K

∥∥u(x)
∥∥p

p
x(2α–1)p+1

(2α – 1)p + 1

) 1
p

≤ ‖u0‖p + ‖u1‖p

(
Γ (α)
Γ (2α)

Tα

)

+
T

p–1
p x1–α

Γ (2α)

(
J

1
p

x(2α–1)+ 1
p

((2α – 1)p + 1)
1
p

+ K
1
p
∥∥u(x)

∥∥
p

x(2α–1)+ 1
p

((2α – 1)p + 1)
1
p

)
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≤ ‖u0‖p + ‖u1‖p

(
Γ (α)
Γ (2α)

Tα

)

+
T (1+α)J

1
p

Γ (2α)((2α – 1)p + 1)
1
p

+
T (2α)K

1
p

Γ (2α)((2α – 1)p + 1)
1
p

∥∥x1–αu(x)
∥∥

p

and

∥∥x1–αDαAu(x)
∥∥

p

≤ ‖u1‖p +
∥∥x1–αIαf

(
x, u(x),Dαu(x)

)∥∥
p

≤ ‖u1‖p +
x1–α

Γ (α)

(∑
i≥1

∣∣∣∣
∫ x

0
(x – η)α–1fi

(
η, u(η),Dαu(η)

)
dη

∣∣∣∣
p) 1

p

≤ ‖u1‖p + T
p–1

p
x1–α

Γ (α)

(∑
i≥1

∫ x

0

∣∣(x – η)α–1∣∣P∣∣fi
(
η, u(η),Dαu(η)

)∣∣P dη

) 1
p

≤ ‖u1‖p + T
p–1

p
x1–α

Γ (α)

(∑
i≥1

∫ x

0

∣∣(x – η)α–1∣∣P(
ji(η) + ki(η)

∣∣ui(η)
∣∣P)

dη

) 1
p

≤ ‖u1‖p + T
p–1

p
x1–α

Γ (α)

(
J

x(α–1)p+1

(α – 1)p + 1
+ K

∥∥u(x)
∥∥P

p
x(α–1)p+1

(α – 1)p + 1

) 1
p

≤ ‖u1‖p + T
p–1

p
x1–α

Γ (α)

(
J

1
p

x(α–1)+ 1
p

((α – 1)p + 1)
1
p

+ K
1
p
∥∥u(x)

∥∥
p

x(α–1)+ 1
p

((α – 1)p + 1)
1
p

)

≤ ‖u1‖p +
TJ

1
p

Γ (α)((α – 1)p + 1)
1
p

+
TαK

1
p

Γ (α)((α – 1)p + 1)
1
p

∥∥x1–αu(x)
∥∥

p.

Therefore, we have

max
x∈I

∥∥x1–αAu(x)
∥∥

p + max
x∈I

∥∥x1–αDαAu(x)
∥∥

p

≤ max
x∈I

‖u0‖p + max
x∈I

‖u1‖p

(
Γ (α)
Γ (2α)

Tα + 1
)

+
T (1+α)J

1
p

Γ (2α)((2α – 1)p + 1)
1
p

+
T (2α)K

1
p

Γ (2α)((2α – 1)p + 1)
1
p

max
x∈I

∥∥x1–αu(x)
∥∥

p

+
TJ

1
p

Γ (α)((α – 1)p + 1)
1
p

+
TαK

1
p

Γ (α)((α – 1)p + 1)
1
p

max
x∈I

∥∥x1–αu(x)
∥∥

p,

and so

‖Au‖ ≤ ‖u0‖p + ‖u1‖p

(
Γ (α)
Γ (2α)

Tα + 1
)

+
(

T1+α

Γ (2α)((2α – 1)p + 1)
1
p

+
T

Γ (α)((α – 1)p + 1)
1
p

)
J

1
p

+
(

T2α

Γ (2α)((2α – 1)p + 1)
1
p

+
Tα

Γ (α)((α – 1)p + 1)
1
p

)
K

1
p
∥∥u(x)

∥∥.
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Then we see that

r =
‖u0‖p + ‖u1‖p( Γ (α)

Γ (2α) Tα + 1) + ( T1+α

Γ (2α)((2α–1)p+1)
1
p

+ T

Γ (α)((α–1)p+1)
1
p

)J
1
p

1 – ( T2α

Γ (2α)((2α–1)p+1)
1
p

+ Tα

Γ (α)((α–1)p+1)
1
p

)K
1
p

is the optimal solution of the inequality

‖u0‖p + ‖u1‖p

(
Γ (α)
Γ (2α)

Tα + 1
)

+
(

T1+α

Γ (2α)((2α – 1)p + 1)
1
p

+
T

Γ (α)((α – 1)p + 1)
1
p

)
J

1
p

+
(

T2α

Γ (2α)((2α – 1)p + 1)
1
p

+
Tα

Γ (α)((α – 1)p + 1)
1
p

)
K

1
p r

′ ≤ r
′
.

Define the closed, bounded and convex set

Cr =
{

u ∈ Cα
1–α(I,�p) : ‖u‖ ≤ r, lim

x→0
x1–αun(x) = un

0, lim
x→0

x1–αDαun(x) = un
1,

}
,

where n = 1, 2, . . . . Clearly, A is bounded on Cr . In the following, we show that A is con-
tinuous on Cr . For any u, v ∈ Cr , applying Hölder’s inequality, we can write

∥∥Au(x) – Av(x)
∥∥p

p

≤
∑
i≥1

∣∣∣∣
∫ x

0

(x – η)2α–1

Γ (2α)
(
fi
(
η, u(η),Dαu(η)

)
– fi

(
η, v(η),Dαv(η)

))
dη

∣∣∣∣
p

≤ Tp–1
∑
i≥1

∫ x

0

∣∣∣∣ (x – η)2α–1

Γ (2α)

∣∣∣∣
p∣∣fi

(
η, u(η),Dαu(η)

)
– fi

(
η, v(η),Dαv(η)

)∣∣p dη

≤ Tp–1
∫ x

0

(x – η)(2α–1)p

Γ (2α)p dη
∥∥f

(
η, u(η),Dαu(η)

)
– f

(
η, v(η),Dαv(η)

)∥∥p
p

≤ T2α

Γ (2α)p((2α – 1)p + 1)
∥∥f

(
η, u(η),Dαu(η)

)
– f

(
η, v(η),Dαv(η)

)∥∥p
p.

The family of {fx(u)}x∈I where fx(u) = f (x, u(x),Dαu(x)) is equicontinuous on �p. Bearing
(C′

4) in mind, for all x ∈ I , we have

∀v, u ∈ Br and ∀ε > 0, ∃δ > 0 with ‖u – v‖ ≤ δ such that
∥∥fx(u) – fx(v)

∥∥
p ≤ ε

z
,

where z = T
2α
p

Γ (2α)((2α–1)p+1)
1
p

. Therefore, we see that

∥∥Au(x) – Av(x)
∥∥

p ≤ t
2α
p

Γ (2α)((2α – 1)p + 1)
1
p

∥∥fη(u) – fη(v)
∥∥

p < ε,

which means that A is continuous.
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Without loss of generality, we can suppose x1 > x2. Applying (9), for any u ∈ Cr , we have

∥∥Au(x1) – Au(x2)
∥∥

p

≤ ∥∥u0
(
xα–1

1 – xα–1
2

)∥∥
p +

∥∥∥∥u1
Γ (α)
Γ (2α)

(
x2α–1

1 – x2α–1
2

)∥∥∥∥
p

+
∥∥∥∥ 1
Γ (2α)

∫ x1

0

(
(x2 – η)2α–1 – (x1 – η)2α–1)f

(
η, u(η),Dαu(η)

)
dη

∥∥∥∥
p

+
∥∥∥∥
∫ x2

x1

(x2 – η)2α–1f
(
η, u(η),Dαu(η)

)
dη

∥∥∥∥
p

≤ ‖u0‖p|x2 – x1|m1 + ‖u1‖p
Γ (α)
Γ (2α)

m2|x2 – x1|

+
T

p–1
p

Γ (2α)

(∑
i≥1

∫ x1

0
|x2 – x1|PmP

3
(
ji(η) + ki(η)

∣∣ui(η)
∣∣p)dη

) 1
p

+
T

p–1
p

Γ (2α)

(∑
i≥1

∫ x2

x1

(x2 – η)(2α–1)P(
ji(η) + ki(η)

∣∣ui(η)
∣∣P)

dη

) 1
p

≤ ‖u0‖p|x2 – x1|m1 + ‖u1‖p
Γ (α)
Γ (2α)

m2|x2 – x1|

+
T

p–1
p

Γ (2α)

(
mP

3

∫ x1

0
|x2 – x1|P

∑
i≥1

ji(η) dη

+
∫ x1

0
|x2 – x1|P lim

n→∞ sup ki(η)
∑
i≥1

∣∣ui(η)
∣∣P dη

) 1
p

+
T

p–1
p

Γ (2α)

(∫ x2

x1

(x2 – η)(2α–1)P
∑
i≥1

ji(η) dη

+
∫ x2

x1

(x2 – η)(2α–1)p lim
n→∞ sup ki(η)

∑
i≥1

∣∣ui(η)
∣∣P dη

) 1
p

≤ ‖u0‖p|x2 – x1|m1 + ‖u1‖p
Γ (α)
Γ (2α)

m2|x2 – x1|

+
T

p–1
p

Γ (2α)
(
TJmP

3 |x2 – x1|P + TK‖u‖p|x2 – x1|P
) 1

p

+
T

p–1
p

Γ (2α)

( |x2 – x1|(2α–1)p+1

(2α – 1)p + 1
J +

|x2 – x1|(2α–1)p+1

(2α – 1)p + 1
K‖u‖p

) 1
p

≤ ‖u0‖p|x2 – x1|m1 + ‖u1‖p
Γ (α)
Γ (2α)

m2|x2 – x1|

+
TJ

1
p m3

Γ (2α)
|x2 – x1| +

TJK
1
p

Γ (2α)
|x2 – x1|

+
J

1
p T1– 1

p

Γ (2α)((2α – 1)p + 1)
1
p
|x2 – x1|(2α–1)p+1,

which tends to zero when x1 −→ x2. Thus, we deduce that A is equicontinuous on Cr .
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Setting C̄ = conv(A(Cr)), obviously C̄ ⊂ Cr . Let Y ⊂ C̄, then A is continuous on Y and
the functions from the set of Y are equicontinuous on I . In view of the definition of the
Hausdorff MNC χ on the space Cα

1–α(I, c0), Proposition 1.7 and Theorem 1.9, we have

χCα
1–α (I,�p)(Y ) = sup

x∈I
χ�p

(
Y (x)

)
.

For any u ∈ Y , we obtain

χ�p

(
Au(x)

)
= lim

i→∞

{
sup
u∈B

(∑
n≥i

∣∣Aun(x)
∣∣p

) 1
p
}

≤ lim
i→∞

{
sup
u∈B

(∑
n≥i

∣∣∣∣u0
nxα–1 + u1

n
Γ (α)
Γ (2α)

x2α–1

+
1

Γ (2α)

∫ x

0
(x – η)2α–1fn

(
x, u(x),Dαu(x)

)
dη

∣∣∣∣
p) 1

p
}

≤ lim
i→∞

{
sup
u∈B

1
Γ (2α)

(∑
n≥i

∣∣∣∣
∫ x

0
(x – η)2α–1fn

(
x, u(x),Dαu(x)

)
dη

∣∣∣∣
p) 1

p
}

≤ lim
i→∞

{
sup
u∈B

T
1–p

p

Γ (2α)

(∑
n≥i

∫ x

0

∣∣(x – η)2α–1∣∣p(ji(η) + ki(η)
∣∣ui(η)

∣∣p)dη

) 1
p
}

≤ lim
i→∞

{
sup
u∈B

T
1–p

p

Γ (2α)

(∫ x

0

∣∣(x – η)2α–1∣∣p ∑
n≥i

ji(η) dη

+
∫ x

0

∣∣(x – η)2α–1∣∣pki(η)
∑
n≥i

∣∣ui(η)
∣∣p

)
dη)

1
p

}
.

Then we get

sup
x∈I

χ�p

(
Au(x)

) ≤ sup
x∈I

T
1–p

p

Γ (2α)
lim

i→∞

{
sup
u∈B

(
T (2α–1)p+1)

((2α – 1)p + 1)
K

∑
n≥i

∣∣ui(η)
∣∣p

) 1
p
}

.

Therefore

sup
x∈I

χ�p

(
Au(x)

) ≤ K
1
p T2α

Γ (2α)((2α – 1)p + 1)
1
p

sup
x∈I

lim
i→∞

{
sup
u∈B

(
max
n≥i

∣∣ui(η)
∣∣p

) 1
p
}

and

χCα
1–α (I,�p)

(
Au(x)

) ≤ K
1
p T2α

Γ (2α)((2α – 1)p + 1)
1
p
χCα

1–α (I,�p)(Y ).

As K
1
p T2α

Γ (2α)((2α–1)p+1)
1
p

< 1, hence, applying Lemma 1.6, A admits at least one fixed point in A

which is a solution for (5) in the space Cα
1–α(I,�p). �
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Example 3.2 The system of fractional differential equation in the space �2 is given as fol-
lows:{

Dun(x) = xn tanh(–x) +
∑∞

m=n
um(x)ex

mn , x ∈ (0, 1
2 ],

limx→0 x1–αun(x) = a
n , limx→0 x1–αDαun(x) = b

n , n = 1, 2, . . . .
(11)

This system is a special case of (5) with a, b ≥ 0, α = 1, T = 1
2 and

fn
(
x, u(x),Dαu(x)

)
= xn tanh(–x) +

∞∑
m=n

um(x)ex

mn
.

Obviously, the conditions (C′
1) and (C′

2) are satisfied. For every x ∈ (0, 1
2 ] and u ∈ �2, we

have

∣∣fn
(
x, u(x),Dαu(x)

)2∣∣ =

∣∣∣∣∣xn tanh(–x) +
∞∑

m=n

um(x)ex

mn

∣∣∣∣∣
≤ ∣∣xn tanh(–x)

∣∣2 +
∞∑

m=n

∣∣∣∣um(x)ex

mn

∣∣∣∣
2

≤ x2n +
π2e2x

6n2

∣∣un(x)
∣∣2.

Therefore, f satisfies condition (C′
3) with ji(x) = x2n and ki(t) = π2e2x

6n2 in which the functions
ji(x) are continuous,

∑
i≥1 ji(x) converges uniformly to 1

1–x2 and limi→∞ ki(x) = 0, that is,
it is integrable over I . Now, we are going to check condition (C′

4). For any ε > 0, x ∈ (0, 1]
and u, v ∈ �2, choose δ = ε

√
6

e2π
with ‖u(x) – v(x)‖ < δ, we have

∑
n≥1

∣∣fn
(
x, u(x),Dαu(x)

)
– fn

(
x, v(x),Dαv(x)

)∣∣2 ≤
∑
n≥1

∣∣∣∣∑
m≥n

(um(x) – vm(x))e2x

mn

∣∣∣∣
2

≤
∑
n≥1

e2x

n2

∑
m≥n

|um(x) – vm(x)|2
m2

≤
∑
n≥1

e2x

n2

∥∥u(x) – v(x)
∥∥2

�2

≤ ∥∥u(x) – v(x)
∥∥2

�2

e2π2

6
< ε.

Applying Theorem 3.2, hence the system of fractional differential equation (11) possesses
at least one solution in Cα

1–α(I,�2).
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